This file is indexed.

/usr/include/casacore/scimath/Mathematics/InterpolateArray1D.tcc is in casacore-dev 2.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
//# Interpolate1DArray.cc:  implements Interpolation in one dimension
//# Copyright (C) 1996,1997,1998,1999,2000,2001
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//#        Internet email: aips2-request@nrao.edu.
//#        Postal address: AIPS++ Project Office
//#                        National Radio Astronomy Observatory
//#                        520 Edgemont Road
//#                        Charlottesville, VA 22903-2475 USA
//#
//# $Id$

#ifndef SCIMATH_INTERPOLATEARRAY1D_TCC
#define SCIMATH_INTERPOLATEARRAY1D_TCC

#include <casacore/scimath/Mathematics/InterpolateArray1D.h>
#include <casacore/casa/Arrays/Vector.h>
#include <casacore/casa/Arrays/Cube.h>
#include <casacore/casa/Exceptions/Error.h>
#include <casacore/casa/Arrays/IPosition.h>
#include <casacore/casa/BasicMath/Math.h>
#include <casacore/casa/Utilities/Assert.h>
#include <casacore/casa/Utilities/BinarySearch.h>
#include <casacore/casa/Utilities/GenSort.h>
#include <limits>

namespace casacore { //# NAMESPACE CASACORE - BEGIN

template <class Domain, class Range>
void InterpolateArray1D<Domain,Range>::interpolate(Array<Range>& yout, 
						   const Vector<Domain>& xout,
						   const Vector<Domain>& xin, 
						   const Array<Range>& yin,
						   Int method)
{
  const uInt ndim = yin.ndim();
  Int nxin=xin.nelements(), nxout=xout.nelements();
  IPosition yinShape=yin.shape();
  DebugAssert(nxin==yinShape(ndim-1),AipsError);

  Bool deleteYin, deleteYout;
  const Range* pyin=yin.getStorage(deleteYin);
  Int yStep=1; 
  Int i;
  for (i=0; i<Int(ndim)-1; i++) yStep*=yinShape(i);
  IPosition youtShape=yinShape;
  youtShape(ndim-1)=nxout;
  yout.resize(youtShape);
  Range* pyout=yout.getStorage(deleteYout);

  PtrBlock<const Range*> yinPtrs(nxin);
  PtrBlock<Range*> youtPtrs(nxout);
  for (i=0; i<nxin; i++) yinPtrs[i]=pyin+i*yStep;
  for (i=0; i<nxout; i++) youtPtrs[i]=pyout+i*yStep;
  
  interpolatePtr(youtPtrs, yStep, xout, xin, yinPtrs, method);

  yin.freeStorage(pyin,deleteYin);
  yout.putStorage(pyout,deleteYout);
}

template <class Domain, class Range>
void InterpolateArray1D<Domain,Range>::interpolate(Array<Range>& yout, 
						   const Block<Domain>& xout,
						   const Block<Domain>& xin, 
						   const Array<Range>& yin,
						   Int method)
{
  Vector<Domain> vxout(xout);
  Vector<Domain> vxin(xin);
  interpolate(yout,vxout,vxin,yin,method);
}

template <class Domain, class Range>
void InterpolateArray1D<Domain,Range>::interpolate(Array<Range>& yout, 
						   Array<Bool>& youtFlags,
						   const Vector<Domain>& xout,
						   const Vector<Domain>& xin, 
						   const Array<Range>& yin,
						   const Array<Bool>& yinFlags,
						   Int method,
                                                   Bool goodIsTrue,
						   Bool extrapolate)
{
  const uInt ndim = yin.ndim();
  Int nxin=xin.nelements(), nxout=xout.nelements();
  IPosition yinShape=yin.shape();
  DebugAssert(nxin==yinShape(ndim-1),AipsError);
  DebugAssert((yinFlags.shape() == yinShape), AipsError);

  Bool deleteYin, deleteYout, deleteYinFlags, deleteYoutFlags;
  const Range* pyin=yin.getStorage(deleteYin);
  const Bool* pyinFlags=yinFlags.getStorage(deleteYinFlags);
  Int yStep=1; 
  Int i;
  for (i=0; i<Int(ndim)-1; i++) yStep*=yinShape(i);
  IPosition youtShape=yinShape;
  youtShape(ndim-1)=nxout;
  yout.resize(youtShape);
  youtFlags.resize(youtShape);
  youtFlags.set(False);
  Range* pyout=yout.getStorage(deleteYout);
  Bool* pyoutFlags=youtFlags.getStorage(deleteYoutFlags);

  PtrBlock<const Range*> yinPtrs(nxin);
  PtrBlock<const Bool*> yinFlagPtrs(nxin);
  PtrBlock<Range*> youtPtrs(nxout);
  PtrBlock<Bool*> youtFlagPtrs(nxout);
  for (i=0; i<nxin; i++) {
    yinPtrs[i]=pyin+i*yStep;
    yinFlagPtrs[i]=pyinFlags+i*yStep;
  }
  for (i=0; i<nxout; i++) {
    youtPtrs[i]=pyout+i*yStep;
    youtFlagPtrs[i]=pyoutFlags+i*yStep;
  }
  interpolatePtr(youtPtrs, youtFlagPtrs, yStep, xout, xin, yinPtrs,
		 yinFlagPtrs, method, goodIsTrue, extrapolate);

  yin.freeStorage(pyin,deleteYin);
  yinFlags.freeStorage(pyinFlags,deleteYinFlags);
  yout.putStorage(pyout,deleteYout);
  youtFlags.putStorage(pyoutFlags,deleteYoutFlags);
}

template <class Domain, class Range>
void InterpolateArray1D<Domain,Range>::interpolate(Array<Range>& yout, 
						   Array<Bool>& youtFlags,
						   const Block<Domain>& xout,
						   const Block<Domain>& xin, 
						   const Array<Range>& yin,
						   const Array<Bool>& yinFlags,
						   Int method,
                                                   Bool goodIsTrue,
						   Bool extrapolate)
{
  Vector<Domain> vxout(xout);
  Vector<Domain> vxin(xin);
  interpolate(yout,youtFlags,vxout,vxin,yin,yinFlags,
	      method,goodIsTrue,extrapolate);
}

template <class Domain, class Range>
void InterpolateArray1D<Domain,Range>::interpolatey(Cube<Range>& yout,
                                                   const Vector<Domain>& xout,
                                                   const Vector<Domain>& xin,
                                                   const Cube<Range>& yin,
                                                   Int method)
{
  Int nxout=xout.nelements();
  IPosition yinShape=yin.shape();
  //check the number of elements in y
  DebugAssert(xin.nelements()==yinShape(2),AipsError);

  Bool deleteYin, deleteYout;
  const Range* pyin=yin.getStorage(deleteYin);
  Int na=yinShape(0);
  Int nb=yinShape(1);
  Int nc=yinShape(2);
  IPosition youtShape=yinShape;
  youtShape(1)=nxout;  // pick y of cube
  //youtShape(2)=nxout;  // pick z of cube
  yout.resize(youtShape);
  Range* pyout=yout.getStorage(deleteYout);

  PtrBlock<const Range*> yinPtrs(na*nb*nc);
  PtrBlock<Range*> youtPtrs(na*nxout*nc);
  Int i;
  for (i=0; i<(na*nb*nc); i++) yinPtrs[i]=pyin+i;
  for (i=0; i<(na*nxout*nc); i++) {
     youtPtrs[i]=pyout+i;
  }
  interpolateyPtr(youtPtrs, na, nb, nc, xout, xin, yinPtrs, method);

  yin.freeStorage(pyin,deleteYin);
  yout.putStorage(pyout,deleteYout);

}

template <class Domain, class Range>
void InterpolateArray1D<Domain,Range>::interpolatey(Cube<Range>& yout,
                                                   Cube<Bool>& youtFlags,
                                                   const Vector<Domain>& xout,
                                                   const Vector<Domain>& xin,
                                                   const Cube<Range>& yin,
						   const Cube<Bool>& yinFlags,
                                                   Int method,
                                                   Bool goodIsTrue,
						   Bool extrapolate)
{
  Int nxout=xout.nelements();
  IPosition yinShape=yin.shape();
  DebugAssert(xin.nelements()==yinShape(2),AipsError);
  DebugAssert((yinFlags.shape() == yinShape), AipsError);

  Bool deleteYin, deleteYout, deleteYinFlags, deleteYoutFlags;
  const Range* pyin=yin.getStorage(deleteYin);
  const Bool* pyinFlags=yinFlags.getStorage(deleteYinFlags);
  Int na=yinShape(0);
  Int nb=yinShape(1);
  Int nc=yinShape(2);
  IPosition youtShape=yinShape;
  youtShape(1)=nxout;  // pick y of cube
  yout.resize(youtShape);
  youtFlags.resize(youtShape);
  youtFlags.set(False);
  Range* pyout=yout.getStorage(deleteYout);
  Bool* pyoutFlags=youtFlags.getStorage(deleteYoutFlags);

  PtrBlock<const Range*> yinPtrs(na*nb*nc);
  PtrBlock<const Bool*> yinFlagPtrs(na*nb*nc);
  PtrBlock<Range*> youtPtrs(na*nxout*nc);
  PtrBlock<Bool*> youtFlagPtrs(na*nxout*nc);
  Int i;
  for (i=0; i<(na*nb*nc); i++) {
    yinPtrs[i]=pyin+i;
    yinFlagPtrs[i]=pyinFlags+i;
  }
  for (i=0; i<(na*nxout*nc); i++) {
     youtPtrs[i]=pyout+i;
    youtFlagPtrs[i]=pyoutFlags+i;
  }
  interpolateyPtr(youtPtrs, youtFlagPtrs, na, nb, nc, xout, xin, yinPtrs,
                  yinFlagPtrs, method, goodIsTrue, extrapolate);
  yin.freeStorage(pyin,deleteYin);
  yinFlags.freeStorage(pyinFlags,deleteYinFlags);
  yout.putStorage(pyout,deleteYout);
  youtFlags.putStorage(pyoutFlags,deleteYoutFlags);
}

template <class Domain, class Range>
void InterpolateArray1D<Domain,Range>::interpolatePtr(PtrBlock<Range*>& yout, 
                                                      Int ny, 
  					              const Vector<Domain>& xout, 
						      const Vector<Domain>& xin,
						      const PtrBlock<const Range*>& yin, 
                                                      Int method)
{
  uInt nElements=xin.nelements();
  AlwaysAssert (nElements>0, AipsError);
  Domain x_req;
  switch (method) {
  case nearestNeighbour: // This does nearest neighbour interpolation
    {
      for (uInt i=0; i<xout.nelements(); i++) {
	x_req=xout[i];
	Bool found;
	uInt where = binarySearchBrackets(found, xin, x_req, nElements);
	if (where == nElements) {
	  for (Int j=0; j<ny; j++) yout[i][j]=yin[nElements-1][j];
	}
	else if (where == 0) {
	  for (Int j=0; j<ny; j++) yout[i][j]=yin[0][j];
	}
	else {
 	  // The following works for both ascending/descending xin 
	  Domain nextdiff=abs(xin[where]-x_req);    // forward diff
	  Domain prevdiff=abs(xin[where-1]-x_req);  // backward diff
	  if (nextdiff < prevdiff) { 
            // closer to next
	    for (Int j=0; j<ny; j++) yout[i][j]=yin[where][j];
	  }
	  else {
            // closer to previous
	    for (Int j=0; j<ny; j++) yout[i][j]=yin[where-1][j];
	  }
	}
      }
      return;
    }
  case linear: // Linear interpolation is the default
    {
      for (uInt i=0; i<xout.nelements(); i++) {
	x_req=xout[i];
	Bool found;
	uInt where = binarySearchBrackets(found, xin, x_req, nElements);
	if (where == nElements)
	  where--;
	else if (where == 0)
	  where++;
	Domain x2 = xin[where]; Int ind2 = where;
	where--;
	Domain x1 = xin[where]; Int ind1 = where; 
	if (nearAbs(x1, x2)) 
	  throw(AipsError("Interpolate1D::operator()"
			  " data has repeated x values"));
	Domain frac=(x_req-x1)/(x2-x1);
	for (Int j=0; j<ny; j++) 
	  yout[i][j] = yin[ind1][j] + frac * (yin[ind2][j] - yin[ind1][j]);
	//    return y1 + ((x_req-x1)/(x2-x1)) * (y2-y1);
      }
      return ;
    }
  case cubic:// fit a cubic polynomial to the four nearest points
    {
      polynomialInterpolation(yout, ny, xout, xin, yin, 3);
      return;
    }
  case spline: // natural cubic splines
    {
      Block<Range> y2(nElements);
      // The y2 values are initialised here.  I need to calculate the second
      // derivates of the interpolating curve at each x_value.  As described
      // in Numerical Recipies 2nd Ed. Sec. 3.3, this is done by requiring
      // that the first derivative is continuous at each data point. This
      // leads to a set of equations that has a tridiagonal form that can be
      // solved using an order(N) algorithm.
      //
      // The first part of this solution is to do the Gaussian elimination so
      // that all the coefficients on the diagonal are one, and zero below the
      // diagonal.  Because the system is tridiagonal the only non-zero
      // coefficients are in the diagonal immediately above the main
      // one. These values are stored in y2Values temporarily. The temporary
      // storage t, is used to hold the right hand side.
      Block<Domain> t(nElements);
      t[0] = 0; 
      for (Int j=0; j<ny; j++) {
	y2[0] = Range(0);
	y2[nElements-1] = y2[0];
	Domain c = xin[1] - xin[0];
	if (nearAbs(xin[1],  xin[0])) 
	  throw(AipsError("Interpolate1D::setMethod"
			  " data has repeated x values"));
	Domain a, b, delta;
	const Domain six = 6;
	const Float one = 1;
	Range r;
	Int i;
	for (i = 1; i < Int(nElements)-1; i++){
	  a = c;
	  b = Domain(2)*(xin[i+1] - xin[i-1]);
	  if (nearAbs(xin[i+1],  xin[i])) 
	    throw(AipsError("Interpolate1D::setMethod"
			    " data has repeated x values"));
	  c = (xin[i+1] - xin[i]);
	  r = (one/c) * (yin[i+1][j] - yin[i][j]) - 
	    (one/a) * (yin[i][j] - yin[i-1][j]);
	  delta = a * t[i-1];
	  if (nearAbs(b, delta)) 
	    throw(AipsError("Interpolate1D::setMethod"
			    " trouble constructing second derivatives"));
	  delta = b - delta;
	  t[i] = c/delta;
	  y2[i] = (one/delta)*(six*r - a*y2[i-1]);
	}
	// The second part of the solution is to do the back-substitution to
	// iteratively obtain the second derivatives.
	for (i = Int(nElements)-2; i > 1; i--){
	  y2[i] -= t[i]*y2[i+1];
	}

	for (i=0; i<Int(xout.nelements()); i++) {
	  x_req=xout[i];
	  Bool found;
	  uInt where = binarySearchBrackets(found, xin, x_req, nElements);
	  if (where == nElements)
	    where--;
	  else if (where == 0)
	    where++;
	  
	  Domain dx, h, a, b, x1, x2;
	  Range y1v, y2v, y1d, y2d;
	  
	  x2 = xin[where]; 
	  y2v = yin[where][j];
	  y2d = y2[where];
	  where--;
	  x1 = xin[where]; 
	  y1v = yin[where][j];
	  y1d = y2[where];
	  if (nearAbs(x1, x2)) 
	    throw(AipsError("Interpolate1D::operator()"
			    " data has repeated x values"));
	  dx = x2-x1;
	  a = (x2-x_req)/dx; 
	  b = Domain(1)-a;
	  h = dx*dx/6.;
	  yout[i][j] = a*y1v + b*y2v + h*(a*a*a-a)*y1d + h*(b*b*b-b)*y2d;
	}
      }
      return;
    }
  }
}  

template <class Domain, class Range>
void InterpolateArray1D<Domain,Range>::interpolatePtr(PtrBlock<Range*>& yout, 
						      PtrBlock<Bool*>& youtFlags, 
						      Int ny, 
 						      const Vector<Domain>& xout, 
						      const Vector<Domain>& xin,
						      const PtrBlock<const Range*>& yin, 
						      const PtrBlock<const Bool*>& yinFlags, 
						      Int method,
						      Bool goodIsTrue,
						      Bool extrapolate)
{
  uInt nElements=xin.nelements();
  Domain x_req;
  Bool flag = !(goodIsTrue);
  switch (method) {
  case nearestNeighbour: // This does nearest neighbour interpolation
    {
      for (Int i=0; i<Int(xout.nelements()); i++) {
	x_req=xout[i];
	Bool found;
	uInt where = binarySearchBrackets(found, xin, x_req, nElements);
	if (where == nElements) {
	  for (Int j=0; j<ny; j++) {
	    yout[i][j]=yin[nElements-1][j];
	    youtFlags[i][j]=(extrapolate ? yinFlags[nElements-1][j] : flag);
	  }
	}
	else if (where == 0) {
	  for (Int j=0; j<ny; j++) {
	    yout[i][j]=yin[0][j];
	    youtFlags[i][j]=((x_req==xin[0])||extrapolate ? yinFlags[0][j] : flag);
	  } 
	}
	else {
 	  // The following works for both ascending/descending xin 
	  Domain nextdiff=abs(xin[where]-x_req);    // forward diff
	  Domain prevdiff=abs(xin[where-1]-x_req);  // backward diff
	  if (nextdiff < prevdiff) {
            // closer to next
	    for (Int j=0; j<ny; j++) {
	      yout[i][j]=yin[where][j];
	      youtFlags[i][j]=yinFlags[where][j];
	    }
	  }
	  else {
            // closer to previous
	    for (Int j=0; j<ny; j++) {
	      yout[i][j]=yin[where-1][j];
	      youtFlags[i][j]=yinFlags[where-1][j];
	    }
	  }
	}
      }
      return;
    }
  case linear: // Linear interpolation is the default
    {
      for (Int i=0; i<Int(xout.nelements()); i++) {
	x_req=xout[i];
	Bool found;
	Bool discard = False;
	uInt where = binarySearchBrackets(found, xin, x_req, nElements);
	if (where == nElements) {
	  discard=!extrapolate;
	  where--;
	} 
	else if (where == 0) {
	  discard=(x_req!=xin[0])&&(!extrapolate);
	  where++;
	}
	Domain x2 = xin[where]; Int ind2 = where;
	where--;
	Domain x1 = xin[where]; Int ind1 = where; 
	if (nearAbs(x1, x2)) 
	  throw(AipsError("Interpolate1D::operator()"
			  " data has repeated x values"));
	Domain frac=(x_req-x1)/(x2-x1);
	Domain limit = std::numeric_limits<Domain>::epsilon();

//    y1 + ((x_req-x1)/(x2-x1)) * (y2-y1);
        if (frac>limit && frac<1.-limit) {
	  //cout << "two: frac "  << setprecision(12) << xfrac << endl;
          if (goodIsTrue) {
            for (Int j=0; j<ny; j++) {
              yout[i][j] = yin[ind1][j] + frac * (yin[ind2][j] - yin[ind1][j]);
              youtFlags[i][j] = (discard ? flag : 
                                 yinFlags[ind1][j] && yinFlags[ind2][j]);
            }
          } else {
            for (Int j=0; j<ny; j++) {
              yout[i][j] = yin[ind1][j] + frac * (yin[ind2][j] - yin[ind1][j]);
              youtFlags[i][j] = ( discard ? flag : 
                                  yinFlags[ind1][j] || yinFlags[ind2][j]);
            }
          }
        } else {
          // only one of the channels is involved
	  //cout << "one: frac "  << setprecision(12) << xfrac << endl;
	  if (frac<=limit) {
	    for (Int j=0; j<ny; j++) {
	      yout[i][j] = yin[ind1][j];
	      youtFlags[i][j] = (discard ? flag : yinFlags[ind1][j]);
	    }
	  } else { // frac >= 1.-limit
	    for (Int j=0; j<ny; j++) {
	      yout[i][j] = yin[ind2][j];
	      youtFlags[i][j] = (discard ? flag :  yinFlags[ind2][j]);
	    }
	  }
	}	  
          
      }
      return ;
    }
  case cubic:// fit a cubic polynomial to the four nearest points
    {
      // TODO: implement flags properly - ie don't use flagged points
      polynomialInterpolation(yout, ny, xout, xin, yin, 3);
      for (uInt i=0; i<xout.nelements(); i++) {
	Domain x_req=xout[i];
	Bool found;
	Bool discard = False;
	uInt where = binarySearchBrackets(found, xin, x_req, nElements);
	if (where == nElements) {
	  where--;
	  discard = !extrapolate;
	}
	else if (where == 0) {
	  where++;
	  discard=(x_req!=xin[0])&&(!extrapolate);
	}
	Int ind2 = where;
	where--;
	Int ind1 = where; 
        if (goodIsTrue) {
	  for (Int j=0; j<ny; j++) {
	    youtFlags[i][j] = (discard ? 
			       flag : yinFlags[ind1][j] && yinFlags[ind2][j]);
	  }
        } else {
	  for (Int j=0; j<ny; j++) {
	    youtFlags[i][j] = (discard ? 
			       flag : yinFlags[ind1][j] || yinFlags[ind2][j]);
	  }
        }
      }
      return;
    }
  case spline: // natural cubic splines
    {
      // TODO: implement flags properly - ie don't use flagged points
      Block<Range> y2(nElements);
      // The y2 values are initialised here.  I need to calculate the second
      // derivates of the interpolating curve at each x_value.  As described
      // in Numerical Recipies 2nd Ed. Sec. 3.3, this is done by requiring
      // that the first derivative is continuous at each data point. This
      // leads to a set of equations that has a tridiagonal form that can be
      // solved using an order(N) algorithm.
      //
      // The first part of this solution is to do the Gaussian elimination so
      // that all the coefficients on the diagonal are one, and zero below the
      // diagonal.  Because the system is tridiagonal the only non-zero
      // coefficients are in the diagonal immediately above the main
      // one. These values are stored in y2Values temporarily. The temporary
      // storage t, is used to hold the right hand side.
      Block<Domain> t(nElements);
      t[0] = 0; 
      for (Int j=0; j<ny; j++) {
	y2[0] = Range(0);
	y2[nElements-1] = y2[0];
	Domain c = xin[1] - xin[0];
	if (nearAbs(xin[1],  xin[0])) 
	  throw(AipsError("Interpolate1D::setMethod"
			  " data has repeated x values"));
	Domain a, b, delta;
	const Domain six = 6;
	const Float one = 1;
	Range r;
	Int i;
	for (i = 1; i < Int(nElements)-1; i++){
	  a = c;
	  b = Domain(2)*(xin[i+1] - xin[i-1]);
	  if (nearAbs(xin[i+1],  xin[i])) 
	    throw(AipsError("Interpolate1D::setMethod"
			    " data has repeated x values"));
	  c = (xin[i+1] - xin[i]);
	  r = (one/c) * (yin[i+1][j] - yin[i][j]) - 
	    (one/a) * (yin[i][j] - yin[i-1][j]);
	  delta = a * t[i-1];
	  if (nearAbs(b, delta)) 
	    throw(AipsError("Interpolate1D::setMethod"
			    " trouble constructing second derivatives"));
	  delta = b - delta;
	  t[i] = c/delta;
	  y2[i] = (one/delta)*(six*r - a*y2[i-1]);
	}
	// The second part of the solution is to do the back-substitution to
	// iteratively obtain the second derivatives.
	for (i = nElements-2; i > 1; i--){
	  y2[i] -= t[i]*y2[i+1];
	}

	for (i=0; i<Int(xout.nelements()); i++) {
	  x_req=xout[i];
	  Bool found;
	  Bool discard = False;
	  uInt where = binarySearchBrackets(found, xin, x_req, nElements);
	  if (where == nElements) {
	    where--;
	    discard = !extrapolate;
	  }
	  else if (where == 0) {
	    where++;
	    discard=(x_req!=xin[0])&&(!extrapolate);
	  }
	  
	  Domain dx, h, a, b, x1, x2;
	  Range y1v, y2v, y1d, y2d;
	  
	  x2 = xin[where]; 
	  y2v = yin[where][j];
	  y2d = y2[where];
	  Bool f2 = yinFlags[where][j];
	  where--;
	  x1 = xin[where]; 
	  y1v = yin[where][j];
	  y1d = y2[where];
	  Bool f1 = yinFlags[where][j];
	  if (nearAbs(x1, x2)) 
	    throw(AipsError("Interpolate1D::operator()"
			    " data has repeated x values"));
	  dx = x2-x1;
	  a = (x2-x_req)/dx; 
	  b = Domain(1)-a;
	  h = dx*dx/6.;
	  yout[i][j] = a*y1v + b*y2v + h*(a*a*a-a)*y1d + h*(b*b*b-b)*y2d;
	  if (goodIsTrue) youtFlags[i][j] = (discard ? flag : f1 && f2);
	  else youtFlags[i][j] = (discard ? flag : f1 || f2);
	}
      }
      return;
    }
  }
}  

template <class Domain, class Range>
void InterpolateArray1D<Domain,Range>::interpolateyPtr(PtrBlock<Range*>& yout,
                                                      Int na,
                                                      Int nb,
                                                      Int nc,
                                                      const Vector<Domain>& xout,
                                                      const Vector<Domain>& xin,
                                                      const PtrBlock<const Range*>& yin,
                                                      Int method)
{
  uInt nElements=xin.nelements();
  AlwaysAssert (nElements>0, AipsError);
  Domain x_req;
  switch (method) {
  case nearestNeighbour: // This does nearest neighbour interpolation
    {
      throw(AipsError("Interpolate1DArray::interpolateyPtr(): method=nearestNeigbour is not implemented yet"));
      return;
    }
  case linear: // Linear interpolation is the default
    {
      Int h;
      Int nxout=xout.nelements();
      for (Int j=0; j<nxout; j++) {
        x_req=xout[j];
        Bool found;
        uInt where = binarySearchBrackets(found, xin, x_req, nElements);
        if (where == nElements)
          where--;
        else if (where == 0)
          where++;
        Domain x2 = xin[where]; Int ind2 = where;
        where--;
        Domain x1 = xin[where]; Int ind1 = where;
        if (nearAbs(x1, x2))
          throw(AipsError("Interpolate1D::operator()"
                          " data has repeated x values"));
        Domain frac=(x_req-x1)/(x2-x1);
        for (Int k=0; k<nc; k++) {
          for (Int i=0; i<na; i++) {
        // column major
             h = i + j*na + k*na*nxout;
             Int xind1 = i + ind1*na + k*na*nb;
             Int xind2 = i + ind2*na + k*na*nb;
             yout[h][0] = yin[xind1][0] + frac * (yin[xind2][0] - yin[xind1][0]);
        //    return y1 + ((x_req-x1)/(x2-x1)) * (y2-y1);
          }
        }
      }
      return;
    }
  case cubic:// fit a cubic polynomial to the four nearest points
    {
      throw(AipsError("Interpolate1DArray::interpolateyPtr(): method=cubic is not implemented yet"));
      return;
    }
  case spline: // natural cubic splines
    {
      throw(AipsError("Interpolate1DArray::interpolateyPtr(): method=spline is not implemented"));
      return;
    }
  }
}

template <class Domain, class Range>
void InterpolateArray1D<Domain,Range>::interpolateyPtr(PtrBlock<Range*>& yout,
                                                      PtrBlock<Bool*>& youtFlags,
                                                      Int na,
                                                      Int nb,
                                                      Int nc,
                                                      const Vector<Domain>& xout,
                                                      const Vector<Domain>& xin,
                                                      const PtrBlock<const Range*>& yin,
                                                      const PtrBlock<const Bool*>& yinFlags,
                                                      Int method,
                                                      Bool goodIsTrue,
                                                      Bool extrapolate)
{
  uInt nElements=xin.nelements();
  Domain x_req;
  Bool flag = !(goodIsTrue);
  switch (method) {
  case nearestNeighbour: // This does nearest neighbour interpolation
    {
      throw(AipsError("Interpolate1DArray::interpolateyPtr(): method=nearestNeigbour is not implemented yet"));
      return;
    }
  case linear: // Linear interpolation is the default
    {
      Int h;
      Int nxout=xout.nelements();
      for (Int j=0; j<nxout; j++) {
        x_req=xout[j];
        Bool found;
        Bool discard = False;
        uInt where = binarySearchBrackets(found, xin, x_req, nElements);
        if (where == nElements) {
          discard=!extrapolate;
          where--;
        }
        else if (where == 0) {
          discard=(x_req!=xin[0])&&(!extrapolate);
          where++;
        }
        Domain x2 = xin[where]; Int ind2 = where;
        where--;
        Domain x1 = xin[where]; Int ind1 = where;
        if (nearAbs(x1, x2))
          throw(AipsError("Interpolate1D::operator()"
                          " data has repeated x values"));
        Domain frac=(x_req-x1)/(x2-x1);

//    y1 + ((x_req-x1)/(x2-x1)) * (y2-y1);
        if (goodIsTrue) {
          for (Int k=0; k<nc; k++) {
            for (Int i=0; i<na; i++) {
              // column major
              h = i + j*na + k*na*nxout;
              Int xind1 = i + ind1*na + k*na*nb;
              Int xind2 = i + ind2*na + k*na*nb;
              yout[h][0] = yin[xind1][0] + frac * (yin[xind2][0] - yin[xind1][0]);
              youtFlags[h][0] = (discard ? flag :
                                yinFlags[xind1][0] && yinFlags[xind2][0]);
            }
          }
        } else {
          for (Int k=0; k<nc; k++) {
            for (Int i=0; i<na; i++) {
              h = i + j*na + k*na*nxout;
              Int xind1 = i + ind1*na + k*na*nb;
              Int xind2 = i + ind2*na + k*na*nb;
             yout[h][0] = yin[xind1][0] + frac * (yin[xind2][0] - yin[xind1][0]);
             youtFlags[h][0] = ( discard ? flag :
                                 yinFlags[xind1][0] || yinFlags[xind2][0]);
            }
          }
        }
      }
      return ;
    }
  case cubic:// fit a cubic polynomial to the four nearest points
    {
      throw(AipsError("Interpolate1DArray::interpolateyPtr(): method=cubic is not implemented yet"));
      return;
    }
  case spline: // natural cubic splines
    {
      throw(AipsError("Interpolate1DArray::interpolateyPtr(): method=spline is not implemented"));
      return;
    }
  }
}




// Interpolate the y-vectors of length ny from x values xin to xout
// using polynomial interpolation with specified order
template <class Domain, class Range>
void InterpolateArray1D<Domain,Range>::polynomialInterpolation
(PtrBlock<Range*>& yout,
 Int ny, 
 const Vector<Domain>& xout, 
 const Vector<Domain>& xin,
 const PtrBlock<const Range*>& yin, 
 Int order)
{
  // Based on Nevilles Algorithm (Numerical Recipies 2nd ed., Section 3.1)
  // x is the point we want to estimate, n is the number of points to use
  // in the interpolation, and offset controls which n points are used
  // (normally the nearest points)
  
  // n = #points used in interpolation
  Int n = order+1;
  Block<Range> c(n), d(n);
  Block<Domain> x(n);
  Int nElements = xin.nelements();
  DebugAssert((n<=nElements),AipsError);
  for (Int i=0; i<Int(xout.nelements()); i++) {
    Domain x_req=xout[i];
    Bool found;
    Int where = binarySearchBrackets(found, xin, x_req, nElements);
    if (where > 1 && where < nElements - 1)
      where  = where - n/2;
    else if (where <= 1)
      where = 0;
    else
      where = nElements - n;
    
    for (Int j=0; j<ny; j++) {
      Int offset=where;
      // copy the x, y data into the working arrays
      for (Int i2 = 0; i2 < n; i2++){
	d[i2] = c[i2] = yin[offset][j]; 
	x[i2] = xin[offset];
	offset++;
      }
      // Now do the interpolation using the rather opaque algorithm
      Range w, y;
      y = c[0];
      const Float one = 1;
      for (Int k = 1; k < n; k++){
	// Calculate new C's and D's for each iteration 
	for (Int l = 0; l < n-k; l++){
	  if (nearAbs(x[l+k], x[l])) 
	    throw(AipsError("Interpolate1D::polynomialInterpolation"
			    " data has repeated x values"));
	  w = (c[l+1] - d[l]) * (one / (x[l] - x[l+k]));
	  c[l] = (x[l] - x_req) * w;
	  d[l] = (x[l+k] - x_req) * w;
	}
	y += c[0];
      }
      yout[i][j]=y;
    }
  }
}

} //# NAMESPACE CASACORE - END


#endif