This file is indexed.

/usr/include/casacore/scimath/Mathematics/Interpolate2D2.tcc is in casacore-dev 2.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
//# Interpolate2D2.cc:  this implements Interpolate2D templates
//# Copyright (C) 2004
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//#        Internet email: aips2-request@nrao.edu.
//#        Postal address: AIPS++ Project Office
//#                        National Radio Astronomy Observatory
//#                        520 Edgemont Road
//#                        Charlottesville, VA 22903-2475 USA
//#
//# $Id$

#ifndef SCIMATH_INTERPOLATE2D2_TCC
#define SCIMATH_INTERPOLATE2D2_TCC
 
#include <casacore/scimath/Mathematics/Interpolate2D.h>
#include <casacore/casa/Arrays/Matrix.h>
#include <casacore/casa/Arrays/Vector.h>
#include <casacore/casa/BasicSL/Constants.h>

namespace casacore { //# NAMESPACE CASACORE - BEGIN

template <typename T>
Bool Interpolate2D::interpNearest(T &result, 
				  const Vector<Double> &where,
				  const Matrix<T> &data,
				  const Matrix<Bool>* &maskPtr) const {
  // definition of the 'neighborhood' of outer edge data elements.
  static const Double half= .5001;

  const IPosition &shape = data.shape();

  Double imax = shape(0) - 1.;
  Double wi = where[0];
  if(wi < 0. - half || wi > imax + half || imax < 0) return False;

  Double jmax = shape(1) - 1.;
  Double wj = where[1];
  if(wj < 0 - half || wj > jmax + half || jmax < 0) return False;

  uInt i = (wi <= 0.)?		0
	 : (wi >= imax)?	uInt(imax)
	 :			uInt(wi + .5);
      
  uInt j = (wj <= 0.)?		0
	 : (wj >= jmax)?	uInt(jmax)
	 :			uInt(wj + .5);
      
  Bool dataValid = !maskPtr || (*maskPtr)(i,j);
  if (dataValid) result = data(i,j);
  return dataValid;
}

template <typename T>
Bool Interpolate2D::interpLinear(T &result, 
				 const Vector<Double> &where, 
				 const Matrix<T> &data,
				 const Matrix<Bool>* &maskPtr) const {
  const IPosition &shape = data.shape();

  // We find 4 points surrounding the one of interest.
  // Negatives will give big positive value for the uInt 
  // and these will fail the  shape test below.
  // Make sure we don't access i+1 or j+1 because the 
  // big positive plus 1 may become 0 and then we will spuriously
  // pass the shape test
  uInt i = Int(where[0]);               // Assuming Int does (1.2 -> 1)
  uInt j = Int(where[1]);
  uInt si = uInt(shape(0)-1);
  uInt sj = uInt(shape(1)-1);

  // Handle edge. Just move start left/down by one,
  if (i==si) --i;
  if (j==sj) --j;

  // 2x2 starting from [i,j]
  // mask==True is a good pixel
  if (i < si && j < sj) {                   
    if (maskPtr) {
      if (!(*maskPtr)(i,j) || !(*maskPtr)(i+1,j) ||
	  !(*maskPtr)(i,j+1) || !(*maskPtr)(i+1,j+1)) return False;
    }
    Double TT = where[0] - i;
    Double UU = where[1] - j;
    result = (1.0-TT)*(1.0-UU)*data(i,j) +
      TT*(1.0-UU)*data(i+1,j) +
      TT*UU*data(i+1,j+1) +
      (1.0-TT)*UU*data(i,j+1);
    return True;
  } else return False;
}

template <typename T>
Bool Interpolate2D::interpLinear2(T &resultI, T &resultJ, 
				  const Vector<Double> &where, 
				  const Matrix<T> &dataI,
				  const Matrix<T> &dataJ,
				  const Matrix<Bool> &mask) const {
  const IPosition &shape = mask.shape();

  // We find 4 points surrounding the one of interest.
  // Negatives will give big positive value for the uInt 
  // and these will fail the  shape test below.
  // Make sure we don't access i+1 or j+1 because the 
  // big positive plus 1 may become 0 and then we will spuriously
  // pass the shape test

  uInt i = Int(where[0]);               // Assuming Int does (1.2 -> 1)
  uInt j = Int(where[1]);
  uInt si = uInt(shape[0]-1);
  uInt sj = uInt(shape[1]-1);
  // Handle edge. Just move start left/down by one,
  if (i==si) --i;
  if (j==sj) --j;
  // 2x2 starting from [i,j]
  // mask==True is a good pixel
  if (i < si && j < sj) {
    uInt k0 = dataI.steps()[0];
    uInt k1 = dataI.steps()[1];
    const Bool *m = &mask(i,j);
    if ( !*m || !*(m+k0) || !*(m+k1) || !*(m+k0+k1)) return False;
    Double TT = where[0] - i;
    Double UU = where[1] - j;
    Double x1 = (1.0-TT);
    Double y1 = (1.0-UU);
    Double x = x1*y1;
    const T *dI = &dataI(i,j);
    const T *dJ = &dataJ(i,j);
    resultI = x * *dI;
    resultJ = x * *dJ;
    x = TT*y1;
    resultI += x * *(dI+k0);
    resultJ += x * *(dJ+k0);
    x = TT*UU;;;
    resultI += x * *(dI+k0+k1);
    resultJ += x * *(dJ+k0+k1);
    x = x1*UU;;;
    resultI += x * *(dI+k1);
    resultJ += x * *(dJ+k1);
    return True;
  } else return False;
}

template <typename T>
Bool Interpolate2D::interpCubic(T &result, 
				const Vector<Double> &where, 
				const Matrix<T> &data,
				const Matrix<Bool>* &maskPtr) const {
  //
  // bi-cubic interpolation
  //
   const IPosition &shape = data.shape();
   
   // We find 4 points surrounding the one of interest.
   // Points are labelled:
   //
   //   1   2
   //   0   3
   //
   // where point 0 is [i,j].
   //
   // we use points in a 4 x 4 grid in total (to get derivatives)
   // [i-1,j-1] -> [i+2,j+2]
   
   Int i = Int(where[0]);
   Int j = Int(where[1]);
   
   // Handle edge (and beyond) by using linear.
   
   if (i<=0 || i>=shape[0]-2 || j<=0 || j>=shape[1]-2) {
     return interpLinear<T>(result, where, data, maskPtr);
   }
   
   // Handle mask
   
   if (anyBadMaskPixels(maskPtr, i-1, i+2, j-1, j+2)) return False;
   
   // Do it
   
   Double TT = where[0] - i;
   Double UU = where[1] - j;
   
   Double itsY[4];
   Double itsY1[4];
   Double itsY2[4];
   Double itsY12[4];
   Double itsC[4][4];
   //
   // define values of function and its derivatives on the
   // square of points bounding "where"
   
   itsY[0] = data(i,  j);
   itsY[1] = data(i+1,j);
   itsY[2] = data(i+1,j+1);
   itsY[3] = data(i,  j+1);
   
   // x-derivatives (points 0->3)
   
   itsY1[0] = data(i+1, j)   - data(i-1, j);
   itsY1[1] = data(i+2, j)   - data(i,   j);
   itsY1[2] = data(i+2, j+1) - data(i,   j+1);
   itsY1[3] = data(i+1, j+1) - data(i-1, j+1);
   
   // y-derivatives (points 0->3)
   
   itsY2[0] = data(i,   j+1) - data(i,   j-1);
   itsY2[1] = data(i+1, j+1) - data(i+1, j-1);
   itsY2[2] = data(i+1, j+2) - data(i+1, j);
   itsY2[3] = data(i,   j+2) - data(i,   j);
   
   // cross derivatives (points 0->3)
   
   itsY12[0] =  data(i+1, j+1) + data(i-1, j-1) -
     data(i-1, j+1) - data(i+1, j-1);
   itsY12[1] =  data(i+2, j+1) + data(i, j-1) -
     data(i, j+1) - data(i+2, j-1);
   itsY12[2] =  data(i+2, j+2) + data(i, j) -
     data(i, j+2) - data(i+2, j);
   itsY12[3] =  data(i+1, j+2) + data(i-1, j) - 
     data(i-1, j+2) - data(i+1, j);
   for (uInt i=0; i<4; ++i) {
     itsY1[i]  /= 2.0;
     itsY2[i]  /= 2.0;
     itsY12[i] /= 4.0;
   }
   
   // Get result
   
   bcucof(itsC, itsY, itsY1, itsY2, itsY12);
   result = 0.0;
   for (Int i=3; i>=0; --i) {
     result = TT*result + ((itsC[i][3]*UU + itsC[i][2])*UU + 
			   itsC[i][1])*UU + itsC[i][0];
   }
   //
   return True;
}

template <typename T>
Bool Interpolate2D::interpLanczos(T &result, 
        const Vector<Double> &where, 
        const Matrix<T> &data,
        const Matrix<Bool>* &maskPtr) const {
    //
    // Lanczos 2D interpolation
    //

    // Hardcoded kernel size
    const Double a = 3;

    const IPosition& shape = data.shape();
    const Double x = where[0];
    const Double y = where[1];
    const T floorx = floor(x);
    const T floory = floor(y);

    // Handle mask
    if (anyBadMaskPixels(maskPtr, x-a+1, x+a, y-a+1, y+a)) return False;

    // Where we can't sum over the full support of the kernel due to proximity
    // to the edge, set the pixel value to zero. This is just one way of
    // dealing with edge effects, another could be to revert to linear
    // interpolation.
    if (floorx < a || floorx >= shape[0] - a || floory < a || floory >= shape[1] - a) {
        result = 0;
        return True;
    }

    // Interpolate
    result = 0;
    for (T i = floorx - a + 1; i <= floorx + a; ++i) {
        for (T j = floory - a + 1; j <= floory + a; ++j) {
            result += data(i, j) * L(x - i, a) * L(y - j, a);
        }
    }

    return True;
}

// Lanczos interpolation: helper function
template <typename T>
T Interpolate2D::sinc(const T x) const {
    if (x == 0) {
        return 1;
    }
    return sin(C::pi * x) / (C::pi * x);
}

// Lanczos interpolation: helper function
template <typename T>
T Interpolate2D::L(const T x, const Int a) const {
    if (-a < x && x < a) {
        return sinc(x) * sinc (x/a);
    }
    return 0;
}

} //# NAMESPACE CASACORE - END


#endif