This file is indexed.

/usr/include/casacore/scimath/Mathematics/FFTPack.h is in casacore-dev 2.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
//# FFTPack.h: C++ wrapper functions for Fortran FFTPACK code
//# Copyright (C) 1993,1994,1995,1997,1999,2000,2001
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//#        Internet email: aips2-request@nrao.edu.
//#        Postal address: AIPS++ Project Office
//#                        National Radio Astronomy Observatory
//#                        520 Edgemont Road
//#                        Charlottesville, VA 22903-2475 USA
//#

//# $Id$

#ifndef SCIMATH_FFTPACK_H
#define SCIMATH_FFTPACK_H

#include <casacore/casa/aips.h>

  //# The SGI compiler with -LANG:std has some trouble including both Complexfwd.h
  //# and Complex.h so we bypass the problem by include Complex.h only.
#if defined(AIPS_USE_NEW_SGI)
#include <casacore/casa/BasicSL/Complex.h>
#else
#include <casacore/casa/BasicSL/Complexfwd.h>
#endif

namespace casacore { //# NAMESPACE CASACORE - BEGIN

// <summary>C++ interface to the Fortran FFTPACK library</summary>
// <reviewed reviewer="UNKNOWN" date="before2004/08/25" tests="" demos="">
// </reviewed>
// <synopsis>
// The static functions in this class are C++ wrappers to the Fortran FFTPACK
// library. This library contains functions that perform fast Fourier
// transforms (FFT's) and related transforms. 

// An additional purpose of these definitions is to overload the functions so
// that C++ users can access the functions in either fftpak (single precision)
// or dfftpack (double precision) with identical function names.

// These routines only do one-dimensional transforms with the first element of
// the array being the "origin" of the transform. The <linkto
// class="FFTServer">FFTServer</linkto> class uses some of these functions to
// implement multi-dimensional transforms with the origin of the transform
// either at the centre or the first element of the Array.

// You must initialise the work array <src>wsave</src> before using the forward
// transform (function with a suffix of f) or the backward transform (with a
// suffix of b).

// The transforms done by the functions in this class can be categorised as
// follows:
// <ul>
// <li> Complex to Complex Transforms<br> 
//      Done by the cttfi, cfftf & cfftb functions
// <li> Real to Complex Transforms<br>
//      Done by the rffti, rfftf & rfftb functions. A simpler interface is
//      provided by the ezffti, ezfftf & ezfftb functions. The 'ez' functions
//      do not destroy the input array and provide the result in a slightly
//      less packed format. They are available in single precision only and
//      internally use the rfft functions.
// <li> Sine Transforms<br>
//      Done by the sinti & sint functions. As the sine transform is its own
//      inverse there is no need for any distinction between forward and
//      backward transforms.
// <li> Cosine Transforms<br>
//      Done by the costi & cost functions. As the cosine transform is its own
//      inverse there is no need for any distinction between forward and
//      backward transforms.
// <li> Sine quarter wave Transforms<br>
//      Done by the sinqi, sinqf & sinqb functions.
// <li> Cosine quarter wave Transforms<br>
//      Done by the cosqi, cosqf & cosqb functions.
// </ul>


// <note role=warning> 
// These functions assume that it is possible to convert between Casacore numeric
// types and those used by Fortran. That it is possible to convert between
// Float & float, Double & double and Int & int.
// </note>

// <note role=warning> 
// These function also assume that a Complex array is stored as pairs of
// floating point numbers, with no intervening gaps, and with the real
// component first ie., <src>[re0,im0,re1,im1, ...]</src> so that the following
// type casts work,
// <srcblock>
// Complex* complexPtr;
// Float* floatPtr = (Float* ) complexPtr;
// </srcblock>
// and allow a Complex number to be accessed as a pair of real numbers. If this
// assumption is bad then float Arrays will have to generated by copying the
// complex ones. When compiled in debug mode mode the functions that require
// this assumption will throw an exception (AipsError) if this assumption is
// bad. Ultimately this assumption about Complex<->Float Array conversion
// should be put somewhere central like Array2Math.cc.
// </note>

// </synopsis>


class FFTPack
{
public:
// cffti initializes the array wsave which is used in both <src>cfftf</src> and
// <src>cfftb</src>. The prime factorization of n together with a tabulation of
// the trigonometric functions are computed and stored in wsave.
// 
// Input parameter:
// <dl compact>
// <dt><b>n</b>
// <dd>    The length of the sequence to be transformed
// </dl>
// Output parameter:
// <dl compact>
// <dt><b>wsave</b>
// <dd>    A work array which must be dimensioned at least 4*n+15
//         The same work array can be used for both cfftf and cfftb
//         as long as n remains unchanged. Different wsave arrays
//         are required for different values of n. The contents of
//         wsave must not be changed between calls of cfftf or cfftb.
// </dl>
// <group>
static void cffti(Int n, Float* wsave);
static void cffti(Int n, Double* wsave);
//Here is the doc from FFTPack 5.1 
//You can convert the linguo from fortran to C/C++
/*  Input Arguments
 
 L       Integer number of elements to be transformed in the first 
         dimension.  The transform is most efficient when L is a 
         product of small primes.


 M       Integer number of elements to be transformed in the second 
         dimension.  The transform is most efficient when M is a 
         product of small primes.
 
 LENSAV  Integer dimension of WSAVE array.  LENSAV must be at least 
         2*(L+M) + INT(LOG(REAL(L))/LOG(2.)) + INT(LOG(REAL(M))/LOG(2.)) + 8.


 Output Arguments
 
 WSAVE   Real work array with dimension LENSAV, containing the
         prime factors of L and M, and also containing certain 
         trigonometric values which will be used in routines 
         CFFT2B or CFFT2F.


 WSAVE   Real work array with dimension LENSAV.  The WSAVE array 
         must be initialized with a call to subroutine CFFT2I before 
         the first call to CFFT2B or CFFT2F, and thereafter whenever
         the values of L, M or the contents of array WSAVE change.  
         Using different WSAVE arrays for different transform lengths
         or types in the same program may reduce computation costs 
         because the array contents can be re-used.


 IER     Integer error return
         =  0 successful exit
         =  2 input parameter LENSAV not big enough
         = 20 input error returned by lower level routine
*/

static void cfft2i(const Int& n, const Int& m, Float *& wsave, const Int& lensav, Int& ier);
// </group>

// cfftf computes the forward complex discrete Fourier
// transform (the Fourier analysis). Equivalently, cfftf computes
// the Fourier coefficients of a complex periodic sequence.
// the transform is defined below at output parameter c.
// 
// The transform is not normalized. To obtain a normalized transform
// the output must be divided by n. Otherwise a call of cfftf
// followed by a call of cfftb will multiply the sequence by n.
// 
// The array wsave which is used by <src>cfftf</src> must be
// initialized by calling <src>cffti(n,wsave)</src>.
// 
// Input parameters:
// <dl compact>
// <dt><b>n</b>
// <dd>   The length of the complex sequence c. The method is
//        more efficient when n is the product of small primes.
// <dt><b>c</b>
// <dd>    A complex array of length n which contains the sequence to be
//         transformed.
// <dt><b>wsave</b>
// <dd>    A real work array which must be dimensioned at least 4n+15
//         by the program that calls cfftf. The wsave array must be
//         initialized by calling <src>cffti(n,wsave)</src> and a
//         different wsave array must be used for each different
//         value of n. This initialization does not have to be
//         repeated so long as n remains unchanged thus subsequent
//         transforms can be obtained faster than the first.
//         The same wsave array can be used by cfftf and cfftb.
// </dl>
// Output parameters:
// <dl compact>
// <dt><b>c</b>
// <dd>   for j=1,...,n<br>
//            c(j)=the sum from k=1,...,n of<br>
//                  c(k)*exp(-i*(j-1)*(k-1)*2*pi/n)<br>
//                        where i=sqrt(-1)<br>
// <dt><b>wsave</b>
// <dd>    Contains initialization calculations which must not be
//         destroyed between calls of cfftf or cfftb
// </dl>
// <group>
static void cfftf(Int n, Complex* c, Float* wsave);
static void cfftf(Int n, DComplex* c, Double* wsave);

//Description from FFTPack 5.1
/*
Input Arguments


 LDIM    Integer first dimension of two-dimensional complex array C.


 L       Integer number of elements to be transformed in the first 
         dimension of the two-dimensional complex array C.  The value 
         of L must be less than or equal to that of LDIM.  The 
         transform is most efficient when L is a product of small 
         primes.


 M       Integer number of elements to be transformed in the second 
         dimension of the two-dimensional complex array C.  The 
         transform is most efficient when M is a product of small 
         primes.
 
 C       Complex array of two dimensions containing the (L,M) subarray
         to be transformed.  C's first dimension is LDIM, its second 
         dimension must be at least M.

 WSAVE   Real work array with dimension LENSAV.  WSAVE's contents 
         must be initialized with a call to subroutine CFFT2I before 
         the first call to routine CFFT2F or CFFT2B with transform 
         lengths L and M.  WSAVE's contents may be re-used for 
         subsequent calls to CFFT2F and CFFT2B having those same 
         transform lengths.
 


 LENSAV  Integer dimension of WSAVE array.  LENSAV must be at least 
         2*(L+M) + INT(LOG(REAL(L))/LOG(2.)) + INT(LOG(REAL(M))/LOG(2.)) + 8.


 WORK    Real work array.


 LENWRK  Integer dimension of WORK array.  LENWRK must be at least
         2*L*M.
*/
static void cfft2f (const Int& ldim, const Int& L, const Int& M, Complex*& C, Float*& WSAVE, const Int& LENSAV,
		    Float *& WORK, const Int& LENWRK, Int& IER);
// </group>

// cfftb computes the backward complex discrete Fourier
// transform (the Fourier synthesis). Equivalently, cfftb computes
// a complex periodic sequence from its Fourier coefficients.
// The transform is defined below with output parameter c.
// 
// A call of cfftf followed by a call of cfftb will multiply the
// sequence by n.
// 
// The array wsave which is used by <src>cfftb</src> must be
// initialized by calling <src>cffti(n,wsave)</src>.
// 
// Input parameters:
// <dl compact>
// <dt><b>n</b>
// <dd>          The length of the complex sequence c. The method is
//               more efficient when n is the product of small primes.
// <dt><b>c</b>
// <dd>          A complex array of length n which contains the sequence to be
//               transformed.
// <dt><b>wsave</b> 
// <dd>          A real work array which must be dimensioned at least 4n+15
//               in the program that calls cfftb. The wsave array must be
//               initialized by calling <src>cffti(n,wsave)</src>
//               and a different wsave array must be used for each different
//               value of n. This initialization does not have to be
//               repeated so long as n remains unchanged thus subsequent
//               transforms can be obtained faster than the first.
//               The same wsave array can be used by cfftf and cfftb.
// </dl>
// Output parameters:
// <dl compact>
// <dt><b>c</b>     
// <dd>          for j=1,...,n<br>
//                 c(j)=the sum from k=1,...,n of<br>
//                     c(k)*exp(i*(j-1)*(k-1)*2*pi/n)<br>

// <dt><b>wsave</b>
// <dd>          Contains initialization calculations which must not be
//               destroyed between calls of cfftf or cfftb
// </dl>
// <group>
static void cfftb(Int n, Complex* c, Float* wsave);
static void cfftb(Int n, DComplex* c, Double* wsave);


//Documentation from FFTPack 5.1
/*
 Input Arguments
 
 LDIM    Integer first dimension of two-dimensional complex array C.
 

 L       Integer number of elements to be transformed in the first 
         dimension of the two-dimensional complex array C.  The value 
         of L must be less than or equal to that of LDIM.  The 
         transform is most efficient when L is a product of small 
         primes.


 M       Integer number of elements to be transformed in the second 
         dimension of the two-dimensional complex array C.  The 
         transform is most efficient when M is a product of small 
         primes.
 
 C       Complex array of two dimensions containing the (L,M) subarray
         to be transformed.  C's first dimension is LDIM, its second 
         dimension must be at least M.


 WSAVE   Real work array with dimension LENSAV.  WSAVE's contents 
         must be initialized with a call to subroutine CFFT2I before 
         the first call to routine CFFT2F or CFFT2B with transform 
         lengths L and M.  WSAVE's contents may be re-used for 
         subsequent calls to CFFT2F and CFFT2B with the same 
         transform lengths L and M.

 LENSAV  Integer dimension of WSAVE array.  LENSAV must be at least 
         2*(L+M) + INT(LOG(REAL(L))/LOG(2.)) + INT(LOG(REAL(M))/LOG(2.)) + 8.

 WORK    Real work array.
 
 LENWRK  Integer dimension of WORK array.  LENWRK must be at least
         2*L*M.
 
 Output Arguments


  C      Complex output array.  For purposes of exposition,
         assume the index ranges of array C are defined by
         C(0:L-1,0:M-1).
 
         For I=0,...,L-1 and J=0,...,M-1, the C(I,J)'s are given
          in the traditional aliased form by
 
                   L-1  M-1
          C(I,J) = SUM  SUM  C(L1,M1)*
                   L1=0 M1=0
 
                     EXP(SQRT(-1)*2*PI*(I*L1/L + J*M1/M))
 
          And in unaliased form, the C(I,J)'s are given by
 
                   LF    MF
          C(I,J) = SUM   SUM   C(L1,M1,K1)*
                   L1=LS M1=MS
 
                     EXP(SQRT(-1)*2*PI*(I*L1/L + J*M1/M))
 
          where
 
             LS= -L/2    and LF=L/2-1   if L is even;
             LS=-(L-1)/2 and LF=(L-1)/2 if L is odd;
             MS= -M/2    and MF=M/2-1   if M is even;
             MS=-(M-1)/2 and MF=(M-1)/2 if M is odd;
 
          and
 
             C(L1,M1) = C(L1+L,M1) if L1 is zero or negative;
             C(L1,M1) = C(L1,M1+M) if M1 is zero or negative;
 
          The two forms give different results when used to
          interpolate between elements of the sequence.
 
  IER     Integer error return
          =  0 successful exit
          =  2 input parameter LENSAV not big enough
          =  3 input parameter LENWRK not big enough
          =  5 input parameter L > LDIM
          = 20 input error returned by lower level routine
*/



static void cfft2b (const Int& LDIM, const Int& L, const Int& M, Complex* & C, Float *& WSAVE, const Int& LENSAV,
		    Float*& WORK, const Int& LENWRK, Int& IER);
// </group>

// rffti initializes the array wsave which is used in both <src>rfftf</src> and
// <src>rfftb</src>. The prime factorization of n together with a tabulation of
// the trigonometric functions are computed and stored in wsave.
//
// Input parameter:
// <dl compact>
// <dt><b>n</b>
// <dd>       The length of the sequence to be transformed.
// </dl>
// Output parameter:
// <dl compact>
// <dt><b>wsave</b>
// <dd>    A work array which must be dimensioned at least 2*n+15.
//         The same work array can be used for both rfftf and rfftb
//         as long as n remains unchanged. Different wsave arrays
//         are required for different values of n. The contents of
//         wsave must not be changed between calls of rfftf or rfftb.
// </dl>
// <group>
static void rffti(Int n, Float* wsave);
static void rffti(Int n, Double* wsave);
// </group>

// rfftf computes the Fourier coefficients of a real perodic sequence (Fourier
// analysis). The transform is defined below at output parameter r.
// 
// Input parameters:
// <dl compact>
// <dt><b>n</b>
// <dd>    The length of the array r to be transformed.  The method
//         is most efficient when n is a product of small primes.
//         n may change so long as different work arrays are provided
// <dt><b>r</b>
// <dd>    A real array of length n which contains the sequence
//         to be transformed
// <dt><b>wsave</b>
// <dd>    A work array which must be dimensioned at least 2*n+15
//         in the program that calls rfftf. The wsave array must be
//         initialized by calling <src>rffti(n,wsave)</src> and a
//         different wsave array must be used for each different
//         value of n. This initialization does not have to be
//         repeated so long as n remains unchanged thus subsequent
//         transforms can be obtained faster than the first.
//         The same wsave array can be used by rfftf and rfftb.
// </dl>
// output parameters
// <dl compact>
// <dt><b>r</b>
// <dd>    r(1) = the sum from i=1 to i=n of r(i)<br>
//         if n is even set l = n/2   , if n is odd set l = (n+1)/2<br>
//         then for k = 2,...,l<br>
//              r(2*k-2) = the sum from i = 1 to i = n of<br>
//                         r(i)*cos((k-1)*(i-1)*2*pi/n)<br>
//              r(2*k-1) = the sum from i = 1 to i = n of<br>
//                         -r(i)*sin((k-1)*(i-1)*2*pi/n)<br>
//         if n is even<br>
//              r(n) = the sum from i = 1 to i = n of<br>
//                   (-1)**(i-1)*r(i)<br>
// 
//         note:
//              this transform is unnormalized since a call of rfftf
//              followed by a call of rfftb will multiply the input
//              sequence by n.
// <dt><b>wsave</b>
// <dd>    Contains results which must not be destroyed between
//         calls of rfftf or rfftb.
// </dl>
// <group>
static void rfftf(Int n, Float* r, Float* wsave);
static void rfftf(Int n, Double* r, Double* wsave);
// </group>


// rfftb computes the real perodic sequence from its Fourier coefficients
// (Fourier synthesis). The transform is defined below at output parameter r.
// 
// Input parameters:
// <dl compact>
// <dt><b>n</b>
// <dd>    The length of the array r to be transformed.  The method
//         is most efficient when n is a product of small primes.
//         n may change so long as different work arrays are provided
// <dt><b>r</b>
// <dd>    A real array of length n which contains the sequence
//         to be transformed
// <dt><b>wsave</b>
// <dd>    A work array which must be dimensioned at least 2*n+15
//         in the program that calls rfftb. The wsave array must be
//         initialized by calling <src>rffti(n,wsave)</src> and a
//         different wsave array must be used for each different
//         value of n. This initialization does not have to be
//         repeated so long as n remains unchanged thus subsequent
//         transforms can be obtained faster than the first.
//         The same wsave array can be used by rfftf and rfftb.
// </dl>
// Output parameters:
// <dl compact>
// <dt><b>r</b>
// <dd>    for n even and for i = 1,...,n<br>
//              r(i) = r(1)+(-1)**(i-1)*r(n)<br>
//                   plus the sum from k=2 to k=n/2 of<br>
//                    2.*r(2*k-2)*cos((k-1)*(i-1)*2*pi/n)<br>
//                   -2.*r(2*k-1)*sin((k-1)*(i-1)*2*pi/n)<br>
//         for n odd and for i = 1,...,n<br>
//              r(i) = r(1) plus the sum from k=2 to k=(n+1)/2 of<br>
//                   2.*r(2*k-2)*cos((k-1)*(i-1)*2*pi/n)<br>
//                  -2.*r(2*k-1)*sin((k-1)*(i-1)*2*pi/n)<br>
// 
//         note:
//              this transform is unnormalized since a call of rfftf
//              followed by a call of rfftb will multiply the input
//              sequence by n.
// <dt><b>wsave</b>
// <dd>    Contains results which must not be destroyed between
//         calls of rfftb or rfftf.
// </dl>
// <group>
static void rfftb(Int n, Float* r, Float* wsave);
static void rfftb(Int n, Double* r, Double* wsave);
// </group>

// ezffti initializes the array wsave which is used in both <src>ezfftf</src>
// and <src>ezfftb</src>. The prime factorization of n together with a
// tabulation of the trigonometric functions are computed and stored in wsave.
// 
// Input parameter:
// <dl compact>
// <dt><b>n</b>
// <dd>    The length of the sequence to be transformed.
// </dl>
// Output parameter:
// <dl compact>
// <dt><b>wsave</b>
// <dd>    A work array which must be dimensioned at least 3*n+15.
//         The same work array can be used for both ezfftf and ezfftb
//         as long as n remains unchanged. Different wsave arrays
//         are required for different values of n.
// </dl>
static void ezffti(Int n, Float* wsave);

// ezfftf computes the Fourier coefficients of a real
// perodic sequence (Fourier analysis). The transform is defined
// below at output parameters azero, a and b. ezfftf is a simplified
// but slower version of rfftf.
// 
// Input parameters:
// <dl compact>
// <dt><b>n</b>
// <dd>    The length of the array r to be transformed.  The method
//         is most efficient when n is the product of small primes.
// <dt><b>r</b>
// <dd>    A real array of length n which contains the sequence
//         to be transformed. r is not destroyed.
// <dt><b>wsave</b>
// <dd>    A work array which must be dimensioned at least 3*n+15
//         in the program that calls ezfftf. The wsave array must be
//         initialized by calling <src>ezffti(n,wsave)</src> and a
//         different wsave array must be used for each different
//         value of n. This initialization does not have to be
//         repeated so long as n remains unchanged thus subsequent
//         transforms can be obtained faster than the first.
//         The same wsave array can be used by ezfftf and ezfftb.
// </dl>
// Output parameters:
// <dl compact>
// <dt><b>azero</b>
// <dd>    The sum from i=1 to i=n of r(i)/n
// <dt><b>a,b</b>
// <dd>    Real arrays of length n/2 (n even) or (n-1)/2 (n odd)<br>
//         for n even<br>
//            b(n/2)=0, and <br>
//            a(n/2) is the sum from i=1 to i=n of (-1)**(i-1)*r(i)/n<br>
// 
//         for n even define kmax=n/2-1<br>
//         for n odd  define kmax=(n-1)/2<br>
//         then for  k=1,...,kmax<br>
//            a(k) equals the sum from i=1 to i=n of<br>
//                   2./n*r(i)*cos(k*(i-1)*2*pi/n)<br>
//            b(k) equals the sum from i=1 to i=n of<br>
//                   2./n*r(i)*sin(k*(i-1)*2*pi/n)<br>
// </dl>
static void ezfftf(Int n, Float* r, Float* azero, Float* a, Float* b, 
	    Float* wsave);

// ezfftb computes a real perodic sequence from its
// Fourier coefficients (Fourier synthesis). The transform is
// defined below at output parameter r. ezfftb is a simplified
// but slower version of rfftb.
// 
// Input parameters:
// <dl compact>
// <dt><b>n</b>       
// <dd>    The length of the output array r.  The method is most
//         efficient when n is the product of small primes.
// <dt><b>azero</b>
// <dd>    The constant Fourier coefficient
// <dt><b>a,b</b>
// <dd>    Arrays which contain the remaining Fourier coefficients
//         these arrays are not destroyed.
//         The length of these arrays depends on whether n is even or
//         odd.
//         If n is even n/2    locations are required,
//         if n is odd (n-1)/2 locations are required.
// <dt><b>wsave</b>
// <dd>    A work array which must be dimensioned at least 3*n+15.
//         in the program that calls ezfftb. The wsave array must be
//         initialized by calling <src>ezffti(n,wsave)</src> and a
//         different wsave array must be used for each different
//         value of n. This initialization does not have to be
//         repeated so long as n remains unchanged thus subsequent
//         transforms can be obtained faster than the first.
//         The same wsave array can be used by ezfftf and ezfftb.
// </dl>
// Output parameters:
// <dl compact>
// <dt><b>r</b>
// <dd>    if n is even define kmax=n/2<br>
//         if n is odd  define kmax=(n-1)/2<br>
//         then for i=1,...,n<br>
//              r(i)=azero plus the sum from k=1 to k=kmax of<br>
//              a(k)*cos(k*(i-1)*2*pi/n)+b(k)*sin(k*(i-1)*2*pi/n)<br>
//         where<br>
//              c(k) = .5*cmplx(a(k),-b(k))   for k=1,...,kmax<br>
//              c(-k) = conjg(c(k))<br>
//              c(0) = azero<br>
//                   and i=sqrt(-1)<br>
// </dl>
static void ezfftb(Int n, Float* r, Float* azero, Float* a, Float* b, 
	    Float* wsave);

// sinti initializes the array wsave which is used in
// <src>sint</src>. The prime factorization of n together with a tabulation of
// the trigonometric functions are computed and stored in wsave.
// 
// Input parameter:
// <dl compact>
// <dt><b>n</b>
// <dd>    The length of the sequence to be transformed.  the method
//         is most efficient when n+1 is a product of small primes.
// </dl>
// Output parameter:
// <dl compact>
// <dt><b>wsave</b>
// <dd>    A work array with at least int(2.5*n+15) locations.
//         Different wsave arrays are required for different values
//         of n. The contents of wsave must not be changed between
//         calls of sint.
// </dl>
// <group>
static void sinti(Int n, Float* wsave);
static void sinti(Int n, Double* wsave);
// </group>

// sint computes the discrete Fourier sine transform
// of an odd sequence x(i). The transform is defined below at
// output parameter x.
// sint is the unnormalized inverse of itself since a call of sint
// followed by another call of sint will multiply the input sequence
// x by 2*(n+1).
// The array wsave which is used by sint must be
// initialized by calling <src>sinti(n,wsave)</src>.
// 
// Input parameters:
// <dl compact>
// <dt><b>n</b>
// <dd>    The length of the sequence to be transformed.  The method
//         is most efficient when n+1 is the product of small primes.
// <dt><b>x</b>
// <dd>    An array which contains the sequence to be transformed
// <dt><b>wsave</b>
// <dd>    A work array with dimension at least int(2.5*n+15)
//         in the program that calls sint. The wsave array must be
//         initialized by calling <src>sinti(n,wsave)</src> and a
//         different wsave array must be used for each different
//         value of n. This initialization does not have to be
//         repeated so long as n remains unchanged thus subsequent
//         transforms can be obtained faster than the first.
// </dl>
// Output parameters:
// <dl compact>
// <dt><b>x</b>
// <dd>    for i=1,...,n<br>
//              x(i) = the sum from k=1 to k=n<br>
//                   2*x(k)*sin(k*i*pi/(n+1))<br>
// 
//              a call of sint followed by another call of
//              sint will multiply the sequence x by 2*(n+1).
//              Hence sint is the unnormalized inverse
//              of itself.
// 
// <dt><b>wsave</b>
// <dd>    Contains initialization calculations which must not be
//         destroyed between calls of sint.
// </dl>
// <group>
static void sint(Int n, Float* x, Float* wsave);
static void sint(Int n, Double* x, Double* wsave);
// </group>

// costi initializes the array wsave which is used in
// <src>cost</src>. The prime factorization of n together with a tabulation of
// the trigonometric functions are computed and stored in wsave.
// 
// Input parameter:
// <dl compact>
// <dt><b>n</b>
// <dd>    The length of the sequence to be transformed.  The method
//         is most efficient when n-1 is a product of small primes.
// </dl>
// Output parameter:
// <dl compact>
// <dt><b>wsave</b>
// <dd>    A work array which must be dimensioned at least 3*n+15.
//         Different wsave arrays are required for different values
//         of n. The contents of wsave must not be changed between
//         calls of cost.
// </dl>
// <group>
static void costi(Int n, Float* wsave);
static void costi(Int n, Double* wsave);
// </group>

// cost computes the discrete Fourier cosine transform
// of an even sequence x(i). The transform is defined below at output
// parameter x.
// cost is the unnormalized inverse of itself since a call of cost
// followed by another call of cost will multiply the input sequence
// x by 2*(n-1). The transform is defined below at output parameter x.
// The array wsave which is used by <src>cost</src> must be
// initialized by calling <src>costi(n,wsave)</src>.
// 
// Input parameters:
// <dl compact>
// <dt><b>n</b>
// <dd>    The length of the sequence x. n must be greater than 1.
//         The method is most efficient when n-1 is a product of
//         small primes.
// <dt><b>x</b>
// <dd>    An array which contains the sequence to be transformed
// <dt><b>wsave</b>
// <dd>    A work array which must be dimensioned at least 3*n+15
//         in the program that calls cost. The wsave array must be
//         initialized by calling <src>costi(n,wsave)</src> and a
//         different wsave array must be used for each different
//         value of n. This initialization does not have to be
//         repeated so long as n remains unchanged thus subsequent
//         transforms can be obtained faster than the first.
// </dl>
// Output parameters:
// <dl compact>
// <dt><b>x</b>
// <dd>    for i=1,...,n<br>
//             x(i) = x(1)+(-1)**(i-1)*x(n)<br>
//              + the sum from k=2 to k=n-1<br>
//                  2*x(k)*cos((k-1)*(i-1)*pi/(n-1))<br>
// 
//              a call of cost followed by another call of
//              cost will multiply the sequence x by 2*(n-1)
//              hence cost is the unnormalized inverse
//              of itself.
// <dt><b>wsave</b>
// <dd>    Contains initialization calculations which must not be
//         destroyed between calls of cost.
// </dl>
// <group>
static void cost(Int n, Float* x, Float* wsave);
static void cost(Int n, Double* x, Double* wsave);
// </group>

// sinqi initializes the array wsave which is used in both <src>sinqf</src> and
// <src>sinqb</src>. The prime factorization of n together with a tabulation of
// the trigonometric functions are computed and stored in wsave.
//
// Input parameter:
// <dl compact>
// <dt><b>n</b>
// <dd>    The length of the sequence to be transformed. The method
//         is most efficient when n is a product of small primes.
// </dl>
// Output parameter:
// <dl compact>
// <dt><b>wsave</b>
// <dd>    A work array which must be dimensioned at least 3*n+15.
//         The same work array can be used for both sinqf and sinqb
//         as long as n remains unchanged. Different wsave arrays
//         are required for different values of n. The contents of
//         wsave must not be changed between calls of sinqf or sinqb.
// </dl>
// <group>
static void sinqi(Int n, Float* wsave);
static void sinqi(Int n, Double* wsave);
// </group>

// sinqf computes the fast Fourier transform of quarter wave data. That is,
// sinqf computes the coefficients in a sine series representation with only
// odd wave numbers. The transform is defined below at output parameter x.
// 
// sinqb is the unnormalized inverse of sinqf since a call of sinqf followed by
// a call of sinqb will multiply the input sequence x by 4*n.
// 
// The array wsave which is used by sinqf must be initialized by calling
// <src>sinqi(n,wsave)</src>.
// 
// Input parameters:
// <dl compact>
// <dt><b>n</b>
// <dd>    The length of the array x to be transformed.  The method
//         is most efficient when n is a product of small primes.
// <dt><b>x</b>
// <dd>    An array which contains the sequence to be transformed
// <dt><b>wsave</b>
//         A work array which must be dimensioned at least 3*n+15.
//         in the program that calls sinqf. The wsave array must be
//         initialized by calling <src>sinqi(n,wsave)</src> and a
//         different wsave array must be used for each different
//         value of n. This initialization does not have to be
//         repeated so long as n remains unchanged thus subsequent
//         transforms can be obtained faster than the first.
// </dl>
// Output parameters:
// <dl compact>
// <dt><b>x</b>
// <dd>    for i=1,...,n<br>
//              x(i) = (-1)**(i-1)*x(n)<br>
//                 + the sum from k=1 to k=n-1 of<br>
//                 2*x(k)*sin((2*i-1)*k*pi/(2*n))<br>
// 
//              a call of sinqf followed by a call of
//              sinqb will multiply the sequence x by 4*n.
//              therefore sinqb is the unnormalized inverse
//              of sinqf.
// <dt><b>wsave </b>
// <dd>    Contains initialization calculations which must not
//         be destroyed between calls of sinqf or sinqb.
// </dl>
// <group>
static void sinqf(Int n, Float* x, Float* wsave);
static void sinqf(Int n, Double* x, Double* wsave);
// </group>

// sinqb computes the fast Fourier transform of quarter
// wave data. that is, sinqb computes a sequence from its
// representation in terms of a sine series with odd wave numbers.
// the transform is defined below at output parameter x.
// 
// sinqf is the unnormalized inverse of sinqb since a call of sinqb
// followed by a call of sinqf will multiply the input sequence x
// by 4*n.
// 
// The array wsave which is used by <src>sinqb</src> must be
// initialized by calling <src>sinqi(n,wsave)</src>.
// 
// Input parameters:
// <dl compact>
// <dt><b>n</b>
// <dd>    The length of the array x to be transformed.  The method
//         is most efficient when n is a product of small primes.
// <dt><b>x</b>
// <dd>    An array which contains the sequence to be transformed
// <dt><b>wsave</b>
//         A work array which must be dimensioned at least 3*n+15.
//         in the program that calls sinqb. The wsave array must be
//         initialized by calling <src>sinqi(n,wsave)</src> and a
//         different wsave array must be used for each different
//         value of n. This initialization does not have to be
//         repeated so long as n remains unchanged thus subsequent
//         transforms can be obtained faster than the first.
// </dl>
// Output parameters:
// <dl compact>
// <dt><b>x</b>
// <dd>    for i=1,...,n<br>
//              x(i)= the sum from k=1 to k=n of<br>
//                4*x(k)*sin((2k-1)*i*pi/(2*n))<br>
// 
//              a call of sinqb followed by a call of
//              sinqf will multiply the sequence x by 4*n.
//              Therefore sinqf is the unnormalized inverse
//              of sinqb.
// <dt><b>wsave</b>
// <dd>    Contains initialization calculations which must not
//         be destroyed between calls of sinqb or sinqf.
// </dl>
// <group>
static void sinqb(Int n, Float* x, Float* wsave);
static void sinqb(Int n, Double* x, Double* wsave);
// </group>

// <group>
static void cosqi(Int n, Float* wsave);
static void cosqi(Int n, Double* wsave);
// </group>
// <group>
static void cosqf(Int n, Float* x, Float* wsave);
static void cosqf(Int n, Double* x, Double* wsave);
// </group>
// <group>
static void cosqb(Int n, Float* x, Float* wsave);
static void cosqb(Int n, Double* x, Double* wsave);
// </group>
};

} //# NAMESPACE CASACORE - END

#endif