This file is indexed.

/usr/include/coin/CoinFactorization.hpp is in coinor-libcoinutils-dev 2.9.15-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
/* $Id: CoinFactorization.hpp 1590 2013-04-10 16:48:33Z stefan $ */
// Copyright (C) 2002, International Business Machines
// Corporation and others.  All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).

/* 
   Authors
   
   John Forrest

 */
#ifndef CoinFactorization_H
#define CoinFactorization_H
//#define COIN_ONE_ETA_COPY 100

#include <iostream>
#include <string>
#include <cassert>
#include <cstdio>
#include <cmath>
#include "CoinTypes.hpp"
#include "CoinIndexedVector.hpp"

class CoinPackedMatrix;
/** This deals with Factorization and Updates

    This class started with a parallel simplex code I was writing in the
    mid 90's.  The need for parallelism led to many complications and
    I have simplified as much as I could to get back to this.

    I was aiming at problems where I might get speed-up so I was looking at dense
    problems or ones with structure.  This led to permuting input and output
    vectors and to increasing the number of rows each rank-one update.  This is 
    still in as a minor overhead.

    I have also put in handling for hyper-sparsity.  I have taken out
    all outer loop unrolling, dense matrix handling and most of the
    book-keeping for slacks.  Also I always use FTRAN approach to updating
    even if factorization fairly dense.  All these could improve performance.

    I blame some of the coding peculiarities on the history of the code
    but mostly it is just because I can't do elegant code (or useful
    comments).

    I am assuming that 32 bits is enough for number of rows or columns, but CoinBigIndex
    may be redefined to get 64 bits.
 */


class CoinFactorization {
   friend void CoinFactorizationUnitTest( const std::string & mpsDir );

public:

  /**@name Constructors and destructor and copy */
  //@{
  /// Default constructor
    CoinFactorization (  );
  /// Copy constructor 
  CoinFactorization ( const CoinFactorization &other);

  /// Destructor
   ~CoinFactorization (  );
  /// Delete all stuff (leaves as after CoinFactorization())
  void almostDestructor();
  /// Debug show object (shows one representation)
  void show_self (  ) const;
  /// Debug - save on file - 0 if no error
  int saveFactorization (const char * file  ) const;
  /** Debug - restore from file - 0 if no error on file.
      If factor true then factorizes as if called from ClpFactorization
  */
  int restoreFactorization (const char * file  , bool factor=false) ;
  /// Debug - sort so can compare
  void sort (  ) const;
  /// = copy
    CoinFactorization & operator = ( const CoinFactorization & other );
  //@}

  /**@name Do factorization */
  //@{
  /** When part of LP - given by basic variables.
  Actually does factorization.
  Arrays passed in have non negative value to say basic.
  If status is okay, basic variables have pivot row - this is only needed
  If status is singular, then basic variables have pivot row
  and ones thrown out have -1
  returns 0 -okay, -1 singular, -2 too many in basis, -99 memory */
  int factorize ( const CoinPackedMatrix & matrix, 
		  int rowIsBasic[], int columnIsBasic[] , 
		  double areaFactor = 0.0 );
  /** When given as triplets.
  Actually does factorization.  maximumL is guessed maximum size of L part of
  final factorization, maximumU of U part.  These are multiplied by
  areaFactor which can be computed by user or internally.  
  Arrays are copied in.  I could add flag to delete arrays to save a 
  bit of memory.
  If status okay, permutation has pivot rows - this is only needed
  If status is singular, then basic variables have pivot row
  and ones thrown out have -1
  returns 0 -okay, -1 singular, -99 memory */
  int factorize ( int numberRows,
		  int numberColumns,
		  CoinBigIndex numberElements,
		  CoinBigIndex maximumL,
		  CoinBigIndex maximumU,
		  const int indicesRow[],
		  const int indicesColumn[], const double elements[] ,
		  int permutation[],
		  double areaFactor = 0.0);
  /** Two part version for maximum flexibility
      This part creates arrays for user to fill.
      estimateNumberElements is safe estimate of number
      returns 0 -okay, -99 memory */
  int factorizePart1 ( int numberRows,
		       int numberColumns,
		       CoinBigIndex estimateNumberElements,
		       int * indicesRow[],
		       int * indicesColumn[],
		       CoinFactorizationDouble * elements[],
		  double areaFactor = 0.0);
  /** This is part two of factorization
      Arrays belong to factorization and were returned by part 1
      If status okay, permutation has pivot rows - this is only needed
      If status is singular, then basic variables have pivot row
      and ones thrown out have -1
      returns 0 -okay, -1 singular, -99 memory */
  int factorizePart2 (int permutation[],int exactNumberElements);
  /// Condition number - product of pivots after factorization
  double conditionNumber() const;
  
  //@}

  /**@name general stuff such as permutation or status */
  //@{ 
  /// Returns status
  inline int status (  ) const {
    return status_;
  }
  /// Sets status
  inline void setStatus (  int value)
  {  status_=value;  }
  /// Returns number of pivots since factorization
  inline int pivots (  ) const {
    return numberPivots_;
  }
  /// Sets number of pivots since factorization
  inline void setPivots (  int value ) 
  { numberPivots_=value; }
  /// Returns address of permute region
  inline int *permute (  ) const {
    return permute_.array();
  }
  /// Returns address of pivotColumn region (also used for permuting)
  inline int *pivotColumn (  ) const {
    return pivotColumn_.array();
  }
  /// Returns address of pivot region
  inline CoinFactorizationDouble *pivotRegion (  ) const {
    return pivotRegion_.array();
  }
  /// Returns address of permuteBack region
  inline int *permuteBack (  ) const {
    return permuteBack_.array();
  }
  /** Returns address of pivotColumnBack region (also used for permuting)
      Now uses firstCount to save memory allocation */
  inline int *pivotColumnBack (  ) const {
    //return firstCount_.array();
    return pivotColumnBack_.array();
  }
  /// Start of each row in L
  inline CoinBigIndex * startRowL() const
  { return startRowL_.array();}

  /// Start of each column in L
  inline CoinBigIndex * startColumnL() const
  { return startColumnL_.array();}

  /// Index of column in row for L
  inline int * indexColumnL() const
  { return indexColumnL_.array();}

  /// Row indices of L
  inline int * indexRowL() const
  { return indexRowL_.array();}

  /// Elements in L (row copy)
  inline CoinFactorizationDouble * elementByRowL() const
  { return elementByRowL_.array();}

  /// Number of Rows after iterating
  inline int numberRowsExtra (  ) const {
    return numberRowsExtra_;
  }
  /// Set number of Rows after factorization
  inline void setNumberRows(int value)
  { numberRows_ = value; }
  /// Number of Rows after factorization
  inline int numberRows (  ) const {
    return numberRows_;
  }
  /// Number in L
  inline CoinBigIndex numberL() const
  { return numberL_;}

  /// Base of L
  inline CoinBigIndex baseL() const
  { return baseL_;}
  /// Maximum of Rows after iterating
  inline int maximumRowsExtra (  ) const {
    return maximumRowsExtra_;
  }
  /// Total number of columns in factorization
  inline int numberColumns (  ) const {
    return numberColumns_;
  }
  /// Total number of elements in factorization
  inline int numberElements (  ) const {
    return totalElements_;
  }
  /// Length of FT vector
  inline int numberForrestTomlin (  ) const {
    return numberInColumn_.array()[numberColumnsExtra_];
  }
  /// Number of good columns in factorization
  inline int numberGoodColumns (  ) const {
    return numberGoodU_;
  }
  /// Whether larger areas needed
  inline double areaFactor (  ) const {
    return areaFactor_;
  }
  inline void areaFactor ( double value ) {
    areaFactor_=value;
  }
  /// Returns areaFactor but adjusted for dense
  double adjustedAreaFactor() const;
  /// Allows change of pivot accuracy check 1.0 == none >1.0 relaxed
  inline void relaxAccuracyCheck(double value)
  { relaxCheck_ = value;}
  inline double getAccuracyCheck() const
  { return relaxCheck_;}
  /// Level of detail of messages
  inline int messageLevel (  ) const {
    return messageLevel_ ;
  }
  void messageLevel (  int value );
  /// Maximum number of pivots between factorizations
  inline int maximumPivots (  ) const {
    return maximumPivots_ ;
  }
  void maximumPivots (  int value );

  /// Gets dense threshold
  inline int denseThreshold() const 
    { return denseThreshold_;}
  /// Sets dense threshold
  inline void setDenseThreshold(int value)
    { denseThreshold_ = value;}
  /// Pivot tolerance
  inline double pivotTolerance (  ) const {
    return pivotTolerance_ ;
  }
  void pivotTolerance (  double value );
  /// Zero tolerance
  inline double zeroTolerance (  ) const {
    return zeroTolerance_ ;
  }
  void zeroTolerance (  double value );
#ifndef COIN_FAST_CODE
  /// Whether slack value is +1 or -1
  inline double slackValue (  ) const {
    return slackValue_ ;
  }
  void slackValue (  double value );
#endif
  /// Returns maximum absolute value in factorization
  double maximumCoefficient() const;
  /// true if Forrest Tomlin update, false if PFI 
  inline bool forrestTomlin() const
  { return doForrestTomlin_;}
  inline void setForrestTomlin(bool value)
  { doForrestTomlin_=value;}
  /// True if FT update and space
  inline bool spaceForForrestTomlin() const
  {
    CoinBigIndex start = startColumnU_.array()[maximumColumnsExtra_];
    CoinBigIndex space = lengthAreaU_ - ( start + numberRowsExtra_ );
    return (space>=0)&&doForrestTomlin_;
  }
  //@}

  /**@name some simple stuff */
  //@{

  /// Returns number of dense rows
  inline int numberDense() const
  { return numberDense_;}

  /// Returns number in U area
  inline CoinBigIndex numberElementsU (  ) const {
    return lengthU_;
  }
  /// Setss number in U area
  inline void setNumberElementsU(CoinBigIndex value)
  { lengthU_ = value; }
  /// Returns length of U area
  inline CoinBigIndex lengthAreaU (  ) const {
    return lengthAreaU_;
  }
  /// Returns number in L area
  inline CoinBigIndex numberElementsL (  ) const {
    return lengthL_;
  }
  /// Returns length of L area
  inline CoinBigIndex lengthAreaL (  ) const {
    return lengthAreaL_;
  }
  /// Returns number in R area
  inline CoinBigIndex numberElementsR (  ) const {
    return lengthR_;
  }
  /// Number of compressions done
  inline CoinBigIndex numberCompressions() const
  { return numberCompressions_;}
  /// Number of entries in each row
  inline int * numberInRow() const
  { return numberInRow_.array();}
  /// Number of entries in each column
  inline int * numberInColumn() const
  { return numberInColumn_.array();}
  /// Elements of U
  inline CoinFactorizationDouble * elementU() const
  { return elementU_.array();}
  /// Row indices of U
  inline int * indexRowU() const
  { return indexRowU_.array();}
  /// Start of each column in U
  inline CoinBigIndex * startColumnU() const
  { return startColumnU_.array();}
  /// Maximum number of Columns after iterating
  inline int maximumColumnsExtra()
  { return maximumColumnsExtra_;}
  /** L to U bias
      0 - U bias, 1 - some U bias, 2 some L bias, 3 L bias
  */
  inline int biasLU() const
  { return biasLU_;}
  inline void setBiasLU(int value)
  { biasLU_=value;}
  /** Array persistence flag
      If 0 then as now (delete/new)
      1 then only do arrays if bigger needed
      2 as 1 but give a bit extra if bigger needed
  */
  inline int persistenceFlag() const
  { return persistenceFlag_;}
  void setPersistenceFlag(int value);
  //@}

  /**@name rank one updates which do exist */
  //@{

  /** Replaces one Column to basis,
   returns 0=OK, 1=Probably OK, 2=singular, 3=no room
      If checkBeforeModifying is true will do all accuracy checks
      before modifying factorization.  Whether to set this depends on
      speed considerations.  You could just do this on first iteration
      after factorization and thereafter re-factorize
   partial update already in U */
  int replaceColumn ( CoinIndexedVector * regionSparse,
		      int pivotRow,
		      double pivotCheck ,
		      bool checkBeforeModifying=false,
		      double acceptablePivot=1.0e-8);
  /** Combines BtranU and delete elements
      If deleted is NULL then delete elements
      otherwise store where elements are
  */
  void replaceColumnU ( CoinIndexedVector * regionSparse,
			CoinBigIndex * deleted,
			int internalPivotRow);
  //@}

  /**@name various uses of factorization (return code number elements) 
   which user may want to know about */
  //@{
  /** Updates one column (FTRAN) from regionSparse2
      Tries to do FT update
      number returned is negative if no room
      regionSparse starts as zero and is zero at end.
      Note - if regionSparse2 packed on input - will be packed on output
  */
  int updateColumnFT ( CoinIndexedVector * regionSparse,
		       CoinIndexedVector * regionSparse2);
  /** This version has same effect as above with FTUpdate==false
      so number returned is always >=0 */
  int updateColumn ( CoinIndexedVector * regionSparse,
		     CoinIndexedVector * regionSparse2,
		     bool noPermute=false) const;
  /** Updates one column (FTRAN) from region2
      Tries to do FT update
      number returned is negative if no room.
      Also updates region3
      region1 starts as zero and is zero at end */
  int updateTwoColumnsFT ( CoinIndexedVector * regionSparse1,
			   CoinIndexedVector * regionSparse2,
			   CoinIndexedVector * regionSparse3,
			   bool noPermuteRegion3=false) ;
  /** Updates one column (BTRAN) from regionSparse2
      regionSparse starts as zero and is zero at end 
      Note - if regionSparse2 packed on input - will be packed on output
  */
  int updateColumnTranspose ( CoinIndexedVector * regionSparse,
			      CoinIndexedVector * regionSparse2) const;
  /** makes a row copy of L for speed and to allow very sparse problems */
  void goSparse();
  /**  get sparse threshold */
  inline int sparseThreshold ( ) const
  { return sparseThreshold_;}
  /**  set sparse threshold */
  void sparseThreshold ( int value );
  //@}
  /// *** Below this user may not want to know about

  /**@name various uses of factorization (return code number elements) 
   which user may not want to know about (left over from my LP code) */
  //@{
  /// Get rid of all memory
  inline void clearArrays()
  { gutsOfDestructor();}
  //@}

  /**@name various updates - none of which have been written! */
  //@{

  /** Adds given elements to Basis and updates factorization,
      can increase size of basis. Returns rank */
  int add ( CoinBigIndex numberElements,
	       int indicesRow[],
	       int indicesColumn[], double elements[] );

  /** Adds one Column to basis,
      can increase size of basis. Returns rank */
  int addColumn ( CoinBigIndex numberElements,
		     int indicesRow[], double elements[] );

  /** Adds one Row to basis,
      can increase size of basis. Returns rank */
  int addRow ( CoinBigIndex numberElements,
		  int indicesColumn[], double elements[] );

  /// Deletes one Column from basis, returns rank
  int deleteColumn ( int Row );
  /// Deletes one Row from basis, returns rank
  int deleteRow ( int Row );

  /** Replaces one Row in basis,
      At present assumes just a singleton on row is in basis
      returns 0=OK, 1=Probably OK, 2=singular, 3 no space */
  int replaceRow ( int whichRow, int numberElements,
		      const int indicesColumn[], const double elements[] );
  /// Takes out all entries for given rows
  void emptyRows(int numberToEmpty, const int which[]);
  //@}
  /**@name used by ClpFactorization */
  /// See if worth going sparse
  void checkSparse();
  /// For statistics 
  inline bool collectStatistics() const
  { return collectStatistics_;}
  /// For statistics 
  inline void setCollectStatistics(bool onOff) const
  { collectStatistics_ = onOff;}
  /// The real work of constructors etc 0 just scalars, 1 bit normal 
  void gutsOfDestructor(int type=1);
  /// 1 bit - tolerances etc, 2 more, 4 dummy arrays
  void gutsOfInitialize(int type);
  void gutsOfCopy(const CoinFactorization &other);

  /// Reset all sparsity etc statistics
  void resetStatistics();


  //@}

  /**@name used by factorization */
  /// Gets space for a factorization, called by constructors
  void getAreas ( int numberRows,
		  int numberColumns,
		  CoinBigIndex maximumL,
		  CoinBigIndex maximumU );

  /** PreProcesses raw triplet data.
      state is 0 - triplets, 1 - some counts etc , 2 - .. */
  void preProcess ( int state,
		    int possibleDuplicates = -1 );
  /// Does most of factorization
  int factor (  );
protected:
  /** Does sparse phase of factorization
      return code is <0 error, 0= finished */
  int factorSparse (  );
  /** Does sparse phase of factorization (for smaller problems)
      return code is <0 error, 0= finished */
  int factorSparseSmall (  );
  /** Does sparse phase of factorization (for larger problems)
      return code is <0 error, 0= finished */
  int factorSparseLarge (  );
  /** Does dense phase of factorization
      return code is <0 error, 0= finished */
  int factorDense (  );

  /// Pivots when just one other row so faster?
  bool pivotOneOtherRow ( int pivotRow,
			  int pivotColumn );
  /// Does one pivot on Row Singleton in factorization
  bool pivotRowSingleton ( int pivotRow,
			   int pivotColumn );
  /// Does one pivot on Column Singleton in factorization
  bool pivotColumnSingleton ( int pivotRow,
			      int pivotColumn );

  /** Gets space for one Column with given length,
   may have to do compression  (returns True if successful),
   also moves existing vector,
   extraNeeded is over and above present */
  bool getColumnSpace ( int iColumn,
			int extraNeeded );

  /** Reorders U so contiguous and in order (if there is space)
      Returns true if it could */
  bool reorderU();
  /**  getColumnSpaceIterateR.  Gets space for one extra R element in Column
       may have to do compression  (returns true)
       also moves existing vector */
  bool getColumnSpaceIterateR ( int iColumn, double value,
			       int iRow);
  /**  getColumnSpaceIterate.  Gets space for one extra U element in Column
       may have to do compression  (returns true)
       also moves existing vector.
       Returns -1 if no memory or where element was put
       Used by replaceRow (turns off R version) */
  CoinBigIndex getColumnSpaceIterate ( int iColumn, double value,
			       int iRow);
  /** Gets space for one Row with given length,
  may have to do compression  (returns True if successful),
  also moves existing vector */
  bool getRowSpace ( int iRow, int extraNeeded );

  /** Gets space for one Row with given length while iterating,
  may have to do compression  (returns True if successful),
  also moves existing vector */
  bool getRowSpaceIterate ( int iRow,
			    int extraNeeded );
  /// Checks that row and column copies look OK
  void checkConsistency (  );
  /// Adds a link in chain of equal counts
  inline void addLink ( int index, int count ) {
    int *nextCount = nextCount_.array();
    int *firstCount = firstCount_.array();
    int *lastCount = lastCount_.array();
    int next = firstCount[count];
      lastCount[index] = -2 - count;
    if ( next < 0 ) {
      //first with that count
      firstCount[count] = index;
      nextCount[index] = -1;
    } else {
      firstCount[count] = index;
      nextCount[index] = next;
      lastCount[next] = index;
  }}
  /// Deletes a link in chain of equal counts
  inline void deleteLink ( int index ) {
    int *nextCount = nextCount_.array();
    int *firstCount = firstCount_.array();
    int *lastCount = lastCount_.array();
    int next = nextCount[index];
    int last = lastCount[index];
    if ( last >= 0 ) {
      nextCount[last] = next;
    } else {
      int count = -last - 2;

      firstCount[count] = next;
    }
    if ( next >= 0 ) {
      lastCount[next] = last;
    }
    nextCount[index] = -2;
    lastCount[index] = -2;
    return;
  }
  /// Separate out links with same row/column count
  void separateLinks(int count,bool rowsFirst);
  /// Cleans up at end of factorization
  void cleanup (  );

  /// Updates part of column (FTRANL)
  void updateColumnL ( CoinIndexedVector * region, int * indexIn ) const;
  /// Updates part of column (FTRANL) when densish
  void updateColumnLDensish ( CoinIndexedVector * region, int * indexIn ) const;
  /// Updates part of column (FTRANL) when sparse
  void updateColumnLSparse ( CoinIndexedVector * region, int * indexIn ) const;
  /// Updates part of column (FTRANL) when sparsish
  void updateColumnLSparsish ( CoinIndexedVector * region, int * indexIn ) const;

  /// Updates part of column (FTRANR) without FT update
  void updateColumnR ( CoinIndexedVector * region ) const;
  /** Updates part of column (FTRANR) with FT update.
      Also stores update after L and R */
  void updateColumnRFT ( CoinIndexedVector * region, int * indexIn );

  /// Updates part of column (FTRANU)
  void updateColumnU ( CoinIndexedVector * region, int * indexIn) const;

  /// Updates part of column (FTRANU) when sparse
  void updateColumnUSparse ( CoinIndexedVector * regionSparse, 
			     int * indexIn) const;
  /// Updates part of column (FTRANU) when sparsish
  void updateColumnUSparsish ( CoinIndexedVector * regionSparse, 
			       int * indexIn) const;
  /// Updates part of column (FTRANU)
  int updateColumnUDensish ( double * COIN_RESTRICT region, 
			     int * COIN_RESTRICT regionIndex) const;
  /// Updates part of 2 columns (FTRANU) real work
  void updateTwoColumnsUDensish (
				 int & numberNonZero1,
				 double * COIN_RESTRICT region1, 
				 int * COIN_RESTRICT index1,
				 int & numberNonZero2,
				 double * COIN_RESTRICT region2, 
				 int * COIN_RESTRICT index2) const;
  /// Updates part of column PFI (FTRAN) (after rest)
  void updateColumnPFI ( CoinIndexedVector * regionSparse) const; 
  /// Permutes back at end of updateColumn
  void permuteBack ( CoinIndexedVector * regionSparse, 
		     CoinIndexedVector * outVector) const;

  /// Updates part of column transpose PFI (BTRAN) (before rest)
  void updateColumnTransposePFI ( CoinIndexedVector * region) const;
  /** Updates part of column transpose (BTRANU),
      assumes index is sorted i.e. region is correct */
  void updateColumnTransposeU ( CoinIndexedVector * region,
				int smallestIndex) const;
  /** Updates part of column transpose (BTRANU) when sparsish,
      assumes index is sorted i.e. region is correct */
  void updateColumnTransposeUSparsish ( CoinIndexedVector * region,
					int smallestIndex) const;
  /** Updates part of column transpose (BTRANU) when densish,
      assumes index is sorted i.e. region is correct */
  void updateColumnTransposeUDensish ( CoinIndexedVector * region,
				       int smallestIndex) const;
  /** Updates part of column transpose (BTRANU) when sparse,
      assumes index is sorted i.e. region is correct */
  void updateColumnTransposeUSparse ( CoinIndexedVector * region) const;
  /** Updates part of column transpose (BTRANU) by column
      assumes index is sorted i.e. region is correct */
  void updateColumnTransposeUByColumn ( CoinIndexedVector * region,
					int smallestIndex) const;

  /// Updates part of column transpose (BTRANR)
  void updateColumnTransposeR ( CoinIndexedVector * region ) const;
  /// Updates part of column transpose (BTRANR) when dense
  void updateColumnTransposeRDensish ( CoinIndexedVector * region ) const;
  /// Updates part of column transpose (BTRANR) when sparse
  void updateColumnTransposeRSparse ( CoinIndexedVector * region ) const;

  /// Updates part of column transpose (BTRANL)
  void updateColumnTransposeL ( CoinIndexedVector * region ) const;
  /// Updates part of column transpose (BTRANL) when densish by column
  void updateColumnTransposeLDensish ( CoinIndexedVector * region ) const;
  /// Updates part of column transpose (BTRANL) when densish by row
  void updateColumnTransposeLByRow ( CoinIndexedVector * region ) const;
  /// Updates part of column transpose (BTRANL) when sparsish by row
  void updateColumnTransposeLSparsish ( CoinIndexedVector * region ) const;
  /// Updates part of column transpose (BTRANL) when sparse (by Row)
  void updateColumnTransposeLSparse ( CoinIndexedVector * region ) const;
public:
  /** Replaces one Column to basis for PFI
   returns 0=OK, 1=Probably OK, 2=singular, 3=no room.
   In this case region is not empty - it is incoming variable (updated)
  */
  int replaceColumnPFI ( CoinIndexedVector * regionSparse,
			 int pivotRow, double alpha);
protected:
  /** Returns accuracy status of replaceColumn
      returns 0=OK, 1=Probably OK, 2=singular */
  int checkPivot(double saveFromU, double oldPivot) const;
  /********************************* START LARGE TEMPLATE ********/
#ifdef INT_IS_8
#define COINFACTORIZATION_BITS_PER_INT 64
#define COINFACTORIZATION_SHIFT_PER_INT 6
#define COINFACTORIZATION_MASK_PER_INT 0x3f
#else
#define COINFACTORIZATION_BITS_PER_INT 32
#define COINFACTORIZATION_SHIFT_PER_INT 5
#define COINFACTORIZATION_MASK_PER_INT 0x1f
#endif
  template <class T>  inline bool
  pivot ( int pivotRow,
	  int pivotColumn,
	  CoinBigIndex pivotRowPosition,
	  CoinBigIndex pivotColumnPosition,
	  CoinFactorizationDouble work[],
	  unsigned int workArea2[],
	  int increment2,
	  T markRow[] ,
	  int largeInteger)
{
  int *indexColumnU = indexColumnU_.array();
  CoinBigIndex *startColumnU = startColumnU_.array();
  int *numberInColumn = numberInColumn_.array();
  CoinFactorizationDouble *elementU = elementU_.array();
  int *indexRowU = indexRowU_.array();
  CoinBigIndex *startRowU = startRowU_.array();
  int *numberInRow = numberInRow_.array();
  CoinFactorizationDouble *elementL = elementL_.array();
  int *indexRowL = indexRowL_.array();
  int *saveColumn = saveColumn_.array();
  int *nextRow = nextRow_.array();
  int *lastRow = lastRow_.array() ;

  //store pivot columns (so can easily compress)
  int numberInPivotRow = numberInRow[pivotRow] - 1;
  CoinBigIndex startColumn = startColumnU[pivotColumn];
  int numberInPivotColumn = numberInColumn[pivotColumn] - 1;
  CoinBigIndex endColumn = startColumn + numberInPivotColumn + 1;
  int put = 0;
  CoinBigIndex startRow = startRowU[pivotRow];
  CoinBigIndex endRow = startRow + numberInPivotRow + 1;

  if ( pivotColumnPosition < 0 ) {
    for ( pivotColumnPosition = startRow; pivotColumnPosition < endRow; pivotColumnPosition++ ) {
      int iColumn = indexColumnU[pivotColumnPosition];
      if ( iColumn != pivotColumn ) {
	saveColumn[put++] = iColumn;
      } else {
        break;
      }
    }
  } else {
    for (CoinBigIndex i = startRow ; i < pivotColumnPosition ; i++ ) {
      saveColumn[put++] = indexColumnU[i];
    }
  }
  assert (pivotColumnPosition<endRow);
  assert (indexColumnU[pivotColumnPosition]==pivotColumn);
  pivotColumnPosition++;
  for ( ; pivotColumnPosition < endRow; pivotColumnPosition++ ) {
    saveColumn[put++] = indexColumnU[pivotColumnPosition];
  }
  //take out this bit of indexColumnU
  int next = nextRow[pivotRow];
  int last = lastRow[pivotRow];

  nextRow[last] = next;
  lastRow[next] = last;
  nextRow[pivotRow] = numberGoodU_;	//use for permute
  lastRow[pivotRow] = -2;
  numberInRow[pivotRow] = 0;
  //store column in L, compress in U and take column out
  CoinBigIndex l = lengthL_;

  if ( l + numberInPivotColumn > lengthAreaL_ ) {
    //need more memory
    if ((messageLevel_&4)!=0) 
      printf("more memory needed in middle of invert\n");
    return false;
  }
  //l+=currentAreaL_->elementByColumn-elementL;
  CoinBigIndex lSave = l;

  CoinBigIndex * startColumnL = startColumnL_.array();
  startColumnL[numberGoodL_] = l;	//for luck and first time
  numberGoodL_++;
  startColumnL[numberGoodL_] = l + numberInPivotColumn;
  lengthL_ += numberInPivotColumn;
  if ( pivotRowPosition < 0 ) {
    for ( pivotRowPosition = startColumn; pivotRowPosition < endColumn; pivotRowPosition++ ) {
      int iRow = indexRowU[pivotRowPosition];
      if ( iRow != pivotRow ) {
	indexRowL[l] = iRow;
	elementL[l] = elementU[pivotRowPosition];
	markRow[iRow] = static_cast<T>(l - lSave);
	l++;
	//take out of row list
	CoinBigIndex start = startRowU[iRow];
	CoinBigIndex end = start + numberInRow[iRow];
	CoinBigIndex where = start;

	while ( indexColumnU[where] != pivotColumn ) {
	  where++;
	}			/* endwhile */
#if DEBUG_COIN
	if ( where >= end ) {
	  abort (  );
	}
#endif
	indexColumnU[where] = indexColumnU[end - 1];
	numberInRow[iRow]--;
      } else {
	break;
      }
    }
  } else {
    CoinBigIndex i;

    for ( i = startColumn; i < pivotRowPosition; i++ ) {
      int iRow = indexRowU[i];

      markRow[iRow] = static_cast<T>(l - lSave);
      indexRowL[l] = iRow;
      elementL[l] = elementU[i];
      l++;
      //take out of row list
      CoinBigIndex start = startRowU[iRow];
      CoinBigIndex end = start + numberInRow[iRow];
      CoinBigIndex where = start;

      while ( indexColumnU[where] != pivotColumn ) {
	where++;
      }				/* endwhile */
#if DEBUG_COIN
      if ( where >= end ) {
	abort (  );
      }
#endif
      indexColumnU[where] = indexColumnU[end - 1];
      numberInRow[iRow]--;
      assert (numberInRow[iRow]>=0);
    }
  }
  assert (pivotRowPosition<endColumn);
  assert (indexRowU[pivotRowPosition]==pivotRow);
  CoinFactorizationDouble pivotElement = elementU[pivotRowPosition];
  CoinFactorizationDouble pivotMultiplier = 1.0 / pivotElement;

  pivotRegion_.array()[numberGoodU_] = pivotMultiplier;
  pivotRowPosition++;
  for ( ; pivotRowPosition < endColumn; pivotRowPosition++ ) {
    int iRow = indexRowU[pivotRowPosition];
    
    markRow[iRow] = static_cast<T>(l - lSave);
    indexRowL[l] = iRow;
    elementL[l] = elementU[pivotRowPosition];
    l++;
    //take out of row list
    CoinBigIndex start = startRowU[iRow];
    CoinBigIndex end = start + numberInRow[iRow];
    CoinBigIndex where = start;
    
    while ( indexColumnU[where] != pivotColumn ) {
      where++;
    }				/* endwhile */
#if DEBUG_COIN
    if ( where >= end ) {
      abort (  );
    }
#endif
    indexColumnU[where] = indexColumnU[end - 1];
    numberInRow[iRow]--;
    assert (numberInRow[iRow]>=0);
  }
  markRow[pivotRow] = static_cast<T>(largeInteger);
  //compress pivot column (move pivot to front including saved)
  numberInColumn[pivotColumn] = 0;
  //use end of L for temporary space
  int *indexL = &indexRowL[lSave];
  CoinFactorizationDouble *multipliersL = &elementL[lSave];

  //adjust
  int j;

  for ( j = 0; j < numberInPivotColumn; j++ ) {
    multipliersL[j] *= pivotMultiplier;
  }
  //zero out fill
  CoinBigIndex iErase;
  for ( iErase = 0; iErase < increment2 * numberInPivotRow;
	iErase++ ) {
    workArea2[iErase] = 0;
  }
  CoinBigIndex added = numberInPivotRow * numberInPivotColumn;
  unsigned int *temp2 = workArea2;
  int * nextColumn = nextColumn_.array();

  //pack down and move to work
  int jColumn;
  for ( jColumn = 0; jColumn < numberInPivotRow; jColumn++ ) {
    int iColumn = saveColumn[jColumn];
    CoinBigIndex startColumn = startColumnU[iColumn];
    CoinBigIndex endColumn = startColumn + numberInColumn[iColumn];
    int iRow = indexRowU[startColumn];
    CoinFactorizationDouble value = elementU[startColumn];
    double largest;
    CoinBigIndex put = startColumn;
    CoinBigIndex positionLargest = -1;
    CoinFactorizationDouble thisPivotValue = 0.0;

    //compress column and find largest not updated
    bool checkLargest;
    int mark = markRow[iRow];

    if ( mark == largeInteger+1 ) {
      largest = fabs ( value );
      positionLargest = put;
      put++;
      checkLargest = false;
    } else {
      //need to find largest
      largest = 0.0;
      checkLargest = true;
      if ( mark != largeInteger ) {
	//will be updated
	work[mark] = value;
	int word = mark >> COINFACTORIZATION_SHIFT_PER_INT;
	int bit = mark & COINFACTORIZATION_MASK_PER_INT;

	temp2[word] = temp2[word] | ( 1 << bit );	//say already in counts
	added--;
      } else {
	thisPivotValue = value;
      }
    }
    CoinBigIndex i;
    for ( i = startColumn + 1; i < endColumn; i++ ) {
      iRow = indexRowU[i];
      value = elementU[i];
      int mark = markRow[iRow];

      if ( mark == largeInteger+1 ) {
	//keep
	indexRowU[put] = iRow;
	elementU[put] = value;
	if ( checkLargest ) {
	  double absValue = fabs ( value );

	  if ( absValue > largest ) {
	    largest = absValue;
	    positionLargest = put;
	  }
	}
	put++;
      } else if ( mark != largeInteger ) {
	//will be updated
	work[mark] = value;
	int word = mark >> COINFACTORIZATION_SHIFT_PER_INT;
	int bit = mark & COINFACTORIZATION_MASK_PER_INT;

	temp2[word] = temp2[word] | ( 1 << bit );	//say already in counts
	added--;
      } else {
	thisPivotValue = value;
      }
    }
    //slot in pivot
    elementU[put] = elementU[startColumn];
    indexRowU[put] = indexRowU[startColumn];
    if ( positionLargest == startColumn ) {
      positionLargest = put;	//follow if was largest
    }
    put++;
    elementU[startColumn] = thisPivotValue;
    indexRowU[startColumn] = pivotRow;
    //clean up counts
    startColumn++;
    numberInColumn[iColumn] = put - startColumn;
    int * numberInColumnPlus = numberInColumnPlus_.array();
    numberInColumnPlus[iColumn]++;
    startColumnU[iColumn]++;
    //how much space have we got
    int next = nextColumn[iColumn];
    CoinBigIndex space;

    space = startColumnU[next] - put - numberInColumnPlus[next];
    //assume no zero elements
    if ( numberInPivotColumn > space ) {
      //getColumnSpace also moves fixed part
      if ( !getColumnSpace ( iColumn, numberInPivotColumn ) ) {
	return false;
      }
      //redo starts
      if (positionLargest >= 0)
         positionLargest = positionLargest + startColumnU[iColumn] - startColumn;
      startColumn = startColumnU[iColumn];
      put = startColumn + numberInColumn[iColumn];
    }
    double tolerance = zeroTolerance_;

    int *nextCount = nextCount_.array();
    for ( j = 0; j < numberInPivotColumn; j++ ) {
      value = work[j] - thisPivotValue * multipliersL[j];
      double absValue = fabs ( value );

      if ( absValue > tolerance ) {
	work[j] = 0.0;
	assert (put<lengthAreaU_); 
	elementU[put] = value;
	indexRowU[put] = indexL[j];
	if ( absValue > largest ) {
	  largest = absValue;
	  positionLargest = put;
	}
	put++;
      } else {
	work[j] = 0.0;
	added--;
	int word = j >> COINFACTORIZATION_SHIFT_PER_INT;
	int bit = j & COINFACTORIZATION_MASK_PER_INT;

	if ( temp2[word] & ( 1 << bit ) ) {
	  //take out of row list
	  iRow = indexL[j];
	  CoinBigIndex start = startRowU[iRow];
	  CoinBigIndex end = start + numberInRow[iRow];
	  CoinBigIndex where = start;

	  while ( indexColumnU[where] != iColumn ) {
	    where++;
	  }			/* endwhile */
#if DEBUG_COIN
	  if ( where >= end ) {
	    abort (  );
	  }
#endif
	  indexColumnU[where] = indexColumnU[end - 1];
	  numberInRow[iRow]--;
	} else {
	  //make sure won't be added
	  int word = j >> COINFACTORIZATION_SHIFT_PER_INT;
	  int bit = j & COINFACTORIZATION_MASK_PER_INT;

	  temp2[word] = temp2[word] | ( 1 << bit );	//say already in counts
	}
      }
    }
    numberInColumn[iColumn] = put - startColumn;
    //move largest
    if ( positionLargest >= 0 ) {
      value = elementU[positionLargest];
      iRow = indexRowU[positionLargest];
      elementU[positionLargest] = elementU[startColumn];
      indexRowU[positionLargest] = indexRowU[startColumn];
      elementU[startColumn] = value;
      indexRowU[startColumn] = iRow;
    }
    //linked list for column
    if ( nextCount[iColumn + numberRows_] != -2 ) {
      //modify linked list
      deleteLink ( iColumn + numberRows_ );
      addLink ( iColumn + numberRows_, numberInColumn[iColumn] );
    }
    temp2 += increment2;
  }
  //get space for row list
  unsigned int *putBase = workArea2;
  int bigLoops = numberInPivotColumn >> COINFACTORIZATION_SHIFT_PER_INT;
  int i = 0;

  // do linked lists and update counts
  while ( bigLoops ) {
    bigLoops--;
    int bit;
    for ( bit = 0; bit < COINFACTORIZATION_BITS_PER_INT; i++, bit++ ) {
      unsigned int *putThis = putBase;
      int iRow = indexL[i];

      //get space
      int number = 0;
      int jColumn;

      for ( jColumn = 0; jColumn < numberInPivotRow; jColumn++ ) {
	unsigned int test = *putThis;

	putThis += increment2;
	test = 1 - ( ( test >> bit ) & 1 );
	number += test;
      }
      int next = nextRow[iRow];
      CoinBigIndex space;

      space = startRowU[next] - startRowU[iRow];
      number += numberInRow[iRow];
      if ( space < number ) {
	if ( !getRowSpace ( iRow, number ) ) {
	  return false;
	}
      }
      // now do
      putThis = putBase;
      next = nextRow[iRow];
      number = numberInRow[iRow];
      CoinBigIndex end = startRowU[iRow] + number;
      int saveIndex = indexColumnU[startRowU[next]];

      //add in
      for ( jColumn = 0; jColumn < numberInPivotRow; jColumn++ ) {
	unsigned int test = *putThis;

	putThis += increment2;
	test = 1 - ( ( test >> bit ) & 1 );
	indexColumnU[end] = saveColumn[jColumn];
	end += test;
      }
      //put back next one in case zapped
      indexColumnU[startRowU[next]] = saveIndex;
      markRow[iRow] = static_cast<T>(largeInteger+1);
      number = end - startRowU[iRow];
      numberInRow[iRow] = number;
      deleteLink ( iRow );
      addLink ( iRow, number );
    }
    putBase++;
  }				/* endwhile */
  int bit;

  for ( bit = 0; i < numberInPivotColumn; i++, bit++ ) {
    unsigned int *putThis = putBase;
    int iRow = indexL[i];

    //get space
    int number = 0;
    int jColumn;

    for ( jColumn = 0; jColumn < numberInPivotRow; jColumn++ ) {
      unsigned int test = *putThis;

      putThis += increment2;
      test = 1 - ( ( test >> bit ) & 1 );
      number += test;
    }
    int next = nextRow[iRow];
    CoinBigIndex space;

    space = startRowU[next] - startRowU[iRow];
    number += numberInRow[iRow];
    if ( space < number ) {
      if ( !getRowSpace ( iRow, number ) ) {
	return false;
      }
    }
    // now do
    putThis = putBase;
    next = nextRow[iRow];
    number = numberInRow[iRow];
    CoinBigIndex end = startRowU[iRow] + number;
    int saveIndex;

    saveIndex = indexColumnU[startRowU[next]];

    //add in
    for ( jColumn = 0; jColumn < numberInPivotRow; jColumn++ ) {
      unsigned int test = *putThis;

      putThis += increment2;
      test = 1 - ( ( test >> bit ) & 1 );

      indexColumnU[end] = saveColumn[jColumn];
      end += test;
    }
    indexColumnU[startRowU[next]] = saveIndex;
    markRow[iRow] = static_cast<T>(largeInteger+1);
    number = end - startRowU[iRow];
    numberInRow[iRow] = number;
    deleteLink ( iRow );
    addLink ( iRow, number );
  }
  markRow[pivotRow] = static_cast<T>(largeInteger+1);
  //modify linked list for pivots
  deleteLink ( pivotRow );
  deleteLink ( pivotColumn + numberRows_ );
  totalElements_ += added;
  return true;
}

  /********************************* END LARGE TEMPLATE ********/
  //@}
////////////////// data //////////////////
protected:

  /**@name data */
  //@{
  /// Pivot tolerance
  double pivotTolerance_;
  /// Zero tolerance
  double zeroTolerance_;
#ifndef COIN_FAST_CODE
  /// Whether slack value is  +1 or -1
  double slackValue_;
#else
#ifndef slackValue_
#define slackValue_ -1.0
#endif
#endif
  /// How much to multiply areas by
  double areaFactor_;
  /// Relax check on accuracy in replaceColumn
  double relaxCheck_;
  /// Number of Rows in factorization
  int numberRows_;
  /// Number of Rows after iterating
  int numberRowsExtra_;
  /// Maximum number of Rows after iterating
  int maximumRowsExtra_;
  /// Number of Columns in factorization
  int numberColumns_;
  /// Number of Columns after iterating
  int numberColumnsExtra_;
  /// Maximum number of Columns after iterating
  int maximumColumnsExtra_;
  /// Number factorized in U (not row singletons)
  int numberGoodU_;
  /// Number factorized in L
  int numberGoodL_;
  /// Maximum number of pivots before factorization
  int maximumPivots_;
  /// Number pivots since last factorization
  int numberPivots_;
  /// Number of elements in U (to go)
  ///       or while iterating total overall
  CoinBigIndex totalElements_;
  /// Number of elements after factorization
  CoinBigIndex factorElements_;
  /// Pivot order for each Column
  CoinIntArrayWithLength pivotColumn_;
  /// Permutation vector for pivot row order
  CoinIntArrayWithLength permute_;
  /// DePermutation vector for pivot row order
  CoinIntArrayWithLength permuteBack_;
  /// Inverse Pivot order for each Column
  CoinIntArrayWithLength pivotColumnBack_;
  /// Status of factorization
  int status_;

  /** 0 - no increasing rows - no permutations,
   1 - no increasing rows but permutations 
   2 - increasing rows 
     - taken out as always 2 */
  //int increasingRows_;

  /// Number of trials before rejection
  int numberTrials_;
  /// Start of each Row as pointer
  CoinBigIndexArrayWithLength startRowU_;

  /// Number in each Row
  CoinIntArrayWithLength numberInRow_;

  /// Number in each Column
  CoinIntArrayWithLength numberInColumn_;

  /// Number in each Column including pivoted
  CoinIntArrayWithLength numberInColumnPlus_;

  /** First Row/Column with count of k,
      can tell which by offset - Rows then Columns */
  CoinIntArrayWithLength firstCount_;

  /// Next Row/Column with count
  CoinIntArrayWithLength nextCount_;

  /// Previous Row/Column with count
  CoinIntArrayWithLength lastCount_;

  /// Next Column in memory order
  CoinIntArrayWithLength nextColumn_;

  /// Previous Column in memory order
  CoinIntArrayWithLength lastColumn_;

  /// Next Row in memory order
  CoinIntArrayWithLength nextRow_;

  /// Previous Row in memory order
  CoinIntArrayWithLength lastRow_;

  /// Columns left to do in a single pivot
  CoinIntArrayWithLength saveColumn_;

  /// Marks rows to be updated
  CoinIntArrayWithLength markRow_;

  /// Detail in messages
  int messageLevel_;

  /// Larger of row and column size
  int biggerDimension_;

  /// Base address for U (may change)
  CoinIntArrayWithLength indexColumnU_;

  /// Pivots for L
  CoinIntArrayWithLength pivotRowL_;

  /// Inverses of pivot values
  CoinFactorizationDoubleArrayWithLength pivotRegion_;

  /// Number of slacks at beginning of U
  int numberSlacks_;

  /// Number in U
  int numberU_;

  /// Maximum space used in U
  CoinBigIndex maximumU_;

  /// Base of U is always 0
  //int baseU_;

  /// Length of U
  CoinBigIndex lengthU_;

  /// Length of area reserved for U
  CoinBigIndex lengthAreaU_;

/// Elements of U
  CoinFactorizationDoubleArrayWithLength elementU_;

/// Row indices of U
  CoinIntArrayWithLength indexRowU_;

/// Start of each column in U
  CoinBigIndexArrayWithLength startColumnU_;

/// Converts rows to columns in U 
  CoinBigIndexArrayWithLength convertRowToColumnU_;

  /// Number in L
  CoinBigIndex numberL_;

/// Base of L
  CoinBigIndex baseL_;

  /// Length of L
  CoinBigIndex lengthL_;

  /// Length of area reserved for L
  CoinBigIndex lengthAreaL_;

  /// Elements of L
  CoinFactorizationDoubleArrayWithLength elementL_;

  /// Row indices of L
  CoinIntArrayWithLength indexRowL_;

  /// Start of each column in L
  CoinBigIndexArrayWithLength startColumnL_;

  /// true if Forrest Tomlin update, false if PFI 
  bool doForrestTomlin_;

  /// Number in R
  int numberR_;

  /// Length of R stuff
  CoinBigIndex lengthR_;

  /// length of area reserved for R
  CoinBigIndex lengthAreaR_;

  /// Elements of R
  CoinFactorizationDouble *elementR_;

  /// Row indices for R
  int *indexRowR_;

  /// Start of columns for R
  CoinBigIndexArrayWithLength startColumnR_;

  /// Dense area
  double  * denseArea_;

  /// Dense permutation
  int * densePermute_;

  /// Number of dense rows
  int numberDense_;

  /// Dense threshold
  int denseThreshold_;

  /// First work area
  CoinFactorizationDoubleArrayWithLength workArea_;

  /// Second work area
  CoinUnsignedIntArrayWithLength workArea2_;

  /// Number of compressions done
  CoinBigIndex numberCompressions_;

  /// Below are all to collect
  mutable double ftranCountInput_;
  mutable double ftranCountAfterL_;
  mutable double ftranCountAfterR_;
  mutable double ftranCountAfterU_;
  mutable double btranCountInput_;
  mutable double btranCountAfterU_;
  mutable double btranCountAfterR_;
  mutable double btranCountAfterL_;

  /// We can roll over factorizations
  mutable int numberFtranCounts_;
  mutable int numberBtranCounts_;

  /// While these are average ratios collected over last period
  double ftranAverageAfterL_;
  double ftranAverageAfterR_;
  double ftranAverageAfterU_;
  double btranAverageAfterU_;
  double btranAverageAfterR_;
  double btranAverageAfterL_;

  /// For statistics 
  mutable bool collectStatistics_;

  /// Below this use sparse technology - if 0 then no L row copy
  int sparseThreshold_;

  /// And one for "sparsish"
  int sparseThreshold2_;

  /// Start of each row in L
  CoinBigIndexArrayWithLength startRowL_;

  /// Index of column in row for L
  CoinIntArrayWithLength indexColumnL_;

  /// Elements in L (row copy)
  CoinFactorizationDoubleArrayWithLength elementByRowL_;

  /// Sparse regions
  mutable CoinIntArrayWithLength sparse_;
  /** L to U bias
      0 - U bias, 1 - some U bias, 2 some L bias, 3 L bias
  */
  int biasLU_;
  /** Array persistence flag
      If 0 then as now (delete/new)
      1 then only do arrays if bigger needed
      2 as 1 but give a bit extra if bigger needed
  */
  int persistenceFlag_;
  //@}
};
// Dense coding
#ifdef COIN_HAS_LAPACK
#define DENSE_CODE 1
/* Type of Fortran integer translated into C */
#ifndef ipfint
//typedef ipfint FORTRAN_INTEGER_TYPE ;
typedef int ipfint;
typedef const int cipfint;
#endif
#endif
#endif
// Extra for ugly include
#ifdef UGLY_COIN_FACTOR_CODING
#define FAC_UNSET (FAC_SET+1)
{
  goodPivot=false;
  //store pivot columns (so can easily compress)
  CoinBigIndex startColumnThis = startColumn[iPivotColumn];
  CoinBigIndex endColumn = startColumnThis + numberDoColumn + 1;
  int put = 0;
  CoinBigIndex startRowThis = startRow[iPivotRow];
  CoinBigIndex endRow = startRowThis + numberDoRow + 1;
  if ( pivotColumnPosition < 0 ) {
    for ( pivotColumnPosition = startRowThis; pivotColumnPosition < endRow; pivotColumnPosition++ ) {
      int iColumn = indexColumn[pivotColumnPosition];
      if ( iColumn != iPivotColumn ) {
	saveColumn[put++] = iColumn;
      } else {
        break;
      }
    }
  } else {
    for (CoinBigIndex i = startRowThis ; i < pivotColumnPosition ; i++ ) {
      saveColumn[put++] = indexColumn[i];
    }
  }
  assert (pivotColumnPosition<endRow);
  assert (indexColumn[pivotColumnPosition]==iPivotColumn);
  pivotColumnPosition++;
  for ( ; pivotColumnPosition < endRow; pivotColumnPosition++ ) {
    saveColumn[put++] = indexColumn[pivotColumnPosition];
  }
  //take out this bit of indexColumn
  int next = nextRow[iPivotRow];
  int last = lastRow[iPivotRow];
  
  nextRow[last] = next;
  lastRow[next] = last;
  nextRow[iPivotRow] = numberGoodU_;	//use for permute
  lastRow[iPivotRow] = -2;
  numberInRow[iPivotRow] = 0;
  //store column in L, compress in U and take column out
  CoinBigIndex l = lengthL_;
  // **** HORRID coding coming up but a goto seems best!
  {
    if ( l + numberDoColumn > lengthAreaL_ ) {
      //need more memory
      if ((messageLevel_&4)!=0) 
	printf("more memory needed in middle of invert\n");
      goto BAD_PIVOT;
    }
    //l+=currentAreaL_->elementByColumn-elementL;
    CoinBigIndex lSave = l;
    
    CoinBigIndex * startColumnL = startColumnL_.array();
    startColumnL[numberGoodL_] = l;	//for luck and first time
    numberGoodL_++;
    startColumnL[numberGoodL_] = l + numberDoColumn;
    lengthL_ += numberDoColumn;
    if ( pivotRowPosition < 0 ) {
      for ( pivotRowPosition = startColumnThis; pivotRowPosition < endColumn; pivotRowPosition++ ) {
	int iRow = indexRow[pivotRowPosition];
	if ( iRow != iPivotRow ) {
	  indexRowL[l] = iRow;
	  elementL[l] = element[pivotRowPosition];
	  markRow[iRow] = l - lSave;
	  l++;
	  //take out of row list
	  CoinBigIndex start = startRow[iRow];
	  CoinBigIndex end = start + numberInRow[iRow];
	  CoinBigIndex where = start;
	  
	  while ( indexColumn[where] != iPivotColumn ) {
	    where++;
	  }			/* endwhile */
#if DEBUG_COIN
	  if ( where >= end ) {
	    abort (  );
	  }
#endif
	  indexColumn[where] = indexColumn[end - 1];
	  numberInRow[iRow]--;
	} else {
	  break;
	}
      }
    } else {
      CoinBigIndex i;
      
      for ( i = startColumnThis; i < pivotRowPosition; i++ ) {
	int iRow = indexRow[i];
	
	markRow[iRow] = l - lSave;
	indexRowL[l] = iRow;
	elementL[l] = element[i];
	l++;
	//take out of row list
	CoinBigIndex start = startRow[iRow];
	CoinBigIndex end = start + numberInRow[iRow];
	CoinBigIndex where = start;
	
	while ( indexColumn[where] != iPivotColumn ) {
	  where++;
	}				/* endwhile */
#if DEBUG_COIN
	if ( where >= end ) {
	  abort (  );
	}
#endif
	indexColumn[where] = indexColumn[end - 1];
	numberInRow[iRow]--;
	assert (numberInRow[iRow]>=0);
      }
    }
    assert (pivotRowPosition<endColumn);
    assert (indexRow[pivotRowPosition]==iPivotRow);
    CoinFactorizationDouble pivotElement = element[pivotRowPosition];
    CoinFactorizationDouble pivotMultiplier = 1.0 / pivotElement;
    
    pivotRegion_.array()[numberGoodU_] = pivotMultiplier;
    pivotRowPosition++;
    for ( ; pivotRowPosition < endColumn; pivotRowPosition++ ) {
      int iRow = indexRow[pivotRowPosition];
      
      markRow[iRow] = l - lSave;
      indexRowL[l] = iRow;
      elementL[l] = element[pivotRowPosition];
      l++;
      //take out of row list
      CoinBigIndex start = startRow[iRow];
      CoinBigIndex end = start + numberInRow[iRow];
      CoinBigIndex where = start;
      
      while ( indexColumn[where] != iPivotColumn ) {
	where++;
      }				/* endwhile */
#if DEBUG_COIN
      if ( where >= end ) {
	abort (  );
      }
#endif
      indexColumn[where] = indexColumn[end - 1];
      numberInRow[iRow]--;
      assert (numberInRow[iRow]>=0);
    }
    markRow[iPivotRow] = FAC_SET;
    //compress pivot column (move pivot to front including saved)
    numberInColumn[iPivotColumn] = 0;
    //use end of L for temporary space
    int *indexL = &indexRowL[lSave];
    CoinFactorizationDouble *multipliersL = &elementL[lSave];
    
    //adjust
    int j;
    
    for ( j = 0; j < numberDoColumn; j++ ) {
      multipliersL[j] *= pivotMultiplier;
    }
    //zero out fill
    CoinBigIndex iErase;
    for ( iErase = 0; iErase < increment2 * numberDoRow;
	  iErase++ ) {
      workArea2[iErase] = 0;
    }
    CoinBigIndex added = numberDoRow * numberDoColumn;
    unsigned int *temp2 = workArea2;
    int * nextColumn = nextColumn_.array();
    
    //pack down and move to work
    int jColumn;
    for ( jColumn = 0; jColumn < numberDoRow; jColumn++ ) {
      int iColumn = saveColumn[jColumn];
      CoinBigIndex startColumnThis = startColumn[iColumn];
      CoinBigIndex endColumn = startColumnThis + numberInColumn[iColumn];
      int iRow = indexRow[startColumnThis];
      CoinFactorizationDouble value = element[startColumnThis];
      double largest;
      CoinBigIndex put = startColumnThis;
      CoinBigIndex positionLargest = -1;
      CoinFactorizationDouble thisPivotValue = 0.0;
      
      //compress column and find largest not updated
      bool checkLargest;
      int mark = markRow[iRow];
      
      if ( mark == FAC_UNSET ) {
	largest = fabs ( value );
	positionLargest = put;
	put++;
	checkLargest = false;
      } else {
	//need to find largest
	largest = 0.0;
	checkLargest = true;
	if ( mark != FAC_SET ) {
	  //will be updated
	  workArea[mark] = value;
	  int word = mark >> COINFACTORIZATION_SHIFT_PER_INT;
	  int bit = mark & COINFACTORIZATION_MASK_PER_INT;
	  
	  temp2[word] = temp2[word] | ( 1 << bit );	//say already in counts
	  added--;
	} else {
	  thisPivotValue = value;
	}
      }
      CoinBigIndex i;
      for ( i = startColumnThis + 1; i < endColumn; i++ ) {
	iRow = indexRow[i];
	value = element[i];
	int mark = markRow[iRow];
	
	if ( mark == FAC_UNSET ) {
	  //keep
	  indexRow[put] = iRow;
	  element[put] = value;
	  if ( checkLargest ) {
	    double absValue = fabs ( value );
	    
	    if ( absValue > largest ) {
	      largest = absValue;
	      positionLargest = put;
	    }
	  }
	  put++;
	} else if ( mark != FAC_SET ) {
	  //will be updated
	  workArea[mark] = value;
	  int word = mark >> COINFACTORIZATION_SHIFT_PER_INT;
	  int bit = mark & COINFACTORIZATION_MASK_PER_INT;
	  
	  temp2[word] = temp2[word] | ( 1 << bit );	//say already in counts
	  added--;
	} else {
	  thisPivotValue = value;
	}
      }
      //slot in pivot
      element[put] = element[startColumnThis];
      indexRow[put] = indexRow[startColumnThis];
      if ( positionLargest == startColumnThis ) {
	positionLargest = put;	//follow if was largest
      }
      put++;
      element[startColumnThis] = thisPivotValue;
      indexRow[startColumnThis] = iPivotRow;
      //clean up counts
      startColumnThis++;
      numberInColumn[iColumn] = put - startColumnThis;
      int * numberInColumnPlus = numberInColumnPlus_.array();
      numberInColumnPlus[iColumn]++;
      startColumn[iColumn]++;
      //how much space have we got
      int next = nextColumn[iColumn];
      CoinBigIndex space;
      
      space = startColumn[next] - put - numberInColumnPlus[next];
      //assume no zero elements
      if ( numberDoColumn > space ) {
	//getColumnSpace also moves fixed part
	if ( !getColumnSpace ( iColumn, numberDoColumn ) ) {
	  goto BAD_PIVOT;
	}
	//redo starts
	positionLargest = positionLargest + startColumn[iColumn] - startColumnThis;
	startColumnThis = startColumn[iColumn];
	put = startColumnThis + numberInColumn[iColumn];
      }
      double tolerance = zeroTolerance_;
      
      int *nextCount = nextCount_.array();
      for ( j = 0; j < numberDoColumn; j++ ) {
	value = workArea[j] - thisPivotValue * multipliersL[j];
	double absValue = fabs ( value );
	
	if ( absValue > tolerance ) {
	  workArea[j] = 0.0;
	  element[put] = value;
	  indexRow[put] = indexL[j];
	  if ( absValue > largest ) {
	    largest = absValue;
	    positionLargest = put;
	  }
	  put++;
	} else {
	  workArea[j] = 0.0;
	  added--;
	  int word = j >> COINFACTORIZATION_SHIFT_PER_INT;
	  int bit = j & COINFACTORIZATION_MASK_PER_INT;
	  
	  if ( temp2[word] & ( 1 << bit ) ) {
	    //take out of row list
	    iRow = indexL[j];
	    CoinBigIndex start = startRow[iRow];
	    CoinBigIndex end = start + numberInRow[iRow];
	    CoinBigIndex where = start;
	    
	    while ( indexColumn[where] != iColumn ) {
	      where++;
	    }			/* endwhile */
#if DEBUG_COIN
	    if ( where >= end ) {
	      abort (  );
	    }
#endif
	    indexColumn[where] = indexColumn[end - 1];
	    numberInRow[iRow]--;
	  } else {
	    //make sure won't be added
	    int word = j >> COINFACTORIZATION_SHIFT_PER_INT;
	    int bit = j & COINFACTORIZATION_MASK_PER_INT;
	    
	    temp2[word] = temp2[word] | ( 1 << bit );	//say already in counts
	  }
	}
      }
      numberInColumn[iColumn] = put - startColumnThis;
      //move largest
      if ( positionLargest >= 0 ) {
	value = element[positionLargest];
	iRow = indexRow[positionLargest];
	element[positionLargest] = element[startColumnThis];
	indexRow[positionLargest] = indexRow[startColumnThis];
	element[startColumnThis] = value;
	indexRow[startColumnThis] = iRow;
      }
      //linked list for column
      if ( nextCount[iColumn + numberRows_] != -2 ) {
	//modify linked list
	deleteLink ( iColumn + numberRows_ );
	addLink ( iColumn + numberRows_, numberInColumn[iColumn] );
      }
      temp2 += increment2;
    }
    //get space for row list
    unsigned int *putBase = workArea2;
    int bigLoops = numberDoColumn >> COINFACTORIZATION_SHIFT_PER_INT;
    int i = 0;
    
    // do linked lists and update counts
    while ( bigLoops ) {
      bigLoops--;
      int bit;
      for ( bit = 0; bit < COINFACTORIZATION_BITS_PER_INT; i++, bit++ ) {
	unsigned int *putThis = putBase;
	int iRow = indexL[i];
	
	//get space
	int number = 0;
	int jColumn;
	
	for ( jColumn = 0; jColumn < numberDoRow; jColumn++ ) {
	  unsigned int test = *putThis;
	  
	  putThis += increment2;
	  test = 1 - ( ( test >> bit ) & 1 );
	  number += test;
	}
	int next = nextRow[iRow];
	CoinBigIndex space;
	
	space = startRow[next] - startRow[iRow];
	number += numberInRow[iRow];
	if ( space < number ) {
	  if ( !getRowSpace ( iRow, number ) ) {
	    goto BAD_PIVOT;
	  }
	}
	// now do
	putThis = putBase;
	next = nextRow[iRow];
	number = numberInRow[iRow];
	CoinBigIndex end = startRow[iRow] + number;
	int saveIndex = indexColumn[startRow[next]];
	
	//add in
	for ( jColumn = 0; jColumn < numberDoRow; jColumn++ ) {
	  unsigned int test = *putThis;
	  
	  putThis += increment2;
	  test = 1 - ( ( test >> bit ) & 1 );
	  indexColumn[end] = saveColumn[jColumn];
	  end += test;
	}
	//put back next one in case zapped
	indexColumn[startRow[next]] = saveIndex;
	markRow[iRow] = FAC_UNSET;
	number = end - startRow[iRow];
	numberInRow[iRow] = number;
	deleteLink ( iRow );
	addLink ( iRow, number );
      }
      putBase++;
    }				/* endwhile */
    int bit;
    
    for ( bit = 0; i < numberDoColumn; i++, bit++ ) {
      unsigned int *putThis = putBase;
      int iRow = indexL[i];
      
      //get space
      int number = 0;
      int jColumn;
      
      for ( jColumn = 0; jColumn < numberDoRow; jColumn++ ) {
	unsigned int test = *putThis;
	
	putThis += increment2;
	test = 1 - ( ( test >> bit ) & 1 );
	number += test;
      }
      int next = nextRow[iRow];
      CoinBigIndex space;
      
      space = startRow[next] - startRow[iRow];
      number += numberInRow[iRow];
      if ( space < number ) {
	if ( !getRowSpace ( iRow, number ) ) {
	  goto BAD_PIVOT;
	}
      }
      // now do
      putThis = putBase;
      next = nextRow[iRow];
      number = numberInRow[iRow];
      CoinBigIndex end = startRow[iRow] + number;
      int saveIndex;
      
      saveIndex = indexColumn[startRow[next]];
      
      //add in
      for ( jColumn = 0; jColumn < numberDoRow; jColumn++ ) {
	unsigned int test = *putThis;
	
	putThis += increment2;
	test = 1 - ( ( test >> bit ) & 1 );
	
	indexColumn[end] = saveColumn[jColumn];
	end += test;
      }
      indexColumn[startRow[next]] = saveIndex;
      markRow[iRow] = FAC_UNSET;
      number = end - startRow[iRow];
      numberInRow[iRow] = number;
      deleteLink ( iRow );
      addLink ( iRow, number );
    }
    markRow[iPivotRow] = FAC_UNSET;
    //modify linked list for pivots
    deleteLink ( iPivotRow );
    deleteLink ( iPivotColumn + numberRows_ );
    totalElements_ += added;
    goodPivot= true;
    // **** UGLY UGLY UGLY
  }
 BAD_PIVOT:

  ;
}
#undef FAC_UNSET
#endif