This file is indexed.

/usr/include/casacore/scimath/Mathematics/SCSL.h is in casacore-dev 2.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
//# extern_fft.h: C++ wrapper functions for FORTRAN FFT code
//# Copyright (C) 1993,1994,1995,1997,1999,2000
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//#        Internet email: aips2-request@nrao.edu.
//#        Postal address: AIPS++ Project Office
//#                        National Radio Astronomy Observatory
//#                        520 Edgemont Road
//#                        Charlottesville, VA 22903-2475 USA
//#
//# $Id$

#ifndef SCIMATH_SCSL_H
#define SCIMATH_SCSL_H

#include <casacore/casa/aips.h>
#include <casacore/casa/BasicSL/Complex.h>


namespace casacore { //# NAMESPACE CASACORE - BEGIN

// <summary>C++ Interface to the Sgi/Cray Scientific Library (SCSL)</summary>
// <synopsis>
// These are C++ wrapper functions for the transform routines in the SGI/Cray 
// Scientific Library (SCSL). The purpose of these definitions is to overload
// the functions so that C++ users can access the functions in SCSL with
// identical function names.
//
// <note role=warning> 
// Currently, the SCSL is available only on SGI machines.
// </note>
// </synopsis>

class SCSL
{
public:
// These routines compute the Fast Fourier Transform (FFT) of the complex
// vector x, and store the result in vector y.  <src>ccfft</src> does the
// complex-to-complex transform and <src>zzfft</src> does the same for double
// precision arrays.
//
// In FFT applications, it is customary to use zero-based subscripts; the
// formulas are simpler that way.  Suppose that the arrays are
// dimensioned as follows:
//
// <srcblock>
//      COMPLEX X(0:N-1), Y(0:N-1)
// </srcblock>
//
// The output array is the FFT of the input array, using the following
// formula for the FFT:
//
// <srcblock>
//                     n-1
//      Y(k) = scale * Sum [ X(j)*w**(isign*j*k) ]    for k = 0, ..., n-1
//                     j=0
//
//      where:
//      w = exp(2*pi*i/n),
//      i = + sqrt(-1),
//      pi = 3.14159...,
//      isign = +1 or -1
// </srcblock>
//
// Different authors use different conventions for which of the
// transforms, isign = +1 or isign = -1, is the forward or inverse
// transform, and what the scale factor should be in either case.  You
// can make this routine compute any of the various possible definitions,
// however, by choosing the appropriate values for isign and scale.
//
// The relevant fact from FFT theory is this:  If you take the FFT with
// any particular values of isign and scale, the mathematical inverse
// function is computed by taking the FFT with -isign and 1/(n*scale).
// In particular, if you use isign = +1 and scale = 1.0 you can compute
// the inverse FFT by using isign = -1 and scale = 1.0/n.
//
// The output array may be the same as the input array.
//
// <h3>Initialization</h3>
// The table array stores the trigonometric tables used in calculation of
// the FFT.  You must initialize table by calling the routine with isign
// = 0 prior to doing the transforms.  If the value of the problem size,
// n, does not change, table does not have to be reinitialized.
//
// <h3>Dimensions</h3>
//  In the preceding description, it is assumed that array subscripts were
// zero-based, as is customary in FFT applications.  Thus, the input and
// output arrays are declared as follows:
//
// <srcblock>
//      COMPLEX X(0:N-1)
//      COMPLEX Y(0:N-1)
// </srcblock>
//
// However, if you prefer to use the more customary FORTRAN style with
// subscripts starting at 1 you do not have to change the calling
// sequence, as in the following (assuming N > 0):
//
// <srcblock>
//      COMPLEX X(N)
//      COMPLEX Y(N)
// </srcblock>
//
// <example>
// These examples use the table and workspace sizes appropriate to the
// Origin series.
//
// Example 1:  Initialize the complex array table in preparation for
// doing an FFT of size 1024.  Only the isign, n, and table arguments are
// used in this case.  You can use dummy arguments or zeros for the other
// arguments in the subroutine call.
//
// <srcblock> 
//      REAL TABLE(30 + 2048)
//      CALL CCFFT(0, 1024, 0.0, DUMMY, DUMMY, TABLE, DUMMY, 0)
// </srcblock> 
//
// Example 2:  x and y are complex arrays of dimension (0:1023).  Take
// the FFT of x and store the results in y.  Before taking the FFT,
// initialize the table array, as in example 1.
//
// <srcblock> 
//      COMPLEX X(0:1023), Y(0:1023)
//      REAL TABLE(30 + 2048)
//      REAL WORK(2048)
//      CALL CCFFT(0, 1024, 1.0, X, Y, TABLE, WORK, 0)
//      CALL CCFFT(1, 1024, 1.0, X, Y, TABLE, WORK, 0)
// </srcblock> 
//
// Example 3:  Using the same x and y as in example 2, take the inverse
// FFT of y and store it back in x.  The scale factor 1/1024 is used.
// Assume that the table array is already initialized.
//
// <srcblock> 
//      CALL CCFFT(-1, 1024, 1.0/1024.0, Y, X, TABLE, WORK, 0)
// </srcblock> 
//
// Example 4:  Perform the same computation as in example 2, but assume
// that the lower bound of each array is 1, rather than 0.  No change was
// needed in the subroutine calls.
//
// <srcblock> 
//      COMPLEX X(1024), Y(1024)
//      CALL CCFFT(0, 1024, 1.0, X, Y, TABLE, WORK, 0)
//      CALL CCFFT(1, 1024, 1.0, X, Y, TABLE, WORK, 0)
// </srcblock> 
//
// Example 5:  Do the same computation as in example 4, but put the
// output back in array x to save storage space.  Assume that table is
// already initialized.
//
// <srcblock> 
//      COMPLEX X(1024)
//      CALL CCFFT(1, 1024, 1.0, X, X, TABLE, WORK, 0)
// </srcblock> 
// </example>
//
// Input parameters:
// <dl compact>
// <dt><b>isign</b>
// <dd>    Integer.
//         Specifies whether to initialize the table array or to do the
//         forward or inverse Fourier transform, as follows:
//
//         If isign = 0, the routine initializes the table array and
//         returns.  In this case, the only arguments used or checked
//         are isign, n, and table.
//
//         If isign = +1 or -1, the value of isign is the sign of the
//         exponent used in the FFT formula.
// <dt><b>n</b>
// <dd>    Integer.  Size of the transform (the number of values in
//         the input array).  n >= 1.
// <dt><b>scale</b>
// <dd>    Scale factor.  
//         <src>ccfft</src>: real.
//         <src>zzfft</src>: double precision.
//         Each element of the output array is multiplied by scale
//         after taking the Fourier transform, as defined by the previous
//         formula.
// <dt><b>x</b>
// <dd>    Array of dimension (0:n-1).
//         <src>ccfft</src>: complex array.
//         <src>zzfft</src>: double complex array. 
// 
//         Input array of values to be transformed.
// <dt><b>isys</b>
// <dd>    Integer.
//         Algorithm used; value dependent on hardware system.  Currently, no
//         special options are supported; therefore, you must always specify
//         an isys argument as constant 0.
// </dl>
// Output parameters:
// <dl compact>
// <dt><b>y</b>
// <dd>    Array of dimension (0:n-1).
//         <src>ccfft</src>: complex array.
//         <src>zzfft</src>: double complex array.
//         Output array of transformed values.  The output array may be
//         the same as the input array.  In that case, the transform is
//         done in place and the input array is overwritten with the
//         transformed values.
// <dt><b>table</b>
// <dd>    Real array; dimension 2*n+30.
//
//         Table of factors and trigonometric functions.
//
//         If isign = 0, the routine initializes table (table is output
//         only).
//
//         If isign = +1 or -1, the values in table are assumed to be
//         initialized already by a prior call with isign = 0 (table is
//         input only).
// <dt><b>work</b>
// <dd>    Real array; dimension 2*n.
//
//         Work array.  This is a scratch array used for intermediate
//         calculations.  Its address space must be different address
//         space from that of the input and output arrays.
// </dl>
// <group>
static void ccfft(Int isign, Int n, Float scale, Complex* x,
		  Complex* y, Float* table, Float* work, Int isys);
static void ccfft(Int isign, Int n, Double scale, DComplex* x,
		  DComplex* y, Double* table, Double* work, Int isys);
static void zzfft(Int isign, Int n, Double scale, DComplex* x,
		  DComplex* y, Double* table, Double* work, Int isys);
// </group>

// <src>scfft/dzfft</src> computes the FFT of the real array x, and it stores
// the results in the complex array y.  <src>csfft/zdfft</src> computes the
// corresponding inverse complex-to-real transform.
//
// It is customary in FFT applications to use zero-based subscripts; the
// formulas are simpler that way.  For these routines, suppose that the
// arrays are dimensioned as follows:
//
// <srcblock>
//      REAL    X(0:n-1)
//      COMPLEX Y(0:n/2)
// </srcblock>
//
// Then the output array is the FFT of the input array, using the
// following formula for the FFT:
//
// <srcblock> 
//                     n-1
//      Y(k) = scale * Sum [ X(j)*w**(isign*j*k) ]    for k = 0, ..., n/2
//                     j=0
//
//      where:
//      w = exp(2*pi*i/n),
//      i = + sqrt(-1),
//      pi = 3.14159...,
//      isign = +1 or -1.
// </srcblock> 
//
// Different authors use different conventions for which of the
// transforms, isign = +1 or isign = -1, is the forward or inverse
// transform, and what the scale factor should be in either case.  You
// can make these routines compute any of the various possible
// definitions, however, by choosing the appropriate values for isign and
// scale.
//
// The relevant fact from FFT theory is this:  If you call <src>scfft</src> 
// with any particular values of isign and scale, the mathematical inverse
// function is computed by calling <src>csfft</src> with -isign and 
// 1/(n*scale).  In particular, if you use isign = +1 and scale = 1.0 in 
// <src>scfft</src> for the forward FFT, you can compute the inverse FFT by
// using <src>ccfft</src> with isign = -1 and scale = 1.0/n.
//
// <h3>Real-to-complex FFTs</h3>
// Notice in the preceding formula that there are n real input values,
// and n/2 + 1 complex output values.  This property is characteristic of
// real-to-complex FFTs.
//
// The mathematical definition of the Fourier transform takes a sequence
// of n complex values and transforms it to another sequence of n complex
// values.  A complex-to-complex FFT routine, such as <src>ccfft</src>, will
// take n complex input values, and produce n complex output values.  In
// fact, one easy way to compute a real-to-complex FFT is to store the
// input data in a complex array, then call routine <src>ccfft</src> to
// compute the FFT.  You get the same answer when using the <src>scfft</src>
// routine.
//
// The reason for having a separate real-to-complex FFT routine is
// efficiency.  Because the input data is real, you can make use of this
// fact to save almost half of the computational work.  The theory of
// Fourier transforms tells us that for real input data, you have to
// compute only the first n/2 + 1 complex output values, because the
// remaining values can be computed from the first half of the values by
// the simple formula:
//
// <srcblock> 
//      Y(k) = conjg(Y(n-k)) for n/2 <= k <= n-1
// </srcblock>
//
// where the notation conjgY represents the complex conjugate of y.
//
// In fact, in many applications, the second half of the complex output
// data is never explicitly computed or stored.  Likewise, as explained
// later, only the first half of the complex data has to be supplied for
// the complex-to-real FFT.
//
// Another implication of FFT theory is that, for real input data, the
// first output value, Y(0), will always be a real number; therefore, the
// imaginary part will always be 0.  If n is an even number, Y(n/2) will
// also be real and thus, have zero imaginary parts.
//
// <h3>Complex-to-real FFTs</h3>
// Consider the complex-to-real case.  The effect of the computation is
// given by the preceding formula, but with X complex and Y real.
//
// Generally, the FFT transforms a complex sequence into a complex
// sequence.  However, in a certain application we may know the output
// sequence is real.  Often, this is the case because the complex input
// sequence was the transform of a real sequence.  In this case, you can
// save about half of the computational work.
//
// According to the theory of Fourier transforms, for the output
// sequence, Y, to be a real sequence, the following identity on the
// input sequence, X, must be true:
//
// <srcblock> 
//      X(k) = conjg(X(n-k)) for n/2 <= k <= n-1
// </srcblock> 
//
// And, in fact, the input values X(k) for k > n/2 need not be supplied;
// they can be inferred from the first half of the input.
//
// Thus, in the complex-to-real routine, <src>csfft</src>, the arrays can be
// dimensioned as follows:
//
// <srcblock> 
//      COMPLEX X(0:n/2)
//      REAL    Y(0:n-1)
// </srcblock> 
//
// There are n/2 + 1 complex input values and n real output values.  Even
// though only n/2 + 1 input values are supplied, the size of the
// transform is still n in this case, because implicitly you are using
// the FFT formula for a sequence of length n.
//
// Another implication of the theory is that X(0) must be a real number
// (that is, it must have zero imaginary part).  Also, if n is even,
// X(n/2) must also be real.  Routine <src>CSFFT</src> assumes that these
// values are real; if you specify a nonzero imaginary part, it is ignored.
//
// <h3>Table Initialization</h3>
// The table array stores the trigonometric tables used in calculation of
// the FFT.  This table must be initialized by calling the routine with
// isign = 0 prior to doing the transforms.  The table does not have to
// be reinitialized if the value of the problem size, n, does not change.
// Because <src>scfft</src> and <src>csfft</src> use the same format for 
// table, either can be used to initialize it (note that CCFFT uses a
// different table format).
//
// <h3>Dimensions</h3>
// In the preceding description, it is assumed that array subscripts were
// zero-based, as is customary in FFT applications.  Thus, the input and
// output arrays are declared (assuming n > 0):
//
// <srcblock> 
//      REAL    X(0:n-1)
//      COMPLEX Y(0:n/2)
// </srcblock> 
//
// No change is needed in the calling sequence; however, if you prefer
// you can use the more customary Fortran style with subscripts starting
// at 1, as in the following:
//
// <srcblock> 
//      REAL    X(n)
//      COMPLEX Y(n/2 + 1)
// </srcblock> 
//
// <example>
// These examples use the table and workspace sizes appropriate to Origin
// series.
//
// Example 1:  Initialize the complex array TABLE in preparation for
// doing an FFT of size 1024.  In this case only the arguments isign, n,
// and table are used. You can use dummy arguments or zeros for the other
// arguments in the subroutine call.
//
// <srcblock> 
//      REAL TABLE(15 + 1024)
//      CALL SCFFT(0, 1024, 0.0, DUMMY, DUMMY, TABLE, DUMMY, 0)
// </srcblock> 
//
// Example 2:  X is a real array of dimension (0:1023), and Y is a
// complex array of dimension (0:512).  Take the FFT of X and store the
// results in Y.  Before taking the FFT, initialize the TABLE array, as
// in example 1.
//
// <srcblock> 
//      REAL X(0:1023)
//      COMPLEX Y(0:512)
//      REAL TABLE(15 + 1024)
//      REAL WORK(1024)
//      CALL SCFFT(0, 1024, 1.0, X, Y, TABLE, WORK, 0)
//      CALL SCFFT(1, 1024, 1.0, X, Y, TABLE, WORK, 0)
// </srcblock> 
//
// Example 3:  With X and Y as in example 2, take the inverse FFT of Y
// and store it back in X.  The scale factor 1/1024 is used.  Assume that
// the TABLE array is initialized already.
//
// <srcblock> 
//      CALL CSFFT(-1, 1024, 1.0/1024.0, Y, X, TABLE, WORK, 0)
// </srcblock> 
//
// Example 4:  Perform the same computation as in example 2, but assume
// that the lower bound of each array is 1, rather than 0.  The
// subroutine calls are not changed.
//
// <srcblock> 
//      REAL X(1024)
//      COMPLEX Y(513)
//      CALL SCFFT(0, 1024, 1.0, X, Y, TABLE, WORK, 0)
//      CALL SCFFT(1, 1024, 1.0, X, Y, TABLE, WORK, 0)
// </srcblock> 
//
// Example 5:  Perform the same computation as in example 4, but
// equivalence the input and output arrays to save storage space.  Assume
// that the TABLE array is initialized already.
//
// <srcblock> 
//      REAL X(1024)
//      COMPLEX Y(513)
//      EQUIVALENCE ( X(1), Y(1) )
//      CALL SCFFT(1, 1024, 1.0, X, Y, TABLE, WORK, 0)
// </srcblock> 
// </example>
//
// Input parameters:
// <dl compact>
// <dt><b>isign</b>
// <dd>    Integer.
//         Specifies whether to initialize the table array or to do the
//         forward or inverse Fourier transform, as follows:
//
//         If isign = 0, the routine initializes the table array and
//         returns.  In this case, the only arguments used or checked
//         are isign, n, and table.
//
//         If isign = +1 or -1, the value of isign is the sign of the
//         exponent used in the FFT formula.
// <dt><b>n</b>
// <dd>    Integer.
//         Size of transform.  If n <= 2, <src>scfft/dzfft</src>
//         returns without calculating the transform.
// <dt><b>scale</b>
// <dd>    Scale factor.
//         <src>scfft</src>: real. 
//         <src>dzfft</src>: double precision.
//         <src>csfft</src>: real.
//         <src>zdfft</src>: double precision.
//         Each element of the output array is multiplied by scale
//         after taking the Fourier transform, as defined by the previous
//         formula.
// <dt><b>x</b>
// <dd>    Input array of values to be transformed.
//         <src>scfft</src>: real array of dimension (0:n-1).
//         <src>dzfft</src>: double precision array of dimension (0:n-1).
//         <src>csfft</src>: complex array of dimension (0:n/2).
//         <src>zdfft</src>: double complex array of dimension (0:n/2).
// <dt><b>isys</b>
// <dd>    Integer array of dimension (0:isys(0)).
//         Use isys to specify certain processor-specific parameters or
//         options.  The first element of the array specifies how many
//         more elements are in the array.
//
//         If isys(0) = 0, the default values of such parameters are
//         used.  In this case, you can specify the argument value as
//         the scalar integer constant 0.  If isys(0) > 0, isys(0)
//         gives the upper bound of the isys array; that is, if
//         il = isys(0), user-specified parameters are expected in
//         isys(1) through isys(il).
// </dl>
// Output parameters:
// <dl compact>
// <dt><b>y</b>
// <dd>    Output array of transformed values.
//         <src>scfft</src>: complex array of dimension (0:n/2).
//         <src>dzfft</src>: double complex array of dimension (0:n/2).
//         <src>csfft</src>: real array of dimension (0:n-1).
//         <src>zdfft</src>: double precision array of dimension (0:n-1).
//
//         The output array, y, is the FFT of the the input array, x,
//         computed according to the preceding formula.  The output
//         array may be equivalenced to the input array in the calling
//         program.  Be careful when dimensioning the arrays, in this
//         case, to allow for the fact that the complex array contains
//         two (real) words more than the real array.
// <dt><b>table</b>
// <dd>    Real array; dimension n+15.
//
//         Table of factors and trigonometric functions.
//
//         If isign = 0, the table array is initialized to contain
//         trigonometric tables needed to compute an FFT of size n.
//
//         If isign = +1 or -1, the values in table are assumed to be
//         initialized already by a prior call with isign = 0.
// <dt><b>work</b>
// <dd>    Real array; dimension n.
//
//         Work array used for intermediate calculations.  Its address
//         space must be different from that of the input and output
//         arrays.
// </dl>
// <group>
static void scfft(Int isign, Int n, Float scale, Float* x,
		  Complex* y, Float* table, Float* work, Int isys); 
static void scfft(Int isign, Int n, Double scale, Double* x,
		  DComplex* y, Double* table, Double* work, Int isys);
static void dzfft(Int isign, Int n, Double scale, Double* x,
		  DComplex* y, Double* table, Double* work, Int isys);
static void csfft(Int isign, Int n, Float scale, Complex* x,
		  Float* y, Float* table, Float* work, Int isys); 
static void csfft(Int isign, Int n, Double scale, DComplex* x, 
		  Double* y, Double* table, Double* work, Int isys);
static void zdfft(Int isign, Int n, Double scale, DComplex* x, 
		  Double* y, Double* table, Double* work, Int isys);
// </group>

// <src>ccfftm/zzfftm</src> computes the FFT of each column of the
// complex matrix x, and stores the results in the columns of complex
// matrix y.
//
// Suppose the arrays are dimensioned as follows:
//
// <srcblock>
//      COMPLEX X(0:ldx-1, 0:lot-1)
//      COMPLEX Y(0:ldy-1, 0:lot-1)
//
// where ldx >= n, ldy >= n.
// </srcblock>
//
// Then column L of the output array is the FFT of column L of the
// input array, using the following formula for the FFT:
//
// <srcblock>
//                        n-1
//      Y(k, L) = scale * Sum [ X(j)*w**(isign*j*k) ]
//                        j=0
//      for k = 0, ..., n-1
//          L = 0, ..., lot-1
//      where:
//          w = exp(2*pi*i/n),
//          i = + sqrt(-1),
//          pi = 3.14159...,
//          isign = +1 or -1
//          lot = the number of columns to transform
// </srcblock>
//
// Different authors use different conventions for which of the
// transforms, isign = +1 or isign = -1, is the forward or inverse
// transform, and what the scale factor should be in either case.  You
// can make this routine compute any of the various possible definitions,
// however, by choosing the appropriate values for isign and scale.
//
// The relevant fact from FFT theory is this:  If you take the FFT with
// any particular values of isign and scale, the mathematical inverse
// function is computed by taking the FFT with -isign and 1/(n * scale).
// In particular, if you use isign = +1 and scale = 1.0 for the forward
// FFT, you can compute the inverse FFT by using the following:  isign =
// -1 and scale = 1.0/n.
//
// This section contains information about the algorithm for these
// routines, the initialization of the table array, the declaration of
// dimensions for x and y arrays, some performance tips, and some
// implementation-dependent details.
//
// <h3>Algorithm</h3>
// These routines use decimation-in-frequency type FFT.  It takes the FFT
// of the columns and vectorizes the operations along the rows of the
// matrix.  Thus, the vector length in the calculations depends on the
// row size, and the strides for vector loads and stores are the leading
// dimensions, ldx and ldy.
//
// <h3>Initialization</h3>
// The table array stores the trigonometric tables used in calculation of
// the FFT.  You must initialize the table array by calling the routine
// with isign = 0 prior to doing the transforms.  If the value of the
// problem size, n, does not change, table does not have to be
// reinitialized.
//
// <h3>Dimensions</h3>
// In the preceding description, it is assumed that array subscripts were
// zero-based, as is customary in FFT applications.  Thus, the input and
// output arrays are declared as follows:
//
// <srcblock> 
//      COMPLEX X(0:ldx-1, 0:lot-1)
//      COMPLEX Y(0:ldy-1, 0:lot-1)
// </srcblock> 
//
// The calling sequence does not have to change, however, if you prefer
// to use the more customary Fortran style with subscripts starting at 1.
// The same values of ldx and ldy would be passed to the subroutine even
// if the input and output arrays were dimensioned as follows:
//
// <srcblock> 
//      COMPLEX X(ldx, lot)
//      COMPLEX Y(ldy, lot)
// </srcblock> 
//
// <example>
// Example 1:  Initialize the TABLE array in preparation for doing an FFT
// of size 128.  Only the isign, n, and table arguments are used in this
// case.  You can use dummy arguments or zeros for the other arguments in
// the subroutine call.
//
// <srcblock> 
//       REAL TABLE(30 + 256)
//       CALL CCFFTM(0, 128, 0, 0., DUMMY, 1, DUMMY, 1, TABLE, DUMMY, 0)
// </srcblock> 
//
// Example 2:  X and Y are complex arrays of dimension (0:128) by (0:55).
// The first 128 elements of each column contain data.  For performance
// reasons, the extra element forces the leading dimension to be an odd
// number.  Take the FFT of the first 50 columns of X and store the
// results in the first 50 columns of Y.  Before taking the FFT,
// initialize the TABLE array, as in example 1.
//
// <srcblock> 
//       COMPLEX X(0:128, 0:55)
//       COMPLEX Y(0:128, 0:55)
//       REAL TABLE(30 + 256)
//       REAL WORK(256)
//       ...
//       CALL CCFFTM(0, 128, 50, 1.0, X, 129, Y, 129, TABLE, WORK, 0)
//       CALL CCFFTM(1, 128, 50, 1.0, X, 129, Y, 129, TABLE, WORK, 0)
// </srcblock> 
//
// Example 3:  With X and Y as in example 2, take the inverse FFT of Y
// and store it back in X.  The scale factor 1/128 is used.  Assume that
// the TABLE array is already initialized.
//
// <srcblock> 
//       CALL CCFFTM(-1, 128, 50, 1./128., Y, 129, X, 129, TABLE,WORK,0)
// </srcblock> 
//
// Example 4:  Perform the same computation as in example 2, but assume
// that the lower bound of each array is 1, rather than 0.  The
// subroutine calls are not changed.
//
// <srcblock> 
//       COMPLEX X(129, 55)
//       COMPLEX Y(129, 55)
//       ...
//       CALL CCFFTM(0, 128, 50, 1.0, X, 129, Y, 129, TABLE, WORK, 0)
//       CALL CCFFTM(1, 128, 50, 1.0, X, 129, Y, 129, TABLE, WORK, 0)
// </srcblock> 
//
// Example 5:  Perform the same computation as in example 4, but put the
// output back in array X to save storage space.  Assume that the TABLE
// array is already initialized.
//
// <srcblock> 
//       COMPLEX X(129, 55)
//       ...
//       CALL CCFFTM(1, 128, 50, 1.0, X, 129, X, 129, TABLE, WORK, 0)
// </srcblock> 
//
// </example>
//
// Input parameters:
// <dl compact>
// <dt><b>isign</b>
// <dd>    Integer.
//         Specifies whether to initialize the table array or to do the
//         forward or inverse Fourier transform, as follows:
//
//         If isign = 0, the routine initializes the table array and
//         returns.  In this case, the only arguments used or checked
//         are isign, n, and table.
//
//         If isign = +1 or -1, the value of isign is the sign of the
//         exponent used in the FFT formula.
// <dt><b>n</b>
// <dd>    Integer.  
//         Size of each transform (the number of elements in each
//         column of the input and output matrix to be transformed).
//         Performance depends on the value of n, as explained above.  
//         n >= 0; if n = 0, the routine returns.
// <dt><b>lot</b>
// <dd>    Integer.
//         The number of transforms to be computed (lot size).  This is
//         the number of elements in each row of the input and output
//         matrix.  lot >= 0.  If lot = 0, the routine returns.
// <dt><b>scale</b>
// <dd>    Scale factor.
//         <src>ccfftm</src>: real. 
//         <src>zzfftm</src>: double precision.
//         Each element of the output array is multiplied by scale
//         factor after taking the Fourier transform, as defined
//         previously.
// <dt><b>x</b>
// <dd>    Array of dimension (0:ldx-1, 0:n2-1).
//         <src>ccfftm</src>: real array.
//         <src>zzfftm</src>: double precision array.
//         Input array of values to be transformed.
// <dt><b>ldx</b>
// <dd>    The number of rows in the x array, as it was declared in the
//         calling program (the leading dimension of X).  ldx >= MAX(n, 1).
// <dt><b>ldy</b>
// <dd>    Integer.
//         The number of rows in the y array, as it was declared in the
//         calling program (the leading dimension of y).  ldy >= MAX(n,
//         1).
// <dt><b>isys</b>
// <dd>    Integer array of dimension (0:isys(0)).
//         The first element of the array specifies how many more
//         elements are in the array.  Use isys to specify certain
//         processor-specific parameters or options.
//
//         If isys(0) = 0, the default values of such parameters are
//         used.  In this case, you can specify the argument value as
//         the scalar integer constant 0.
//
//         If isys(0) > 0, isys(0) gives the upper bound of the isys
//         array.  Therefore, if il = isys(0), user-specified
//         parameters are expected in isys(1) through isys(il).
// </dl>
// Output parameters:
// <dl compact>
// <dt><b>y</b>
// <dd>    Array of dimension (0:ldy-1, 0:lot-1).
//         <src>ccfftm</src>: complex array.
//         <src>zzfftm</src>: double complex array.
//         Output array of transformed values.  Each column of the
//         output array, y, is the FFT of the corresponding column of
//         the input array, x, computed according to the preceding
//         formula.
//
//         The output array may be the same as the input array. In that
//         case, the transform is done in place.  The input array is
//         overwritten with the transformed values.  In this case, it
//         is necessary that ldx = ldy.
// <dt><b>table</b>
// <dd>    Real array; dimension (30 + 2n).
//         Table of factors and trigonometric functions.
//
//         If isign = 0, the routine initializes table (table is output
//         only).
//
//         If isign = +1 or -1, the values in table are assumed to be
//         initialized already by a prior call with isign = 0 (table is
//         input only).
// <dt><b>work</b>
// <dd>    Real array; dimension 2n.
//         Work array.  This is a scratch array used for intermediate
//         calculations.  Its address space must be different from that
//         of the input and output arrays.
// </dl>
// <group>
static void ccfftm(Int isign, Int n, Int lot, Float scale, Complex*
		   x, Int ldx, Complex* y, Int ldy, Float* table,
		   Float* work, Int isys); 
static void zzfftm(Int isign, Int n, Int lot, Double scale, DComplex*
		   x, Int ldx, DComplex* y, Int ldy, Double* table,
		   Double* work, Int isys);
// </group>

// <src>scfftm/dzfftm</src> computes the FFT of each column of the real matrix
// X, and it stores the results in the corresponding column of the complex
// matrix Y.  <src>csfftm/zdfftm</src> computes the corresponding inverse
// transforms.
//
// In FFT applications, it is customary to use zero-based subscripts; the
// formulas are simpler that way.  First, the function of <src>scfftm</src> is
// described.  Suppose that the arrays are dimensioned as follows:
//
// <srcblock>
//      REAL    X(0:ldx-1, 0:lot-1)
//      COMPLEX Y(0:ldy-1, 0:lot-1)
//
// where ldx >= n, ldy >= n/2 + 1.
// </srcblock>
//
// Then column L of the output array is the FFT of column L of the input
// array, using the following formula for the FFT:
//
// <srcblock>
//                    n-1
// Y(k, L) = scale *  Sum  [ X(j, L)*w**(isign*j*k) ]
//                    j=0
//
// for k = 0, ..., n/2
//     L = 0, ..., lot-1 where:
//     w = exp(2*pi*i/n),
//     i = + sqrt(-1)
//     pi = 3.14159...,
//     isign = +1 or -1,
//     lot = the number of columns to transform
// </srcblock>
//
// Different authors use different conventions for which transform
// (isign = +1 or isign = -1) is used in the real-to-complex case, and
// what the scale factor should be.  Some adopt the convention that isign
// = 1 for the real-to-complex transform, and isign = -1 for the
// complex-to-real inverse.  Others use the opposite convention.  You can
// make these routines compute any of the various possible definitions,
// however, by choosing the appropriate values for isign and scale.
//
// The relevant fact from FFT theory is this:  If you use <src>scfftm</src> to
// take the real-to-complex FFT, using any particular values of isign and
// scale, the mathematical inverse function is computed by using 
// <src>csfftm</src> with -isign and 1/ (n*scale).  In particular, if you call
// <src>scfftm</src> with isign = +1 and scale = 1.0, you can use
// <src>csfftm</src> to compute the inverse complex-to-real FFT by using isign
// = -1 and scale = 1.0/n.
//
// <h3>Real-to-complex FFTs</h3>
// Notice in the preceding formula that there are n real input values and
// (n/2) + 1 complex output values for each column.  This property is
// characteristic of real-to-complex FFTs.
//
// The mathematical definition of the Fourier transform takes a sequence
// of n complex values and transforms it to another sequence of n complex
// values.  A complex-to-complex FFT routine, such as <src>ccfftm</src>, will
// take n complex input values and produce n complex output values.  In fact,
// one easy way to compute a real-to-complex FFT is to store the input
// data x in a complex array, then call routine <src>ccfftm</src> to compute
// the FFT.  You get the same answer when using the <src>scfftm</src> routine.
//
// A separate real-to-complex FFT routine is more efficient than the
// equivalent complex-to-complex routine.  Because the input data is
// real, you can make use of this fact to save almost half of the
// computational work.  According to the theory of Fourier transforms,
// for real input data, you have to compute only the first n/2 + 1
// complex output values in each column, because the second half of the
// FFT values in each column can be computed from the first half of the
// values by the simple formula:
//
// <srcblock>
//      Y    = conjgY          for n/2 <= k <= n-1
//       k,L          n-k, L
//
// where the notation conjg(z) represents the complex conjugate of z.
// </srcblock>
//
// In fact, in many applications, the second half of the complex output
// data is never explicitly computed or stored.  Likewise, you must
// supply only the first half of the complex data in each column has to
// be supplied for the complex-to-real FFT.
//
// Another implication of FFT theory is that for real input data, the
// first output value in each column, Y(0, L), will always be a real
// number; therefore, the imaginary part will always be 0.  If n is an
// even number, Y(n/2, L) will also be real and have 0 imaginary parts.
//
// <h3>Complex-to-real FFTs</h3>
// Consider the complex-to-real case.  The effect of the computation is
// given by the preceding formula, but with X complex and Y real.
//
// In general, the FFT transforms a complex sequence into a complex
// sequence; however, in a certain application you may know the output
// sequence is real, perhaps because the complex input sequence was the
// transform of a real sequence.  In this case, you can save about half
// of the computational work.
//
// According to the theory of Fourier transforms, for the output
// sequence, Y, to be a real sequence, the following identity on the
// input sequence, X, must be true:
//
// <srcblock>
//      X    = conjgX         for n/2 <= k <= n-1
//       k,L          n-k,L
// And, in fact, the following input values
//
//      X    for k > n/2
//       k,L
// do not have to be supplied, because they can be inferred from the
// first half of the input.
// </srcblock>
//
// Thus, in the complex-to-real routine, CSFFTM, the arrays can be
// dimensioned as follows:
//
// <srcblock>
//      COMPLEX X(0:ldx-1, 0:lot-1)
//      REAL    Y(0:ldy-1, 0:lot-1)
//
// where ldx >= n/2 + 1, ldy >= n.
// </srcblock>
//
// In each column, there are (n/2) + 1 complex input values and n real
// output values.  Even though only (n/2) + 1 input values are supplied,
// the size of the transform is still n in this case, because implicitly
// the FFT formula for a sequence of length n is used.
//
// Another implication of the theory is that X(0, L) must be a real
// number (that is, must have zero imaginary part).  If n is an even
// number, X(n/2, L) must also be real.  Routine CSFFTM assumes that each
// of these values is real; if a nonzero imaginary part is given, it is
// ignored.
//
// <h3>Table Initialization</h3>
// The table array contains the trigonometric tables used in calculation
// of the FFT.  You must initialize this table by calling the routine
// with isign = 0 prior to doing the transforms.  table does not have to
// be reinitialized if the value of the problem size, n, does not change.
//
// <h3>Dimensions</h3>
// In the preceding description, it is assumed that array subscripts were
// zero-based, as is customary in FFT applications.  Thus, the input and
// output arrays are declared (for SCFFTM):
//
// <srcblock>
//      REAL    X(0:ldx-1, 0:lot-1)
//      COMPLEX Y(0:ldy-1, 0:lot-1)
// </srcblock>
//
// No change is made in the calling sequence, however, if you prefer to
// use the more customary Fortran style with subscripts starting at 1.
// The same values of ldx and ldy would be passed to the subroutine even
// if the input and output arrays were dimensioned as follows:
//
// <srcblock>
//      REAL    X(ldx, lot)
//      COMPLEX Y(ldy, lot)
// </srcblock>

// </example>
// Example 1:  Initialize the complex array TABLE in preparation for
// doing an FFT of size 128.  In this case only the isign, n, and table
// arguments are used; you may use dummy arguments or zeros for the other
// arguments in the subroutine call.
//
// <srcblock>
//       REAL TABLE(15 + 128)
//       CALL SCFFTM(0, 128, 1, 0.0, DUMMY, 1, DUMMY, 1,
//      &  TABLE, DUMMY, 0)
// </srcblock>
//
// Example 2:  X is a real array of dimension (0:128, 0:55), and Y is a
// complex array of dimension (0:64, 0:55).  The first 128 elements in
// each column of X contain data; the extra element forces an odd leading
// dimension.  Take the FFT of the first 50 columns of X and store the
// results in the first 50 columns of Y.  Before taking the FFT,
// initialize the TABLE array, as in example 1.
//
// <srcblock>
//       REAL    X(0:128, 0:55)
//       COMPLEX Y(0:64,  0:55)
//       REAL    TABLE(15 + 128)
//       REAL    WORK((128)
//       ...
//       CALL SCFFTM(0, 128, 50, 1.0, X, 129, Y, 65, TABLE, WORK, 0)
//       CALL SCFFTM(1, 128, 50, 1.0, X, 129, Y, 65, TABLE, WORK, 0)
// </srcblock>
//
// Example 3:  With X and Y as in example 2, take the inverse FFT of Y
// and store it back in X.  The scale factor 1/128 is used.  Assume that
// the TABLE array is initialized already.
//
// <srcblock>
//       CALL CSFFTM(-1, 128, 50, 1.0/128.0, Y, 65, X, 129,
//      &  TABLE, WORK, 0)
// </srcblock>
//
// Example 4:  Perform the same computation as in example 2, but assume
// that the lower bound of each array is 1, rather than 0.  No change is
// made in the subroutine calls.
//
// <srcblock>
//       REAL    X(129, 56)
//       COMPLEX Y(65, 56)
//       ...
//       CALL SCFFTM(0, 128, 50, 1.0, X, 129, Y, 65, TABLE, WORK, 0)
//       CALL SCFFTM(1, 128, 50, 1.0, X, 129, Y, 65, TABLE, WORK, 0)
// </srcblock>
//
// Example 5:  Perform the same computation as in example 4, but
// equivalence the input and output arrays to save storage space.  In
// this case, a row must be added to X, because it is equivalenced to a
// complex array.  The leading dimension of X is two times an odd number;
// therefore, memory bank conflicts are minimal.  Assume that TABLE is
// initialized already.
//
// <srcblock>
//       REAL    X(130, 56)
//       COMPLEX Y(65, 56)
//       EQUIVALENCE ( X(1, 1), Y(1, 1) )
//       ...
//       CALL SCFFTM(1, 128, 50, 1.0, X, 130, Y, 65, TABLE, WORK, 0)
// </srcblock>
// </example>
//
// Input parameters:
// <dl compact>
// <dt><b>isign</b>
// <dd>    Integer.
//         Specifies whether to initialize the table array or to do the
//         forward or inverse Fourier transform, as follows:
//
//         If isign = 0, the routine initializes the table array and
//         returns.  In this case, the only arguments used or checked
//         are isign, n, and table.
//
//         If isign = +1 or -1, the value of isign is the sign of the
//         exponent used in the FFT formula.
// <dt><b>n</b>
// <dd>    Integer.
//         Size of the transforms (the number of elements in each
//         column of the input and output matrix to be transformed).
//         If n is not positive, <src>scfftm</src> or <src>csfftm</src> returns
//         without computing a transforms.
// <dt><b>lot</b>
// <dd>    Integer.
//         The number of transforms to be computed (or "lot size").
//         This is the number of elements in each row of the input and
//         output matrix.  If lot is not positive, <src>csfftm</src> or 
//         <src>scfftm</src> returns without computing a transforms.
// <dt><b>scale</b>
// <dd>    Scale factor.
//         <src>scfftm</src>: real. 
//         <src>dzfftm</src>: double precision.
//         <src>csfftm</src>: real.
//         <src>zdfftm</src>: double precision.
//         Each element of the output array is multiplied by scale
//         after taking the transform, as defined in the preceding
//         formula.
// <dt><b>x</b>
// <dd>    Input array of values to be transformed. Dimension (0:ldx-1,
//         0:lot-1).
//         <src>scfftm</src>: real array.
//         <src>dzfftm</src>: double precision array.
//         <src>csfftm</src>: complex array.
//         <src>zdfftm</src>: double complex array.
// <dt><b>ldx</b>
// <dd>    Integer.
//         The number of rows in the x array, as it was declared in the
//         calling program.  That is, the leading dimension of x.
//         <src>scfftm, dzfftm</src>:  ldx >= MAX(n, 1).
//         <src>csfftm, zdfftm</src>:  ldx >= MAX(n/2 + 1, 1).
// <dt><b>ldy</b>
// <dd>    Integer.
//         The number of rows in the y array, as it was declared in the
//         calling program (the leading dimension of y).
//         <src>scfftm, dzfftm</src>:  ldy >= MAX(n/2 + 1, 1).
//         <src>csfftm, zdfftm</src>:  ldy >= MAX(n, 1).
// <dt><b>isys</b>
// <dd>    Integer array of dimension (0:isys(0)).
//         The first element of the array specifies how many more
//         elements are in the array.  Use isys to specify certain
//         processor-specific parameters or options.
//
//         If isys(0) = 0, the default values of such parameters are
//         used.  In this case, you can specify the argument value as
//         the scalar integer constant 0.
//
//         If isys(0) > 0, isys(0) gives the upper bound of the isys
//         array.  Therefore, if il = isys(0), user-specified
//         parameters are expected in isys(1) through isys(il).
// </dl>
// Output parameters:
// <dl compact>
// <dt><b>y</b>
// <dd>    Output array of transformed values.  Dimension (0:ldy-1,
//         0:lot-1).
//         <src>scfftm</src>: complex array.
//         <src>dzfftm</src>: double complex array.
//         <src>csfftm</src>: real array.
//         <src>zdfftm</src>: double precision array.
//
//         Each column of the output array, y, is the FFT of the
//         corresponding column of the input array, x, computed
//         according to the preceding formula.  The output array may be
//         equivalenced to the input array. In that case, the transform
//         is done in place and the input array is overwritten with the
//         transformed values.  In this case, the following conditions
//         on the leading dimensions must hold:
//
//         <src>scfftm, dzfftm</src>:  ldx = 2ldy.
//         <src>csfftm, zdfftm</src>:  ldy = 2ldx.
// <dt><b>table</b>
// <dd>    Real array; dimension (15 + n).
//         Table of factors and trigonometric functions.
//         This array must be initialized by a call to <src>scfftm</src> (or
//         <src>csfftm</src>) with isign = 0.
//
//         If isign = 0, table is initialized to contain trigonometric
//         tables needed to compute an FFT of length n.
// <dt><b>work</b>
// <dd>    Real array; dimension n.
//         Work array used for intermediate calculations.  Its address
//         space must be different from that of the input and output
//         arrays.
// </dl>
// <group>
static void scfftm(Int isign, Int n, Int lot, Float scale, Float*
		   x, Int ldx, Complex* y, Int ldy, Float* table,
		   Float* work, Int isys); 
static void dzfftm(Int isign, Int n, Int lot, Double scale, Double*
		   x, Int ldx, DComplex* y, Int ldy, Double* table,
		   Double* work, Int isys); 
static void csfftm(Int isign, Int n, Int lot, Float scale, Complex*
		   x, Int ldx, Float* y, Int ldy, Float* table,
		   Float* work, Int isys); 
static void zdfftm(Int isign, Int n, Int lot, Double scale, DComplex*
		   x, Int ldx, Double* y, Int ldy, Double* table,
		   Double* work, Int isys);
// </group>

// These routines compute the two-dimensional complex Fast Fourier
// Transform (FFT) of the complex matrix x, and store the results in the
// complex matrix y.  <src>ccfft2d</src> does the complex-to-complex
// transform and <src>zzfft</src> does the same for double
// precision arrays.
//
// In FFT applications, it is customary to use zero-based subscripts; the
// formulas are simpler that way.  Suppose that the arrays are
// dimensioned as follows:
//
// <srcblock> 
//      COMPLEX X(0:n1-1, 0:n2-1)
//      COMPLEX Y(0:n1-1, 0:n2-1)
// </srcblock> 
//
// These routines compute the formula:
//
// <srcblock> 
//                        n2-1  n1-1
//    Y(k1, k2) = scale * Sum   Sum [ X(j1, j2)*w1**(j1*k1)*w2**(j2*k2) ]
//                        j2=0  j1=0
//
//    for k1 = 0, ..., n1-1
//        k2 = 0, ..., n2-1
//
//    where:
//        w1 = exp(isign*2*pi*i/n1)
//        w2 = exp(isign*2*pi*i/n2)
//        i = + sqrt(-1)
//        pi = 3.14159...,
//        isign = +1 or -1
// </srcblock> 
//
// Different authors use different conventions for which of the
// transforms, isign = +1 or isign = -1, is the forward or inverse
// transform, and what the scale factor should be in either case.  You
// can make this routine compute any of the various possible definitions,
// however, by choosing the appropriate values for isign and scale.
//
// The relevant fact from FFT theory is this:  If you take the FFT with
// any particular values of isign and scale, the mathematical inverse
// function is computed by taking the FFT with -isign and
// 1/(n1*n2*scale).  In particular, if you use isign = +1 and scale = 1.0
// for the forward FFT, you can compute the inverse FFT by using isign =
// -1 and scale = 1.0/(n1*n2).
//
// <h3>Algorithm</h3>
// These routines use a routine very much like <src>ccfftm/zzfftm</src> to do
// multiple FFTs first on all columns in an input matrix and then on all
// of the rows.
//
// <h3>Initialization</h3>
// The table array stores factors of n1 and n2 and also trigonometric
// tables that are used in calculation of the FFT.  This table must be
// initialized by calling the routine with isign = 0.  If the values of
// the problem sizes, n1 and n2, do not change, the table does not have
// to be reinitialized.
//
// <h3>Dimensions</h3>
// In the preceding description, it is assumed that array subscripts were
// zero-based, as is customary in FFT applications.  Thus, the input and
// output arrays are declared as follows:
//
// <srcblock> 
//      COMPLEX X(0:ldx-1, 0:n2-1)
//      COMPLEX Y(0:ldy-1, 0:n2-1)
// </srcblock> 
//
// However, the calling sequence does not change if you prefer to use the
// more customary Fortran style with subscripts starting at 1.  The same
// values of ldx and ldy would be passed to the subroutine even if the
// input and output arrays were dimensioned as follows:
//
// <srcblock> 
//      COMPLEX X(ldx, n2)
//      COMPLEX Y(ldy, n2)
// </srcblock> 
//
// <example>
// All examples here are for Origin series only.
//
// Example 1:  Initialize the TABLE array in preparation for doing a
// two-dimensional FFT of size 128 by 256.  In this case only the isign,
// n1, n2, and table arguments are used; you can use dummy arguments or
// zeros for other arguments.
//
// <srcblock> 
//        REAL TABLE ((30 + 256) + (30 + 512))
//        CALL CCFFT2D (0, 128, 256, 0.0, DUMMY, 1, DUMMY, 1,
//       &  TABLE, DUMMY, 0)
// </srcblock> 
//
// Example 2:  X and Y are complex arrays of dimension (0:128, 0:255).
// The first 128 elements of each column contain data.  For performance
// reasons, the extra element forces the leading dimension to be an odd
// number.  Take the two-dimensional FFT of X and store it in Y.
// Initialize the TABLE array, as in example 1.
//
// <srcblock> 
//       COMPLEX X(0:128, 0:255)
//       COMPLEX Y(0:128, 0:255)
//       REAL     TABLE((30 + 256) + (30 + 512))
//       REAL     WORK(2*128*256)
//       ...
//       CALL CCFFT2D(0, 128, 256, 1.0, X, 129, Y, 129, TABLE, WORK, 0)
//       CALL CCFFT2D(1, 128, 256, 1.0, X, 129, Y, 129, TABLE, WORK, 0)
// </srcblock> 
//
// Example 3:  With X and Y as in example 2, take the inverse FFT of Y
// and store it back in X.  The scale factor 1/(128*256) is used.  Assume
// that the TABLE array is already initialized.
//
// <srcblock> 
//       CALL CCFFT2D(-1, 128, 256, 1.0/(128.0*256.0), Y, 129,
//      &  X, 129, TABLE, WORK, 0)
// </srcblock> 
//
// Example 4:  Perform the same computation as in example 2, but assume
// that the lower bound of each array is 1, rather than 0.  The
// subroutine calls are not changed.
//
// <srcblock> 
//       COMPLEX X(129, 256)
//       COMPLEX Y(129, 256)
//       ...
//       CALL CCFFT2D(0, 128, 256, 1.0, X, 129, Y, 129, TABLE, WORK, 0)
//       CALL CCFFT2D(1, 128, 256, 1.0, X, 129, Y, 129, TABLE, WORK, 0)
// </srcblock> 
//
// Example 5:  Perform the same computation as in example 4, but put the
// output back in array X to save storage space.  Assume that the TABLE
// array is already initialized.
//
// <srcblock> 
//       COMPLEX X(129, 256)
//       ...
//       CALL CCFFT2D(1, 128, 256, 1.0, X, 129, X, 129, TABLE, WORK, 0)
// </srcblock> 
// </example>
//
// Input parameters:
// <dl compact>
// <dt><b>isign</b>
// <dd>    Integer.
//         Specifies whether to initialize the table array or to do the
//         forward or inverse transform as follows:
//
//         If isign = 0, the routine initializes the table array and
//         returns.  In this case, the only arguments used or checked
//         are isign, n1, n2, table.
//
//         If isign = +1 or -1, the value of isign is the sign of the
//         exponent used in the FFT formula.
// <dt><b>n1</b>
// <dd>    Integer.
//         Transform size in the first dimension.  If n1 is not
//         positive, the routine returns without performing a
//         transform.
// <dt><b>n2</b>
// <dd>    Integer.
//         Transform size in the second dimension.  If n2 is not
//         positive, the routine returns without performing a
//         transform.
// <dt><b>scale</b>
// <dd>    Scale factor.
//         ccfft2d: real.
//         zzfft2d: double precision.
//         Each element of the output array is multiplied by scale
//         factor after taking the Fourier transform, as defined
//         previously.
// <dt><b>x</b>
// <dd>    Array of dimension (0:ldx-1, 0:n2-1).
//         ccfft2d: complex array.
//         zzfft2d: double complex array.
//         Input array of values to be transformed.
// <dt><b>ldx</b>
// <dd>    Integer.
//         The number of rows in the x array, as it was declared in the
//         calling program (the leading dimension of x).  ldx >=
//         MAX(n1, 1).
// <dt><b>ldy</b>
// <dd>    Integer.
//
//         The number of rows in the y array, as it was declared in the
//         calling program (the leading dimension of y).  ldy >=
//         MAX(n1, 1).
// <dt><b>isys</b>
// <dd>    Algorithm used; value dependent on hardware system.  Currently, no
//         special options are supported; therefore, you must always specify
//         an isys argument as constant 0.  
// </dl>
// Output parameters:
// <dl compact>
// <dt><b>y</b>
// <dd>    Array of dimension (0:ldy-1, 0:n2-1).
//         ccfft2d: complex array.
//         zzfft2d: double complex array.
//         Output array of transformed values.  The output array may be
//         the same as the input array, in which case, the transform is
//         done in place (the input array is overwritten with the
//         transformed values).  In this case, it is necessary that
//         ldx = ldy.
// <dt><b>table</b>
// <dd>    Real array; dimension (30+ 2 * n1) + (30 + 2 * n2).
//
//         Table of factors and trigonometric functions.
//
//         If isign = 0, the routine initializes table (table is output
//         only).
//
//         If isign = +1 or -1, the values in table are assumed to be
//         initialized already by a prior call with isign = 0 (table is
//         input only).
// <dt><b>work</b>
// <dd>    Real array; dimension 2 * (n1*n2).
//
//         Work array.  This is a scratch array used for intermediate
//         calculations.  Its address space must be different from that
//         of the input and output arrays.
// </dl>
// <group>
static void ccfft2d(Int isign, Int n1, Int n2, Float scale, Complex*
		    x, Int ldx, Complex* y, Int ldy, Float* table,
		    Float* work, Int isys); 
static void zzfft2d(Int isign, Int n1, Int n2, Double scale, DComplex*
		    x, Int ldx, DComplex* y, Int ldy, Double* table,
		    Double* work, Int isys);
// </group>
 
// <src>scfft2d/dzfft2d</src> computes the two-dimensional Fast Fourier
// Transform (FFT) of the real matrix x, and it stores the results in the
// complex matrix y.  <src>csfft2d/zdfft2d</src> computes the corresponding
// inverse transform.
//
// In FFT applications, it is customary to use zero-based subscripts; the
// formulas are simpler that way.  First the function of <src>scfft2d</src> is
// described.  Suppose the arrays are dimensioned as follows:
//
// <srcblock>
//      REAL    X(0:ldx-1, 0:n2-1)
//      COMPLEX Y(0:ldy-1, 0:n2-1)
//
// where ldx >= n1 ldy >= (n1/2) + 1.
// </srcblock>
//
// <src>scfft2d</src> computes the formula:
//
// <srcblock>
//                         n2-1 n1-1
//     Y(k1, k2) = scale * Sum  Sum [ X(j1, j2)*w1**(j1*k1)*w2**(j2*k2) ]
//                         j2=0 j1=0
//
//     for k1 = 0, ..., n1/2 + 1
//         k2 = 0, ..., n2-1
//
//     where:
//         w1 = exp(isign*2*pi*i/n1)
//         w2 = exp(isign*2*pi*i/n2)
//         i  = + sqrt(-1)
//         pi = 3.14159...,
//         isign = +1 or -1
// </srcblock>
//
// Different authors use different conventions for which of the
// transforms, isign = +1 or isign = -1, is the forward or inverse
// transform, and what the scale factor should be in either case.  You
// can make these routines compute any of the various possible
// definitions, however, by choosing the appropriate values for isign and
// scale.
//
// The relevant fact from FFT theory is this:  If you take the FFT with
// any particular values of isign and scale, the mathematical inverse
// function is computed by taking the FFT with -isign and 1/(n1 * n2 *
// scale).  In particular, if you use isign = +1 and scale = 1.0 for the
// forward FFT, you can compute the inverse FFT by using isign = -1 and
// scale = 1.0/(n1 . n2).
//
// <src>scfft2d</src> is very similar in function to <src>ccfft2d</src>, but
// it takes the real-to-complex transform in the first dimension, followed by
// the complex-to-complex transform in the second dimension.
//
// <src>csfft2d</src> does the reverse.  It takes the complex-to-complex FFT
// in the second dimension, followed by the complex-to-real FFT in the first
// dimension.
//
// See the <src>scfft</src> man page for more information about real-to-complex
// and complex-to-real FFTs.  The two-dimensional analog of the conjugate
// formula is as follows:
//
// <srcblock>
//      Y       = conjg Y
//       k , k            n1 - k , n2 - k
//        1   2                 1        2
//
//      for n1/2 <  k  <= n1 - 1
//                   1
//
//         0 <= k  <= n2 - 1
//               2
// where the notation conjg(z) represents the complex conjugate of z.
// </srcblock>
//
// Thus, you have to compute only (slightly more than) half of the output
// values, namely:
//
// <srcblock>
//      Y       for 0 <= k  <= n1/2    0 <= k  <= n2 - 1
//       k , k            1                  2
//        1   2
// </srcblock>
//
// <h3>Algorithm</h3>
// <src>scfft2d</src> uses a routine similar to <src>scfftm</src> to do a
// real-to-complex FFT on the columns, then uses a routine similar to
// <src>ccfftm</src> to do a complex-to-complex FFT on the rows.
//
// <src>csfft2d</src> uses a routine similar to <src>ccfftm</src> to do a
// complex-to-complex FFT on the rows, then uses a routine similar to
// <src>csfftm</src> to do a complex-to-real FFT on the columns.
//
// <h3>Table Initialization</h3>
// The table array stores factors of n1 and n2, and trigonometric tables
// that are used in calculation of the FFT.  table must be initialized by
// calling the routine with isign = 0.  table does not have to be
// reinitialized if the values of the problem sizes, n1 and n2, do not
// change.
//
// <h3>Dimensions</h3>
// In the preceding description, it is assumed that array subscripts were
// zero-based, as is customary in FFT applications.  Thus, the input and
// output arrays are declared:
//
// <srcblock>
//      REAL    X(0:ldx-1, 0:n2-1)
//      COMPLEX Y(0:ldy-1, 0:n2-1)
// </srcblock>
//
// No change is made in the calling sequence, however, if you prefer to
// use the more customary Fortran style with subscripts starting at 1.
// The same values of ldx and ldy would be passed to the subroutine even
// if the input and output arrays were dimensioned as follows:
//
// <srcblock>
//      REAL    X(ldx, n2)
//      COMPLEX Y(ldy, n2)
// </srcblock>
//
// <example>
// The following examples are for Origin series only.
//
// Example 1:  Initialize the TABLE array in preparation for doing a
// two-dimensional FFT of size 128 by 256.  In this case, only the isign,
// n1, n2, and table arguments are used; you can use dummy arguments or
// zeros for other arguments.
//
// <srcblock>
//       REAL TABLE ((15 + 128) + 2(15 + 256))
//       CALL SCFFT2D (0, 128, 256, 0.0, DUMMY, 1, DUMMY, 1,
//      &  TABLE, DUMMY, 0)
// </srcblock>
//
// Example 2:  X is a real array of size (0:128, 0: 255), and Y is a
// complex array of dimension (0:64, 0:255).  The first 128 elements of
// each column of X contain data; for performance reasons, the extra
// element forces the leading dimension to be an odd number.  Take the
// two-dimensional FFT of X and store it in Y.  Initialize the TABLE
// array, as in example 1.
//
// <srcblock>
//       REAL    X(0:128, 0:255)
//       COMPLEX Y(0:64, 0:255)
//       REAL    TABLE ((15 + 128) + 2(15 + 256))
//       REAL    WORK(128*256)
//       ...
//       CALL SCFFT2D(0, 128, 256, 1.0, X, 129, Y, 65, TABLE, WORK, 0)
//       CALL SCFFT2D(1, 128, 256, 1.0, X, 129, Y, 65, TABLE, WORK, 0)
// </srcblock>
//
// Example 3:  With X and Y as in example 2, take the inverse FFT of Y
// and store it back in X.  The scale factor 1/(128*256) is used.  Assume
// that the TABLE array is initialized already.
//
// <srcblock>
//       CALL CSFFT2D(-1, 128, 256, 1.0/(128.0*256.0), Y, 65,
//      &  X, 130, TABLE, WORK, 0)
// </srcblock>
//
// Example 4:  Perform the same computation as in example 2, but assume
// that the lower bound of each array is 1, rather than 0.  No change is
// needed in the subroutine calls.
//
// <srcblock>
//       REAL    X(129, 256)
//       COMPLEX Y(65, 256)
//       ...
//       CALL SCFFT2D(0, 128, 256, 1.0, X, 129, Y, 65, TABLE, WORK, 0)
//       CALL SCFFT2D(1, 128, 256, 1.0, X, 129, Y, 65, TABLE, WORK, 0)
// </srcblock>
//
// Example 5:  Perform the same computation as in example 4, but
// equivalence the input and output arrays to save storage space.  In
// this case, a row must be added to X, because it is equivalenced to a
// complex array.  Assume that TABLE is already initialized.
//
// <srcblock>
//       REAL    X(130, 256)
//       COMPLEX Y(65, 256)
//       EQUIVALENCE ( X(1, 1), Y(1, 1) )
//       ...
//       CALL SCFFT2D(1, 128, 256, 1.0, X, 130, Y, 65, TABLE, WORK, 0)
// </srcblock>
// </example>
//
// Input parameters:
// <dl compact>
// <dt><b>isign</b>
// <dd>    Integer.
//         Specifies whether to initialize the table array or to do the
//         forward or inverse Fourier transform, as follows:
//
//         If isign = 0, the routine initializes the table array and
//         returns.  In this case, the only arguments used or checked
//         are isign, n, and table.
//
//         If isign = +1 or -1, the value of isign is the sign of the
//         exponent used in the FFT formula.
// <dt><b>n1</b>
// <dd>    Integer.
//         Transform size in the first dimension.  If n1 is not
//         positive, <src>scfft2d</src> returns without calculating a
//         transform.
// <dt><b>n2</b>
// <dd>    Integer.
//         Transform size in the second dimension.  If n2 is not
//         positive, <src>scfft2d</src> returns without calculating a
//         transform.
// <dt><b>scale</b>
// <dd>    Scale factor.
//         <src>scfft2d</src>: real. 
//         <src>dzfft2d</src>: double precision.
//         <src>csfft2d</src>: real.
//         <src>zdfft2d</src>: double precision.
//         Each element of the output array is multiplied by scale
//         factor after taking the Fourier transform, as defined
//         previously.
// <dt><b>x</b>
// <dd>    Array of dimension (0:ldx-1, 0:n2-1).
//         <src>scfft2d</src>: real array.
//         <src>dzfft2d</src>: double precision array.
//         <src>csfft2d</src>: complex array.
//         <src>zdfft2d</src>: double complex array.
//
//         Array of values to be transformed.
// <dt><b>ldx</b>
// <dd>    Integer.
//         The number of rows in the x array, as it was declared in the
//         calling program.  That is, the leading dimension of x.
//         <src>scfft2d, dzfft2d</src>:  ldx >= MAX(n1, 1).
//         <src>csfft2d, zdfft2d</src>:  ldx >= MAX(n1/2 + 1, 1).
// <dt><b>ldy</b>
// <dd>    Integer.
//
//         The number of rows in the y array, as it was declared in the
//         calling program (the leading dimension of y).
//
//         <src>scfft2d, dzfft2d</src>:  ldy >= MAX(n1/2 + 1, 1).
//         <src>csfft2d, zdfft2d</src>:  ldy >= MAX(n1 + 2, 1).
//
//         In the complex-to-real routine, two extra elements are in
//         the first dimension (ldy >= n1 + 2, rather than just ldy >=
//         n1).  These elements are needed for intermediate storage
//         during the computation.  On exit, their value is undefined.
// <dt><b>isys</b>
// <dd>    Integer array of dimension (0:isys(0)).
//         The first element of the array specifies how many more
//         elements are in the array.  Use isys to specify certain
//         processor-specific parameters or options.
//
//         If isys(0) = 0, the default values of such parameters are
//         used.  In this case, you can specify the argument value as
//         the scalar integer constant 0.
//
//         If isys(0) > 0, isys(0) gives the upper bound of the isys
//         array.  Therefore, if il = isys(0), user-specified
//         parameters are expected in isys(1) through isys(il).
// <dt><b>isys</b>
// <dd>    Algorithm used; value dependent on hardware system.  Currently, no
//         special options are supported; therefore, you must always specify
//         an isys argument as constant 0.
// </dl>
// Output parameters:
// <dl compact>
// <dt><b>y</b>
// <dd>    <src>scfft2d</src>: complex array.
//         <src>dzfft2d</src>: double complex array.
//         <src>csfft2d</src>: real array.
//         <src>zdfft2d</src>: double precision array.
//
//         Output array of transformed values.  The output array can be
//         the same as the input array, in which case, the transform is
//         done in place and the input array is overwritten with the
//         transformed values.  In this case, it is necessary that the
//         following equalities hold:
//
//         <src>scfft2d, dzfft2d</src>:  ldx = 2 * ldy.
//         <src>csfft2d, zdfft2d</src>:  ldy = 2 * ldx.
// <dt><b>table</b>
// <dd>    Real array; dimension (15 + n1) + 2(15 + n2).
//
//         Table of factors and trigonometric functions.
//
//         If isign = 0, the routine initializes table (table is output
//         only).
//
//         If isign = +1 or -1, the values in table are assumed to be
//         initialized already by a prior call with isign = 0 (table is
//         input only).
// <dt><b>work</b>
// <dd>    Real array; dimension (n1 * n2).
//
//         Work array.  This is a scratch array used for intermediate
//         calculations.  Its address space must be different from that
//         of the input and output arrays.
// </dl>
// <group>
static void scfft2d(Int isign, Int n1, Int n2, Float scale, Float*
		    x, Int ldx, Complex* y, Int ldy, Float* table,
		    Float* work, Int isys); 
static void dzfft2d(Int isign, Int n1, Int n2, Double scale, Double*
		    x, Int ldx, DComplex* y, Int ldy, Double* table,
		    Double* work, Int isys); 
static void csfft2d(Int isign, Int n1, Int n2, Float scale, Complex*
		    x, Int ldx, Float* y, Int ldy, Float* table,
		    Float* work, Int isys); 
static void zdfft2d(Int isign, Int n1, Int n2, Double scale, DComplex*
		    x, Int ldx, Double* y, Int ldy, Double* table,
		    Double* work, Int isys); 
// </group>

// These routines compute the three-dimensional complex FFT of the
// complex matrix X, and store the results in the complex matrix Y.
//
// In FFT applications, it is customary to use zero-based subscripts; the
// formulas are simpler that way.  So suppose the arrays are dimensioned
// as follows:
//
// <srcblock>
//      COMPLEX X(0:n1-1, 0:n2-1, 0:n3-1)
//      COMPLEX Y(0:n1-1, 0:n2-1, 0:n3-1)
// </srcblock>
//
// These routines compute the formula:
//
// <srcblock>
//    Y(k1,k2,k3) =
//        n1-1 n2-1 n3-1
//    scale * Sum  Sum  Sum [X(j1,j2,j3)*w1**(j1*k1)*w2**(j2*k2)*w3**(j3*k3)]
//        j1=0 j2=0 j3=0
//
//    for k1 = 0, ..., n1 - 1,
//    k2 = 0, ..., n2 - 1,
//    k3 = 0, ..., n3 - 1,
//
//    where:
//    w1 = exp(isign*2*pi*i/n1),
//    w2 = exp(isign*2*pi*i/n2),
//    w3 = exp(isign*2*pi*i/n3),
//    i  = + sqrt(-1)
//    pi = 3.14159...
//    isign = +1 or -1
// </srcblock>
//
// Different authors use different conventions for which of the
// transforms, isign = +1 or isign = -1, is the forward or inverse
// transform, and what the scale factor should be in either case.  You
// can make this routine compute any of the various possible definitions,
// however, by choosing the appropriate values for isign and scale.
//
// The relevant fact from FFT theory is this:  If you take the FFT with
// any particular values of isign and scale, the mathematical inverse
// function is computed by taking the FFT with -isign and 1/(n1 * n2 * n3
// * scale).  In particular, if you use isign = +1 and scale = 1.0 for
// the forward FFT, you can compute the inverse FFT by using isign = -1
// and scale = 1/(n1 . n2 . n3).
//
// <example>
// The following examples are for Origin series only.
//
// Example 1:  Initialize the TABLE array in preparation for doing a
// three-dimensional FFT of size 128 by 128 by 128.  In this case, only
// the isign, n1, n2, n3, and table arguments are used; you can use dummy
// arguments or zeros for other arguments.
//
// <srcblock>
//       REAL TABLE ((30 + 256) + (30 + 256) + (30 + 256))
//       CALL CCFFT3D (0, 128, 128, 128, 0.0, DUMMY, 1, 1, DUMMY, 1, 1,
//      &  TABLE, DUMMY, 0)
// </srcblock>
//
// Example 2:  X and Y are complex arrays of dimension (0:128, 0:128,
// 0:128).  The first 128 elements of each dimension contain data; for
// performance reasons, the extra element forces the leading dimensions
// to be odd numbers.  Take the three-dimensional FFT of X and store it
// in Y.  Initialize the TABLE array, as in example 1.
//
// <srcblock>
//       COMPLEX X(0:128, 0:128, 0:128)
//       COMPLEX Y(0:128, 0:128, 0:128)
//       REAL TABLE ((30+256) + (30 + 256) + (30 + 256))
//       REAL     WORK 2(128*128*128)
//       ...
//       CALL CCFFT3D(0, 128, 128, 128, 1.0, DUMMY, 1, 1,
//     &    DUMMY, 1, 1, TABLE, WORK, 0)
//       CALL CCFFT3D(1, 128, 128, 128, 1.0, X, 129, 129,
//     &    Y, 129, 129, TABLE, WORK, 0)
// </srcblock>
//
// Example 3:  With X and Y as in example 2, take the inverse FFT of Y
// and store it back in X.  The scale factor 1.0/(128.0**3) is used.
// Assume that the TABLE array is already initialized.
//
// <srcblock>
//       CALL CCFFT3D(-1, 128, 128, 128, 1.0/(128.0**3), Y, 129, 129,
//      &  X, 129, 129, TABLE, WORK, 0)
// </srcblock>
//
// Example 4:  Perform the same computation as in example 2, but assume
// that the lower bound of each array is 1, rather than 0.  The
// subroutine calls do not change.
//
// <srcblock>
//       COMPLEX X(129, 129, 129)
//       COMPLEX Y(129, 129, 129)
//       ...
//       CALL CCFFT3D(0, 128, 128, 128, 1.0, DUMMY, 1, 1,
//      &    DUMMY, 1, 1, TABLE, WORK, 0)
//       CALL CCFFT3D(1, 128, 128, 128, 1.0, X, 129, 129,
//      &    Y, 129, 129, TABLE, WORK, 0)
// </srcblock>
//
// Example 5:  Perform the same computation as in example 4, but put the
// output back in the array X to save storage space.  Assume that the
// TABLE array is already initialized.
//
// <srcblock>
//       COMPLEX X(129, 129, 129)
//       ...
//       CALL CCFFT3D(1, 128, 128, 128, 1.0, X, 129, 129,
//      &    X, 129, 129, TABLE, WORK, 0)
// </srcblock>
// </example>
//
// Input parameters:
// <dl compact>
// <dt><b>isign</b>
// <dd>    Integer.
//         Specifies whether to initialize the table array or to do the
//         forward or inverse Fourier transform, as follows:
//
//         If isign = 0, the routine initializes the table array and
//         returns.  In this case, the only arguments used or checked
//         are isign, n1, n2, n3, and table.
//
//         If isign = +1 or -1, the value of isign is the sign of the
//         exponent used in the FFT formula.
//
// <dt><b>n1</b>
// <dd>    Integer.
//         Transform size in the first dimension.  If n1 is not
//         positive, the routine returns without computing a transform.
//
// <dt><b>n2</b>
// <dd>    Integer.
//         Transform size in the second dimension.  If n2 is not
//         positive, the routine returns without computing a transform.
//
// <dt><b>n3</b>
// <dd>    Integer.
//         Transform size in the third dimension.  If n3 is not
//         positive, the routine returns without computing a transform.
//
// <dt><b>scale</b>
// <dd>    Scale factor.
//         <src>ccfft3d</src>: real.
//         <src>zzfft3d</src>: double precision.
//
//         Each element of the output array is multiplied by scale
//         after taking the Fourier transform, as defined previously.
//
// <dt><b>x</b>
// <dd>    Array of dimension (0:ldx-1, 0:ldx2-1, 0:n3-1).
//         <src>ccfft3d</src>: complex array.
//         <src>zzfft3d</src>: double complex array.
//
//         Input array of values to be transformed.
//
// <dt><b>ldx</b>
// <dd>    Integer.
//         The first dimension of x, as it was declared in the calling
//         program (the leading dimension of x).  ldx >= MAX(n1, 1).
//
// <dt><b>ldx2</b>
// <dd>    Integer.
//         The second dimension of x, as it was declared in the calling
//         program.  ldx2 >= MAX(n2, 1).
//
// <dt><b>ldy</b>
// <dd>    Integer.
//         The first dimension of y, as it was declared in the calling
//         program (the leading dimension of y).  ldy >= MAX(n1, 1).
//
// <dt><b>ldy2</b>
// <dd>    Integer.
//         The second dimension of y, as it was declared in the calling
//         program.  ldy2 >= MAX(n2, 1).
//
// <dt><b>isys</b>
// <dd>    Algorithm used; value dependent on hardware system.  Currently, no
//         special options are supported; therefore, you must always specify
//         an isys argument as constant 0.
//
//         isys = 0 or 1 depending on the amount of workspace the user
//         can provide to the routine.
// </dl>
// Output parameters:
// <dl compact>
// <dt><b>y</b>
// <dd>    Array of dimension (0:ldy-1, 0:ldy2-1, 0:n3-1).
//         <src>ccfft3d</src>: complex array.
//         <src>zzfft3d</src>: double complex array.
//
//         Output array of transformed values.  The output array may be
//         the same as the input array, in which case, the transform is
//         done in place; that is, the input array is overwritten with
//         the transformed values.  In this case, it is necessary that
//         ldx = ldy, and ldx2 = ldy2.
//
// <dt><b>table</b>
// <dd>    Real array; dimension 30 + 2 * n1) + (30 + 2 * n2) + (30 + 2 * n3).
//
//         Table of factors and trigonometric functions.  If isign = 0,
//         the routine initializes table (table is output only).  If
//         isign = +1 or -1, the values in table are assumed to be
//         initialized already by a prior call with isign = 0 (table is
//         input only).
//
// <dt><b>work</b>
// <dd>    Real array; dimension (n1 * n2 * n3).
//
//         Work array.  This is a scratch array used for intermediate
//         calculations.  Its address space must be different from that
//         of the input and output arrays.
//
// </dl>
// <group>
static void ccfft3d(Int isign, Int n1, Int n2, Int n3, Float scale,
		    Complex* x, Int ldx, Int ldx2, Complex* y, Int ldy,
		    Int ldy2, Float* table, Float* work, Int isys);
static void zzfft3d(Int isign, Int n1, Int n2, Int n3, Double scale,
		    DComplex* x, Int ldx, Int ldx2, DComplex* y, Int
		    ldy, Int ldy2, Double* table, Double* work, Int
		    isys); 
// </group>

// These are C++ wrapper functions for the 3D real-to-complex and
// complex-to-real transform routines in the SGI/Cray Scientific Library
// (SCSL). The purpose of these definitions is to overload the functions so
// that C++ users can access the functions in SCSL with identical function
// names.
//
// <note role=warning> 
// Currently, the SCSL is available only on SGI machines.
// </note>
//
// <src>scfft3d/dzfft3d</src> computes the three-dimensional Fast Fourier
// Transform (FFT) of the real matrix X, and it stores the results in the
// complex matrix Y.  <src>csfft3d/zdfft3d</src> computes the corresponding
// inverse transform.
//
// In FFT applications, it is customary to use zero-based subscripts; the
// formulas are simpler that way.  First, the function of <src>SCFFT3D</src> is
// described.  Suppose the arrays are dimensioned as follows:
//
// <srcblock>
//      REAL    X(0:ldx-1, 0:ldx2-1, 0:n3-1)
//      COMPLEX Y(0:ldy-1, 0:ldy2-1, 0:n3-1)
// </srcblock>
//
// <src>scfft3d</src> computes the formula:
//
// <srcblock>
//    Y(k1,k2,k3) =
//        n1-1 n2-1 n3-1
//    scale * Sum  Sum  Sum [X(j1,j2,j3)*w1**(j1*k1)*w2**(j2*k2)*w3**(j3*k3)]
//        j1=0 j2=0 j3=0
//
//    for k1 = 0, ..., n1/2,
//        k2 = 0, ..., n2 - 1,
//        k3 = 0, ..., n3 - 1,
//
//    where:
//        w1 = exp(isign*2*pi*i/n1),
//        w2 = exp(isign*2*pi*i/n2),
//        w3 = exp(isign*2*pi*i/n3),
//        i = + sqrt(-1)
//        pi = 3.14159...
//        isign = +1 or -1
// </srcblock>
//
// Different authors use different conventions for which of the
// transforms, isign = +1 or isign = -1, is the forward or inverse
// transform, and what the scale factor should be in either case.  You
// can make these routines compute any of the various possible
// definitions, however, by choosing the appropriate values for isign and
// scale.
//
// The relevant fact from FFT theory is this:  If you take the FFT with
// any particular values of isign and scale, the mathematical inverse
// function is computed by taking the FFT with -isign and 1/(n1 * n2 * n3
// * scale).  In particular, if you use isign = +1 and scale = 1.0 for
// the forward FFT, you can compute the inverse FFT by isign = -1 and
//
// <srcblock>
//      scale = 1.0/(n1*n2*n3).
// </srcblock>
//
// <src>scfft3d</src> is very similar in function to <src>ccfft3d</src>, but
// it takes the real-to-complex transform in the first dimension, followed by
// the complex-to-complex transform in the second and third dimensions.
//
// <src>csfft3d</src> does the reverse.  It takes the complex-to-complex FFT
// in the third and second dimensions, followed by the complex-to-real FFT in
// the first dimension.
//
// See the <src>scfftm</src> man page for more information about
// real-to-complex and complex-to-real FFTs.  The three dimensional analog of
// the conjugate formula is as follows:
//
// <srcblock>
//      Y         = conjg Y
//       k ,k ,k            n1 - k , n2 - k , n3 - k
//        1  2  3                 1        2        3
//
//      for  n1/2 <  k  <= n1 - 1
//                    1
//
//           0 <= k  <= n2 - 1
//                 2
//
//           0 <= k  <= n3 - 1
//                 3
// where the notation conjg(z) represents the complex conjugate of z.
// </srcblock>
//
// Thus, you have to compute only (slightly more than) half out the
// output values, namely:
//
// <srcblock>
//      Y
//       k ,k ,k
//        1  2  3
//
//      for  0 <= k  <= n1/2
//                 1
//
//           0 <= k  <= n2 - 1
//                 2
//
//           0 <= k  <= n3 - 1
// </srcblock>
//
// <h3>Algorithm</h3>
// <src>scfft3d</src> uses a routine similar to <src>scfftm</src> to do
// multiple FFTs first on all columns of the input matrix, then uses a routine
// similar to <src>ccfftm</src> on all rows of the result, and then on all
// planes of that result.  See <src>scfftm</src> and <src>ccfftm</src> for
// more information about the algorithms used.
//
// </example>
// The following examples are for Origin series only.
//
// Example 1:  Initialize the TABLE array in preparation for doing a
// three-dimensional FFT of size 128 by 128 by 128.  In this case only
// the isign, n1, n2, n3, and table arguments are used; you can use dummy
// arguments or zeros for other arguments.
//
// <srcblock>
//       REAL TABLE ((15 + 128) + 2(15+128) + 2( 15 + 128))
//       CALL SCFFT3D (0, 128, 128, 128, 0.0, DUMMY, 1, 1, DUMMY, 1, 1,
//      &  TABLE, DUMMY, 0)
// </srcblock>
//
// Example 2:  X is a real array of size (0:128, 0:128, 0:128).  The
// first 128 elements of each dimension contain data; for performance
// reasons, the extra element forces the leading dimensions to be odd
// numbers.  Y is a complex array of dimension (0:64, 0:128, 0:128).
// Take the three-dimensional FFT of X and store it in Y.  Initialize the
// TABLE array, as in example 1.
//
// <srcblock>
//       REAL    X(0:128, 0:128, 0:128)
//       COMPLEX Y(0:64,  0:128, 0:128)
//       REAL TABLE ((15+128) + 2(15 + 128) + 2(15 + 128))
//       REAL    WORK(128*128*128)
//       ...
//       CALL SCFFT3D(0, 128, 128, 128, 1.0, X, 129, 129,
//      &    Y, 65, 129, TABLE, WORK, 0)
//       CALL SCFFT3D(1, 128, 128, 128, 1.0, X, 129, 129,
//      &    Y, 65, 129, TABLE, WORK, 0)
// </srcblock>
//
// Example 3:  With X and Y as in example 2, take the inverse FFT of Y
// and store it back in X.  The scale factor 1/(128**3) is used.  Assume
// that the TABLE array is initialized already.
//
// <srcblock>
//       CALL CSFFT3D(-1, 128, 128, 128, 1.0/128.0**3, Y, 65, 129,
//      &    X, 130, 129, TABLE, WORK, 0)
// </srcblock>
//
// Example 4:  Perform the same computation as in example 2, but assume
// that the lower bound of each array is 1, rather than 0.  No change is
// made in the subroutine calls.
//
// <srcblock>
//       REAL    X(129, 129, 129)
//       COMPLEX Y(65, 129, 129)
//       REAL TABLE ((15+128) + 2(15 + 128) + 2(15 + 128))
//       REAL    WORK(128*128*128)
//       ...
//       CALL SCFFT3D(0, 128, 128, 128, 1.0, X, 129, 129,
//      &    Y, 65, 129, TABLE, WORK, 0)
//       CALL SCFFT3D(1, 128, 128, 128, 1.0, X, 129, 129,
//      &    X, 129, 129, TABLE, WORK, 0)
// </srcblock>
//
// Example 5:  Perform the same computation as in example 4, but
// equivalence the input and output arrays to save storage space.  Assume
// that the TABLE array is initialized already.
//
// <srcblock>
//       REAL    X(130, 129, 129)
//       COMPLEX Y(65, 129, 129)
//       EQUIVALENCE (X(1, 1, 1), Y(1, 1, 1))
//       ...
//       CALL SCFFT3D(1, 128, 128, 128, 1.0, X, 130, 129,
//      &    Y, 65, 129, TABLE, WORK, 0)
// </srcblock>
// </example>
//
// Input parameters:
// <dl compact>
// <dt><b>isign</b>
// <dd>    Integer.
//         Specifies whether to initialize the table array or to do the
//         forward or inverse Fourier transform, as follows:
//
//         If isign = 0, the routine initializes the table array and
//         returns.  In this case, the only arguments used or checked
//         are isign, n1, n2, n3, and table.
//
//         If isign = +1 or -1, the value of isign is the sign of the
//         exponent used in the FFT formula.
//
// <dt><b>n1</b>
// <dd>    Integer.
//         Transform size in the first dimension.  If n1 is not
//         positive, <src>scfft3d</src> returns without computing a transform.
//
// <dt><b>n2</b>
// <dd>    Integer.
//         Transform size in the second dimension.  If n2 is not
//         positive, <src>scfft3d</src> returns without computing a transform.
//
// <dt><b>n3</b>
// <dd>    Integer.
//         Transform size in the third dimension.  If n3 is not
//         positive, <src>scfft3d</src> returns without computing a transform.
//
// <dt><b>scale</b>
// <dd>    Scale factor.
//         <src>scfft3d</src>: real.
//         <src>dzfft3d</src>: double precision.
//         <src>csfft3d</src>: real.
//         <src>zdfft3d</src>: double precision.
//         Each element of the output array is multiplied by scale
//         after taking the Fourier transform, as defined previously.
//
// <dt><b>x</b>
// <dd>    Array of dimension (0:ldx-1, 0:ldx2-1, 0:n3-1).
//         <src>scfft3d</src>: real array.
//         <src>dzfft3d</src>: double precision array.
//         <src>csfft3d</src>: complex array.
//         <src>zdfft3d</src>: double complex array.
//
//         Array of values to be transformed.
//
// <dt><b>ldx</b>
// <dd>    Integer.
//         The first dimension of x, as it was declared in the calling
//         program (the leading dimension of x).
//
//         <src>scfft3d, dzfft3d</src>:  ldx >= MAX(n1, 1).
//         <src>csfft3d, zdfft3d</src>:  ldx >= MAX(n1/2 + 1, 1).
//
// <dt><b>ldx2</b>
// <dd>    Integer.
//         The second dimension of x, as it was declared in the calling
//         program.  ldx2 >= MAX(n2, 1).
//
// <dt><b>ldy</b>
// <dd>    Integer.
//         The first dimension of y, as it was declared in the calling
//         program; that is, the leading dimension of y.
//
//         <src>scfft3d, dzfft3d</src>:  ldy >= MAX(n1/2 + 1, 1).
//         <src>csfft3d, zdfft3d</src>:  ldy >= MAX(n1 + 2, 1).
//
//         In the complex-to-real routine, two extra elements are in
//         the first dimension (that is, ldy >= n1 + 2, rather than
//         just ldy >= n1).  These elements are needed for intermediate
//         storage during the computation.  On exit, their value is
//         undefined.
//
// <dt><b>ldy2</b>
// <dd>    Integer.
//         The second dimension of y, as it was declared in the calling
//         program.  ldy2 >= MAX(n2, 1).
//
// <dt><b>isys</b>
// <dd>    Algorithm used; value dependent on hardware system.  Currently, no
//         special options are supported; therefore, you must always specify
//         an isys argument as constant 0.
//
//         isys = 0 or 1 depending on the amount of workspace the user
//         can provide to the routine.
// </dl>
// Output parameters:
// <dl compact>
// <dt><b>y</b>
// <dd>    Array of dimension (0:ldy-1, 0:ldy2-1, 0:n3-1).
//         <src>scfft3d</src>: complex array.
//         <src>dzfft3d</src>: double complex array.
//         <src>csfft3d</src>: real array.
//         <src>zdfft3d</src>: double precision array.
//
//         Output array of transformed values.  The output array can be
//         the same as the input array, in which case, the transform is
//         done in place; that is, the input array is overwritten with
//         the transformed values.  In this case, it is necessary that
//         the following equalities hold:
//
//         <src>scfft3d, dzfft3d</src>:  ldx = 2 * ldy, and ldx2 = ldy2.
//         <src>csfft3d, zdfft3d</src>:  ldy = 2 * ldx, and ldx2 = ldy2.
//
// <dt><b>table</b>
// <dd>    Real array; dimension (15 + n1) + 2(15 + n2) + 2(15 + n3).
//
//         Table of factors and trigonometric functions.
//
//         This array must be initialized by a call to <src>scfft3d</src> or
//         <src>csfft3d</src> with isign = 0.
//
//         If isign = 0, table is initialized to contain trigonometric
//         tables needed to compute a three-dimensional FFT of size n1
//         by n2 by n3.  If isign = +1 or -1, the values in table are
//         assumed to be initialized already by a prior call with isign
//         = 0.
//
// <dt><b>work</b>
// <dd>    Real array; dimension n1 * n2 * n3.
//
//         Work array.  This is a scratch array used for intermediate
//         calculations.  Its address space must be different from that
//         of the input and output arrays.
//
// </dl>
// <group>
static void scfft3d(Int isign, Int n1, Int n2, Int n3, Float scale,
		    Float* x, Int ldx, Int ldx2, Complex* y, Int ldy,
		    Int ldy2, Float* table, Float* work, Int isys); 
static void dzfft3d(Int isign, Int n1, Int n2, Int n3, Double scale,
		    Double* x, Int ldx, Int ldx2, DComplex* y, Int
		    ldy, Int ldy2, Double* table, Double* work, Int
		    isys); 
static void csfft3d(Int isign, Int n1, Int n2, Int n3, Float scale,
		    Complex* x, Int ldx, Int ldx2, Float* y, Int ldy,
		    Int ldy2, Float* table, Float* work, Int isys); 
static void zdfft3d(Int isign, Int n1, Int n2, Int n3, Double scale,
		    DComplex* x, Int ldx, Int ldx2, Double* y, Int
		    ldy, Int ldy2, Double* table, Double* work, Int
		    isys); 
// </group>
};

} //# NAMESPACE CASACORE - END

#endif