This file is indexed.

/usr/include/casacore/scimath/Functionals/Interpolate1D.tcc is in casacore-dev 2.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
//# Interpolate1D.cc:  implements Interpolation in one dimension
//# Copyright (C) 1996,1997,2000,2002
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//#        Internet email: aips2-request@nrao.edu.
//#        Postal address: AIPS++ Project Office
//#                        National Radio Astronomy Observatory
//#                        520 Edgemont Road
//#                        Charlottesville, VA 22903-2475 USA
//#
//# $Id$

#ifndef SCIMATH_INTERPOLATE1D_TCC
#define SCIMATH_INTERPOLATE1D_TCC

#include <casacore/scimath/Functionals/Interpolate1D.h>
#include <casacore/scimath/Functionals/SampledFunctional.h>
#include <casacore/casa/Exceptions/Error.h>
#include <casacore/casa/Utilities/BinarySearch.h>
#include <casacore/casa/Utilities/GenSort.h>
#include <casacore/casa/Arrays/Vector.h>
#include <casacore/casa/Arrays/ArrayMath.h>
#include <casacore/casa/BasicMath/Math.h>

namespace casacore { //# NAMESPACE CASACORE - BEGIN

template <class Domain, class Range> Interpolate1D<Domain, Range>::
Interpolate1D() {
}

template <class Domain, class Range> Interpolate1D<Domain, Range>::
Interpolate1D(const SampledFunctional<Domain> &x,
	      const SampledFunctional<Range> &y, 
	      const Bool sorted, 
	      const Bool uniq){
  setData(x, y, sorted, uniq);
}

// Do all the real construction work here
template <class Domain, class Range> void Interpolate1D<Domain, Range>::
setData(const SampledFunctional<Domain> &x,
	const SampledFunctional<Range> &y, 
	const Bool sorted, 
	const Bool uniq){
  nElements = x.nelements();

  // Set the default interpolation method
  if (nElements == 0){
    throw(AipsError("Interpolate1D::setData"
 		    " abcissa is of zero length"));
  }
  else if (nElements == 1)         
    curMethod = nearestNeighbour;   
  else
    curMethod = linear;
  
  // Now check that the ordinate has enough elements to correspond to all the
  // elements in the abcissa. 
  if (nElements != y.nelements()) 
    throw(AipsError("Interpolate1D::setData"
		    " ordinate is a different length from the abcissa"));
  
  // Sort the x and y data if required.
  xValues.resize(nElements);
  yValues.resize(nElements);
  if (sorted == False) {
    Vector<uInt> index;
    // I will copy the data to a block prior to sorting as the
    // genSort function cannot handle a SampledFunctional
    for (uInt j = 0; j < nElements; j++)
      xValues[j] = x(j);
    (void) genSort(index, xValues);
    Int idx; 
    for (uInt i = 0; i < nElements; i++) {
      idx = index(i);
      xValues[i] = x(idx);
      yValues[i] = y(idx);
    }
  }
  else {
    for (uInt k = 0; k < nElements; k++) {
      xValues[k] = x(k);
      yValues[k] = y(k);
    }
  }
  // Check that each x_value is unique. If it isn't then throw an
  // exception. This check can be turned off (by setting uniq=True), but the
  // user will then have to interpolate under the following restrictions:
  // 1/ spline interpolation cannot be used
  // 2/ linear and nearestNeighbour interpolation cannot be used when when the
  //    specified x value is within one data point of a repeated x value.
  // 3/ cubic interpolation cannot be used when when the specified x value is
  //    within two data points of a repeated x value.
  if (uniq == False) 
    for (uInt i=0; i < nElements-1; i++) {
      if (nearAbs(xValues[i], xValues[i+1])) {
	throw(AipsError("Interpolate1D::setData"
			" data has repeated x values"));
      }
    }
  //  I will not initialise the y2Values as they are not used unless the
  //  interpolation method is changed to spline. The y2Values are hence
  //  initialised by method.
}

template <class Domain, class Range> Interpolate1D<Domain, Range>::
Interpolate1D(const Interpolate1D<Domain, Range> & other):
  Function1D<Domain, Range> (other),
  curMethod(other.curMethod),
  nElements(other.nElements),
  xValues(other.xValues),
  yValues(other.yValues),
  y2Values(other.y2Values){
}

template <class Domain, class Range> 
Interpolate1D<Domain, Range> & Interpolate1D<Domain, Range>::
operator=(const Interpolate1D<Domain, Range> & other){
  if (this != &other){
    curMethod = other.curMethod;
    nElements = other.nElements;
    xValues = other.xValues;
    yValues = other.yValues;
    y2Values = other.y2Values;
  }
  return *this;
}

template <class Domain, class Range> Interpolate1D<Domain, Range>::
~Interpolate1D(){}

template <class Domain, class Range> 
Function<Domain, Range> *Interpolate1D<Domain, Range>::clone() const {
  return new Interpolate1D<Domain, Range>(*this);
}

template <class Domain, class Range> Range Interpolate1D<Domain, Range>::
polynomialInterpolation(const Domain x_req, uInt n, uInt offset) const {
  // A private function for doing polynomial interpolation
  // Based on Nevilles Algorithm (Numerical Recipies 2nd ed., Section 3.1)
  // x is the point we want to estimate, n is the number of points to use
  // in the interpolation, and offset controls which n points are used
  // (normally the nearest points)
  
  // copy the x, y data into the working arrays
  Block<Range> c(n), d(n);
  Block<Domain> x(n);
  uInt i;
  for (i = 0; i < n; i++){
    d[i] = c[i] = yValues[offset]; 
    x[i] = xValues[offset];
    offset++;
  }
  // Now do the interpolation using the rather opaque algorithm
  Range w, y;
  y = c[0];
  const Float one = 1;
  for (i = 1; i < n; i++){
    // Calculate new C's and D's for each interation 
    for (uInt j = 0; j < n-i; j++){
      if (nearAbs(x[j+i], x[j])) 
	throw(AipsError("Interpolate1D::polynomailInterpolation"
			" data has repeated x values"));
      w = (c[j+1] - d[j]) * (one / (x[j] - x[j+i]));
      c[j] = (x[j] - x_req) * w;
      d[j] = (x[j+i] - x_req) * w;
    }
    y += c[0];
  }
  return y;
}

template <class Domain, class Range> void Interpolate1D<Domain, Range>::
setMethod(uInt newMethod) {
  // Are we are switching to spline interpolation from something else?
  if (newMethod == spline && curMethod != spline){ // Calculate the y2Values
    y2Values.resize(nElements);
    // The y2Values are initialised here.  I need to calculate the second
    // derivates of the interpolating curve at each x_value.  As described
    // in Numerical Recipies 2nd Ed. Sec. 3.3, this is done by requiring
    // that the first derivative is continuous at each data point. This
    // leads to a set of equations that has a tridiagonal form that can be
    // solved using an order(N) algorithm.
    //
    // The first part of this solution is to do the Gaussian elimination so
    // that all the coefficients on the diagonal are one, and zero below the
    // diagonal.  Because the system is tridiagonal the only non-zero
    // coefficients are in the diagonal immediately above the main
    // one. These values are stored in y2Values temporarily. The temporary
    // storage t, is used to hold the right hand side.
    Block<Domain> t(nElements);
    Domain c;
    t[0] = 0; 
    y2Values[0] = t[0] * yValues[0]; // This obscure initialisation is to
                                     // ensure that if y2Values is a block
                                     // of arrays, it gets initialised to the
                                     // right size.
    y2Values[nElements-1] = y2Values[0];
    c = xValues[1] - xValues[0];
    if (nearAbs(xValues[1],  xValues[0])) 
      throw(AipsError("Interpolate1D::setMethod"
		      " data has repeated x values"));
    Domain a, b, delta;
    const Domain six = 6;
    const Float one = 1;
    Range r;
    uInt i;
    for (i = 1; i < nElements-1; i++){
      a = c;
      b = 2*(xValues[i+1] - xValues[i-1]);
      if (nearAbs(xValues[i+1],  xValues[i])) 
	throw(AipsError("Interpolate1D::setMethod"
			" data has repeated x values"));
      c = (xValues[i+1] - xValues[i]);
      r = (one/c) * (yValues[i+1] - yValues[i]) - 
	(one/a) * (yValues[i] - yValues[i-1]);
      delta = a * t[i-1];
      if (nearAbs(b, delta)) 
	throw(AipsError("Interpolate1D::setMethod"
			" trouble constructing second derivatives"));
      delta = b - delta;
      t[i] = c/delta;
      y2Values[i] = (one/delta)*(six*r - a*y2Values[i-1]);
    }
    // The second part of the solution is to do the back-substitution to
    // iteratively obtain the second derivatives.
    for (i = nElements-2; i > 1; i--){
      y2Values[i] = y2Values[i] - t[i]*y2Values[i+1];
    }
  }
  else if (curMethod == spline && newMethod != spline){ 
    // Delete the y2Values
    y2Values.resize(uInt(0));
  }
  curMethod = newMethod;
}

template <class Domain, class Range> Vector<Domain> Interpolate1D<Domain, Range>::
getX() const{
  Vector<Domain> x(xValues, nElements);
  return x;
}

template <class Domain, class Range> Vector<Range> Interpolate1D<Domain, Range>::
getY() const {
  Vector<Range> y(yValues, nElements);
  return y;
}

template <class Domain, class Range> Range Interpolate1D<Domain, Range>::
eval(typename Function1D<Domain, Range>::FunctionArg x) const {
  Bool found;
  uInt where = binarySearchBrackets(found, xValues, x[0], nElements);  
  Domain x1,x2;
  Range y1,y2;
  switch (curMethod) {
  case nearestNeighbour: // This does nearest neighbour interpolation
    if (where == nElements)
      return yValues[nElements-1];
    else if (where == 0) 
      return yValues[0];
    else if (xValues[where] - x[0] < .5)
      return yValues[where];
    else
      return yValues[where-1];
  case linear: // Linear interpolation is the default
    if (where == nElements)
      where--;
    else if (where == 0)
      where++;
    x2 = xValues[where]; y2 = yValues[where];
    where--;
    x1 = xValues[where]; y1 = yValues[where];
    if (nearAbs(x1, x2)) 
      throw(AipsError("Interpolate1D::operator()"
		      " data has repeated x values"));
    return y1 + ((x[0]-x1)/(x2-x1)) * (y2-y1);
  case cubic:// fit a cubic polynomial to the four nearest points
             // It is relatively simple to change this to any order polynomial
    if (where > 1 && where < nElements - 1)
      where  = where - 2;
    else if (where <= 1)
      where = 0;
    else
      where = nElements - 4;
    return polynomialInterpolation(x[0], (uInt) 4, where);
  case spline: // natural cubic splines
    {
      if (where == nElements)
	where--;
      else if (where == 0)
	where++;
      Domain dx, h, a, b;
      Range y1d, y2d;
      
      x2 = xValues[where]; y2 = yValues[where]; y2d = y2Values[where];
      where--;
      x1 = xValues[where]; y1 = yValues[where]; y1d = y2Values[where];
      if (nearAbs(x1, x2)) 
	throw(AipsError("Interpolate1D::operator()"
			" data has repeated x values"));
      dx = x2-x1;
      a = (x2-x[0])/dx; 
      b = 1-a;
      h = static_cast<Domain>(dx*dx/6.);
      return a*y1 + b*y2 + h*(a*a*a-a)*y1d + h*(b*b*b-b)*y2d;
    }
  default:
    throw AipsError("Interpolate1D::operator() - unknown type");
  }
  return y1;       // to make compiler happy
}

} //# NAMESPACE CASACORE - END


#endif