/usr/include/coin/CoinHelperFunctions.hpp is in coinor-libcoinutils-dev 2.9.15-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 | /* $Id: CoinHelperFunctions.hpp 1678 2013-12-05 11:27:05Z forrest $ */
// Copyright (C) 2000, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
#ifndef CoinHelperFunctions_H
#define CoinHelperFunctions_H
#include "CoinUtilsConfig.h"
#if defined(_MSC_VER)
# include <direct.h>
# include <cctype>
# define getcwd _getcwd
# include <cctype>
#else
# include <unistd.h>
#endif
//#define USE_MEMCPY
#include <cstdlib>
#include <cstdio>
#include <algorithm>
#include "CoinTypes.hpp"
#include "CoinError.hpp"
// Compilers can produce better code if they know about __restrict
#ifndef COIN_RESTRICT
#ifdef COIN_USE_RESTRICT
#define COIN_RESTRICT __restrict
#else
#define COIN_RESTRICT
#endif
#endif
//#############################################################################
/** This helper function copies an array to another location using Duff's
device (for a speedup of ~2). The arrays are given by pointers to their
first entries and by the size of the source array. Overlapping arrays are
handled correctly. */
template <class T> inline void
CoinCopyN(register const T* from, const int size, register T* to)
{
if (size == 0 || from == to)
return;
#ifndef NDEBUG
if (size < 0)
throw CoinError("trying to copy negative number of entries",
"CoinCopyN", "");
#endif
register int n = (size + 7) / 8;
if (to > from) {
register const T* downfrom = from + size;
register T* downto = to + size;
// Use Duff's device to copy
switch (size % 8) {
case 0: do{ *--downto = *--downfrom;
case 7: *--downto = *--downfrom;
case 6: *--downto = *--downfrom;
case 5: *--downto = *--downfrom;
case 4: *--downto = *--downfrom;
case 3: *--downto = *--downfrom;
case 2: *--downto = *--downfrom;
case 1: *--downto = *--downfrom;
}while(--n>0);
}
} else {
// Use Duff's device to copy
--from;
--to;
switch (size % 8) {
case 0: do{ *++to = *++from;
case 7: *++to = *++from;
case 6: *++to = *++from;
case 5: *++to = *++from;
case 4: *++to = *++from;
case 3: *++to = *++from;
case 2: *++to = *++from;
case 1: *++to = *++from;
}while(--n>0);
}
}
}
//-----------------------------------------------------------------------------
/** This helper function copies an array to another location using Duff's
device (for a speedup of ~2). The source array is given by its first and
"after last" entry; the target array is given by its first entry.
Overlapping arrays are handled correctly.
All of the various CoinCopyN variants use an int for size. On 64-bit
architectures, the address diff last-first will be a 64-bit quantity.
Given that everything else uses an int, I'm going to choose to kick
the difference down to int. -- lh, 100823 --
*/
template <class T> inline void
CoinCopy(register const T* first, register const T* last, register T* to)
{
CoinCopyN(first, static_cast<int>(last-first), to);
}
//-----------------------------------------------------------------------------
/** This helper function copies an array to another location. The two arrays
must not overlap (otherwise an exception is thrown). For speed 8 entries
are copied at a time. The arrays are given by pointers to their first
entries and by the size of the source array.
Note JJF - the speed claim seems to be false on IA32 so I have added
CoinMemcpyN which can be used for atomic data */
template <class T> inline void
CoinDisjointCopyN(register const T* from, const int size, register T* to)
{
#ifndef _MSC_VER
if (size == 0 || from == to)
return;
#ifndef NDEBUG
if (size < 0)
throw CoinError("trying to copy negative number of entries",
"CoinDisjointCopyN", "");
#endif
#if 0
/* There is no point to do this test. If to and from are from different
blocks then dist is undefined, so this can crash correct code. It's
better to trust the user that the arrays are really disjoint. */
const long dist = to - from;
if (-size < dist && dist < size)
throw CoinError("overlapping arrays", "CoinDisjointCopyN", "");
#endif
for (register int n = size / 8; n > 0; --n, from += 8, to += 8) {
to[0] = from[0];
to[1] = from[1];
to[2] = from[2];
to[3] = from[3];
to[4] = from[4];
to[5] = from[5];
to[6] = from[6];
to[7] = from[7];
}
switch (size % 8) {
case 7: to[6] = from[6];
case 6: to[5] = from[5];
case 5: to[4] = from[4];
case 4: to[3] = from[3];
case 3: to[2] = from[2];
case 2: to[1] = from[1];
case 1: to[0] = from[0];
case 0: break;
}
#else
CoinCopyN(from, size, to);
#endif
}
//-----------------------------------------------------------------------------
/** This helper function copies an array to another location. The two arrays
must not overlap (otherwise an exception is thrown). For speed 8 entries
are copied at a time. The source array is given by its first and "after
last" entry; the target array is given by its first entry. */
template <class T> inline void
CoinDisjointCopy(register const T* first, register const T* last,
register T* to)
{
CoinDisjointCopyN(first, static_cast<int>(last - first), to);
}
//-----------------------------------------------------------------------------
/*! \brief Return an array of length \p size filled with input from \p array,
or null if \p array is null.
*/
template <class T> inline T*
CoinCopyOfArray( const T * array, const int size)
{
if (array) {
T * arrayNew = new T[size];
std::memcpy(arrayNew,array,size*sizeof(T));
return arrayNew;
} else {
return NULL;
}
}
/*! \brief Return an array of length \p size filled with first copySize from \p array,
or null if \p array is null.
*/
template <class T> inline T*
CoinCopyOfArrayPartial( const T * array, const int size,const int copySize)
{
if (array||size) {
T * arrayNew = new T[size];
assert (copySize<=size);
std::memcpy(arrayNew,array,copySize*sizeof(T));
return arrayNew;
} else {
return NULL;
}
}
/*! \brief Return an array of length \p size filled with input from \p array,
or filled with (scalar) \p value if \p array is null
*/
template <class T> inline T*
CoinCopyOfArray( const T * array, const int size, T value)
{
T * arrayNew = new T[size];
if (array) {
std::memcpy(arrayNew,array,size*sizeof(T));
} else {
int i;
for (i=0;i<size;i++)
arrayNew[i] = value;
}
return arrayNew;
}
/*! \brief Return an array of length \p size filled with input from \p array,
or filled with zero if \p array is null
*/
template <class T> inline T*
CoinCopyOfArrayOrZero( const T * array , const int size)
{
T * arrayNew = new T[size];
if (array) {
std::memcpy(arrayNew,array,size*sizeof(T));
} else {
std::memset(arrayNew,0,size*sizeof(T));
}
return arrayNew;
}
//-----------------------------------------------------------------------------
/** This helper function copies an array to another location. The two arrays
must not overlap (otherwise an exception is thrown). For speed 8 entries
are copied at a time. The arrays are given by pointers to their first
entries and by the size of the source array.
Note JJF - the speed claim seems to be false on IA32 so I have added
alternative coding if USE_MEMCPY defined*/
#ifndef COIN_USE_RESTRICT
template <class T> inline void
CoinMemcpyN(register const T* from, const int size, register T* to)
{
#ifndef _MSC_VER
#ifdef USE_MEMCPY
// Use memcpy - seems a lot faster on Intel with gcc
#ifndef NDEBUG
// Some debug so check
if (size < 0)
throw CoinError("trying to copy negative number of entries",
"CoinMemcpyN", "");
#if 0
/* There is no point to do this test. If to and from are from different
blocks then dist is undefined, so this can crash correct code. It's
better to trust the user that the arrays are really disjoint. */
const long dist = to - from;
if (-size < dist && dist < size)
throw CoinError("overlapping arrays", "CoinMemcpyN", "");
#endif
#endif
std::memcpy(to,from,size*sizeof(T));
#else
if (size == 0 || from == to)
return;
#ifndef NDEBUG
if (size < 0)
throw CoinError("trying to copy negative number of entries",
"CoinMemcpyN", "");
#endif
#if 0
/* There is no point to do this test. If to and from are from different
blocks then dist is undefined, so this can crash correct code. It's
better to trust the user that the arrays are really disjoint. */
const long dist = to - from;
if (-size < dist && dist < size)
throw CoinError("overlapping arrays", "CoinMemcpyN", "");
#endif
for (register int n = size / 8; n > 0; --n, from += 8, to += 8) {
to[0] = from[0];
to[1] = from[1];
to[2] = from[2];
to[3] = from[3];
to[4] = from[4];
to[5] = from[5];
to[6] = from[6];
to[7] = from[7];
}
switch (size % 8) {
case 7: to[6] = from[6];
case 6: to[5] = from[5];
case 5: to[4] = from[4];
case 4: to[3] = from[3];
case 3: to[2] = from[2];
case 2: to[1] = from[1];
case 1: to[0] = from[0];
case 0: break;
}
#endif
#else
CoinCopyN(from, size, to);
#endif
}
#else
template <class T> inline void
CoinMemcpyN(const T * COIN_RESTRICT from, int size, T* COIN_RESTRICT to)
{
#ifdef USE_MEMCPY
std::memcpy(to,from,size*sizeof(T));
#else
T * COIN_RESTRICT put = to;
const T * COIN_RESTRICT get = from;
for ( ; 0<size ; --size)
*put++ = *get++;
#endif
}
#endif
//-----------------------------------------------------------------------------
/** This helper function copies an array to another location. The two arrays
must not overlap (otherwise an exception is thrown). For speed 8 entries
are copied at a time. The source array is given by its first and "after
last" entry; the target array is given by its first entry. */
template <class T> inline void
CoinMemcpy(register const T* first, register const T* last,
register T* to)
{
CoinMemcpyN(first, static_cast<int>(last - first), to);
}
//#############################################################################
/** This helper function fills an array with a given value. For speed 8 entries
are filled at a time. The array is given by a pointer to its first entry
and its size.
Note JJF - the speed claim seems to be false on IA32 so I have added
CoinZero to allow for memset. */
template <class T> inline void
CoinFillN(register T* to, const int size, register const T value)
{
if (size == 0)
return;
#ifndef NDEBUG
if (size < 0)
throw CoinError("trying to fill negative number of entries",
"CoinFillN", "");
#endif
#if 1
for (register int n = size / 8; n > 0; --n, to += 8) {
to[0] = value;
to[1] = value;
to[2] = value;
to[3] = value;
to[4] = value;
to[5] = value;
to[6] = value;
to[7] = value;
}
switch (size % 8) {
case 7: to[6] = value;
case 6: to[5] = value;
case 5: to[4] = value;
case 4: to[3] = value;
case 3: to[2] = value;
case 2: to[1] = value;
case 1: to[0] = value;
case 0: break;
}
#else
// Use Duff's device to fill
register int n = (size + 7) / 8;
--to;
switch (size % 8) {
case 0: do{ *++to = value;
case 7: *++to = value;
case 6: *++to = value;
case 5: *++to = value;
case 4: *++to = value;
case 3: *++to = value;
case 2: *++to = value;
case 1: *++to = value;
}while(--n>0);
}
#endif
}
//-----------------------------------------------------------------------------
/** This helper function fills an array with a given value. For speed 8
entries are filled at a time. The array is given by its first and "after
last" entry. */
template <class T> inline void
CoinFill(register T* first, register T* last, const T value)
{
CoinFillN(first, last - first, value);
}
//#############################################################################
/** This helper function fills an array with zero. For speed 8 entries
are filled at a time. The array is given by a pointer to its first entry
and its size.
Note JJF - the speed claim seems to be false on IA32 so I have allowed
for memset as an alternative */
template <class T> inline void
CoinZeroN(register T* to, const int size)
{
#ifdef USE_MEMCPY
// Use memset - seems faster on Intel with gcc
#ifndef NDEBUG
// Some debug so check
if (size < 0)
throw CoinError("trying to fill negative number of entries",
"CoinZeroN", "");
#endif
memset(to,0,size*sizeof(T));
#else
if (size == 0)
return;
#ifndef NDEBUG
if (size < 0)
throw CoinError("trying to fill negative number of entries",
"CoinZeroN", "");
#endif
#if 1
for (register int n = size / 8; n > 0; --n, to += 8) {
to[0] = 0;
to[1] = 0;
to[2] = 0;
to[3] = 0;
to[4] = 0;
to[5] = 0;
to[6] = 0;
to[7] = 0;
}
switch (size % 8) {
case 7: to[6] = 0;
case 6: to[5] = 0;
case 5: to[4] = 0;
case 4: to[3] = 0;
case 3: to[2] = 0;
case 2: to[1] = 0;
case 1: to[0] = 0;
case 0: break;
}
#else
// Use Duff's device to fill
register int n = (size + 7) / 8;
--to;
switch (size % 8) {
case 0: do{ *++to = 0;
case 7: *++to = 0;
case 6: *++to = 0;
case 5: *++to = 0;
case 4: *++to = 0;
case 3: *++to = 0;
case 2: *++to = 0;
case 1: *++to = 0;
}while(--n>0);
}
#endif
#endif
}
/// This Debug helper function checks an array is all zero
inline void
CoinCheckDoubleZero(double * to, const int size)
{
int n=0;
for (int j=0;j<size;j++) {
if (to[j])
n++;
}
if (n) {
printf("array of length %d should be zero has %d nonzero\n",size,n);
}
}
/// This Debug helper function checks an array is all zero
inline void
CoinCheckIntZero(int * to, const int size)
{
int n=0;
for (int j=0;j<size;j++) {
if (to[j])
n++;
}
if (n) {
printf("array of length %d should be zero has %d nonzero\n",size,n);
}
}
//-----------------------------------------------------------------------------
/** This helper function fills an array with a given value. For speed 8
entries are filled at a time. The array is given by its first and "after
last" entry. */
template <class T> inline void
CoinZero(register T* first, register T* last)
{
CoinZeroN(first, last - first);
}
//#############################################################################
/** Returns strdup or NULL if original NULL */
inline char * CoinStrdup(const char * name)
{
char* dup = NULL;
if (name) {
const int len = static_cast<int>(strlen(name));
dup = static_cast<char*>(malloc(len+1));
CoinMemcpyN(name, len, dup);
dup[len] = 0;
}
return dup;
}
//#############################################################################
/** Return the larger (according to <code>operator<()</code> of the arguments.
This function was introduced because for some reason compiler tend to
handle the <code>max()</code> function differently. */
template <class T> inline T
CoinMax(register const T x1, register const T x2)
{
return (x1 > x2) ? x1 : x2;
}
//-----------------------------------------------------------------------------
/** Return the smaller (according to <code>operator<()</code> of the arguments.
This function was introduced because for some reason compiler tend to
handle the min() function differently. */
template <class T> inline T
CoinMin(register const T x1, register const T x2)
{
return (x1 < x2) ? x1 : x2;
}
//-----------------------------------------------------------------------------
/** Return the absolute value of the argument. This function was introduced
because for some reason compiler tend to handle the abs() function
differently. */
template <class T> inline T
CoinAbs(const T value)
{
return value<0 ? -value : value;
}
//#############################################################################
/** This helper function tests whether the entries of an array are sorted
according to operator<. The array is given by a pointer to its first entry
and by its size. */
template <class T> inline bool
CoinIsSorted(register const T* first, const int size)
{
if (size == 0)
return true;
#ifndef NDEBUG
if (size < 0)
throw CoinError("negative number of entries", "CoinIsSorted", "");
#endif
#if 1
// size1 is the number of comparisons to be made
const int size1 = size - 1;
for (register int n = size1 / 8; n > 0; --n, first += 8) {
if (first[8] < first[7]) return false;
if (first[7] < first[6]) return false;
if (first[6] < first[5]) return false;
if (first[5] < first[4]) return false;
if (first[4] < first[3]) return false;
if (first[3] < first[2]) return false;
if (first[2] < first[1]) return false;
if (first[1] < first[0]) return false;
}
switch (size1 % 8) {
case 7: if (first[7] < first[6]) return false;
case 6: if (first[6] < first[5]) return false;
case 5: if (first[5] < first[4]) return false;
case 4: if (first[4] < first[3]) return false;
case 3: if (first[3] < first[2]) return false;
case 2: if (first[2] < first[1]) return false;
case 1: if (first[1] < first[0]) return false;
case 0: break;
}
#else
register const T* next = first;
register const T* last = first + size;
for (++next; next != last; first = next, ++next)
if (*next < *first)
return false;
#endif
return true;
}
//-----------------------------------------------------------------------------
/** This helper function tests whether the entries of an array are sorted
according to operator<. The array is given by its first and "after
last" entry. */
template <class T> inline bool
CoinIsSorted(register const T* first, register const T* last)
{
return CoinIsSorted(first, static_cast<int>(last - first));
}
//#############################################################################
/** This helper function fills an array with the values init, init+1, init+2,
etc. For speed 8 entries are filled at a time. The array is given by a
pointer to its first entry and its size. */
template <class T> inline void
CoinIotaN(register T* first, const int size, register T init)
{
if (size == 0)
return;
#ifndef NDEBUG
if (size < 0)
throw CoinError("negative number of entries", "CoinIotaN", "");
#endif
#if 1
for (register int n = size / 8; n > 0; --n, first += 8, init += 8) {
first[0] = init;
first[1] = init + 1;
first[2] = init + 2;
first[3] = init + 3;
first[4] = init + 4;
first[5] = init + 5;
first[6] = init + 6;
first[7] = init + 7;
}
switch (size % 8) {
case 7: first[6] = init + 6;
case 6: first[5] = init + 5;
case 5: first[4] = init + 4;
case 4: first[3] = init + 3;
case 3: first[2] = init + 2;
case 2: first[1] = init + 1;
case 1: first[0] = init;
case 0: break;
}
#else
// Use Duff's device to fill
register int n = (size + 7) / 8;
--first;
--init;
switch (size % 8) {
case 0: do{ *++first = ++init;
case 7: *++first = ++init;
case 6: *++first = ++init;
case 5: *++first = ++init;
case 4: *++first = ++init;
case 3: *++first = ++init;
case 2: *++first = ++init;
case 1: *++first = ++init;
}while(--n>0);
}
#endif
}
//-----------------------------------------------------------------------------
/** This helper function fills an array with the values init, init+1, init+2,
etc. For speed 8 entries are filled at a time. The array is given by its
first and "after last" entry. */
template <class T> inline void
CoinIota(T* first, const T* last, T init)
{
CoinIotaN(first, last-first, init);
}
//#############################################################################
/** This helper function deletes certain entries from an array. The array is
given by pointers to its first and "after last" entry (first two
arguments). The positions of the entries to be deleted are given in the
integer array specified by the last two arguments (again, first and "after
last" entry). */
template <class T> inline T *
CoinDeleteEntriesFromArray(register T * arrayFirst, register T * arrayLast,
const int * firstDelPos, const int * lastDelPos)
{
int delNum = static_cast<int>(lastDelPos - firstDelPos);
if (delNum == 0)
return arrayLast;
if (delNum < 0)
throw CoinError("trying to delete negative number of entries",
"CoinDeleteEntriesFromArray", "");
int * delSortedPos = NULL;
if (! (CoinIsSorted(firstDelPos, lastDelPos) &&
std::adjacent_find(firstDelPos, lastDelPos) == lastDelPos)) {
// the positions of the to be deleted is either not sorted or not unique
delSortedPos = new int[delNum];
CoinDisjointCopy(firstDelPos, lastDelPos, delSortedPos);
std::sort(delSortedPos, delSortedPos + delNum);
delNum = static_cast<int>(std::unique(delSortedPos,
delSortedPos+delNum) - delSortedPos);
}
const int * delSorted = delSortedPos ? delSortedPos : firstDelPos;
const int last = delNum - 1;
int size = delSorted[0];
for (int i = 0; i < last; ++i) {
const int copyFirst = delSorted[i] + 1;
const int copyLast = delSorted[i+1];
CoinCopy(arrayFirst + copyFirst, arrayFirst + copyLast,
arrayFirst + size);
size += copyLast - copyFirst;
}
const int copyFirst = delSorted[last] + 1;
const int copyLast = static_cast<int>(arrayLast - arrayFirst);
CoinCopy(arrayFirst + copyFirst, arrayFirst + copyLast,
arrayFirst + size);
size += copyLast - copyFirst;
if (delSortedPos)
delete[] delSortedPos;
return arrayFirst + size;
}
//#############################################################################
#define COIN_OWN_RANDOM_32
#if defined COIN_OWN_RANDOM_32
/* Thanks to Stefano Gliozzi for providing an operating system
independent random number generator. */
/*! \brief Return a random number between 0 and 1
A platform-independent linear congruential generator. For a given seed, the
generated sequence is always the same regardless of the (32-bit)
architecture. This allows to build & test in different environments, getting
in most cases the same optimization path.
Set \p isSeed to true and supply an integer seed to set the seed
(vid. #CoinSeedRandom)
\todo Anyone want to volunteer an upgrade for 64-bit architectures?
*/
inline double CoinDrand48 (bool isSeed = false, unsigned int seed = 1)
{
static unsigned int last = 123456;
if (isSeed) {
last = seed;
} else {
last = 1664525*last+1013904223;
return ((static_cast<double> (last))/4294967296.0);
}
return (0.0);
}
/// Set the seed for the random number generator
inline void CoinSeedRandom(int iseed)
{
CoinDrand48(true, iseed);
}
#else // COIN_OWN_RANDOM_32
#if defined(_MSC_VER) || defined(__MINGW32__) || defined(__CYGWIN32__)
/// Return a random number between 0 and 1
inline double CoinDrand48() { return rand() / (double) RAND_MAX; }
/// Set the seed for the random number generator
inline void CoinSeedRandom(int iseed) { srand(iseed + 69822); }
#else
/// Return a random number between 0 and 1
inline double CoinDrand48() { return drand48(); }
/// Set the seed for the random number generator
inline void CoinSeedRandom(int iseed) { srand48(iseed + 69822); }
#endif
#endif // COIN_OWN_RANDOM_32
//#############################################################################
/** This function figures out whether file names should contain slashes or
backslashes as directory separator */
inline char CoinFindDirSeparator()
{
int size = 1000;
char* buf = 0;
while (true) {
buf = new char[size];
if (getcwd(buf, size))
break;
delete[] buf;
buf = 0;
size = 2*size;
}
// if first char is '/' then it's unix and the dirsep is '/'. otherwise we
// assume it's dos and the dirsep is '\'
char dirsep = buf[0] == '/' ? '/' : '\\';
delete[] buf;
return dirsep;
}
//#############################################################################
inline int CoinStrNCaseCmp(const char* s0, const char* s1,
const size_t len)
{
for (size_t i = 0; i < len; ++i) {
if (s0[i] == 0) {
return s1[i] == 0 ? 0 : -1;
}
if (s1[i] == 0) {
return 1;
}
const int c0 = std::tolower(s0[i]);
const int c1 = std::tolower(s1[i]);
if (c0 < c1)
return -1;
if (c0 > c1)
return 1;
}
return 0;
}
//#############################################################################
/// Swap the arguments.
template <class T> inline void CoinSwap (T &x, T &y)
{
T t = x;
x = y;
y = t;
}
//#############################################################################
/** This helper function copies an array to file
Returns 0 if OK, 1 if bad write.
*/
template <class T> inline int
CoinToFile( const T* array, CoinBigIndex size, FILE * fp)
{
CoinBigIndex numberWritten;
if (array&&size) {
numberWritten =
static_cast<CoinBigIndex>(fwrite(&size,sizeof(int),1,fp));
if (numberWritten!=1)
return 1;
numberWritten =
static_cast<CoinBigIndex>(fwrite(array,sizeof(T),size_t(size),fp));
if (numberWritten!=size)
return 1;
} else {
size = 0;
numberWritten =
static_cast<CoinBigIndex>(fwrite(&size,sizeof(int),1,fp));
if (numberWritten!=1)
return 1;
}
return 0;
}
//#############################################################################
/** This helper function copies an array from file and creates with new.
Passed in array is ignored i.e. not deleted.
But if NULL and size does not match and newSize 0 then leaves as NULL and 0
Returns 0 if OK, 1 if bad read, 2 if size did not match.
*/
template <class T> inline int
CoinFromFile( T* &array, CoinBigIndex size, FILE * fp, CoinBigIndex & newSize)
{
CoinBigIndex numberRead;
numberRead =
static_cast<CoinBigIndex>(fread(&newSize,sizeof(int),1,fp));
if (numberRead!=1)
return 1;
int returnCode=0;
if (size!=newSize&&(newSize||array))
returnCode=2;
if (newSize) {
array = new T [newSize];
numberRead =
static_cast<CoinBigIndex>(fread(array,sizeof(T),newSize,fp));
if (numberRead!=newSize)
returnCode=1;
} else {
array = NULL;
}
return returnCode;
}
//#############################################################################
/// Cube Root
#if 0
inline double CoinCbrt(double x)
{
#if defined(_MSC_VER)
return pow(x,(1./3.));
#else
return cbrt(x);
#endif
}
#endif
//-----------------------------------------------------------------------------
/// This helper returns "sizeof" as an int
#define CoinSizeofAsInt(type) (static_cast<int>(sizeof(type)))
/// This helper returns "strlen" as an int
inline int
CoinStrlenAsInt(const char * string)
{
return static_cast<int>(strlen(string));
}
/** Class for thread specific random numbers
*/
#if defined COIN_OWN_RANDOM_32
class CoinThreadRandom {
public:
/**@name Constructors, destructor */
//@{
/** Default constructor. */
CoinThreadRandom()
{ seed_=12345678;}
/** Constructor wih seed. */
CoinThreadRandom(int seed)
{
seed_ = seed;
}
/** Destructor */
~CoinThreadRandom() {}
// Copy
CoinThreadRandom(const CoinThreadRandom & rhs)
{ seed_ = rhs.seed_;}
// Assignment
CoinThreadRandom& operator=(const CoinThreadRandom & rhs)
{
if (this != &rhs) {
seed_ = rhs.seed_;
}
return *this;
}
//@}
/**@name Sets/gets */
//@{
/** Set seed. */
inline void setSeed(int seed)
{
seed_ = seed;
}
/** Get seed. */
inline unsigned int getSeed() const
{
return seed_;
}
/// return a random number
inline double randomDouble() const
{
double retVal;
seed_ = 1664525*(seed_)+1013904223;
retVal = ((static_cast<double> (seed_))/4294967296.0);
return retVal;
}
/// make more random (i.e. for startup)
inline void randomize(int n=0)
{
if (!n)
n=seed_ & 255;
for (int i=0;i<n;i++)
randomDouble();
}
//@}
protected:
/**@name Data members
The data members are protected to allow access for derived classes. */
//@{
/// Current seed
mutable unsigned int seed_;
//@}
};
#else
class CoinThreadRandom {
public:
/**@name Constructors, destructor */
//@{
/** Default constructor. */
CoinThreadRandom()
{ seed_[0]=50000;seed_[1]=40000;seed_[2]=30000;}
/** Constructor wih seed. */
CoinThreadRandom(const unsigned short seed[3])
{ memcpy(seed_,seed,3*sizeof(unsigned short));}
/** Constructor wih seed. */
CoinThreadRandom(int seed)
{
union { int i[2]; unsigned short int s[4];} put;
put.i[0]=seed;
put.i[1]=seed;
memcpy(seed_,put.s,3*sizeof(unsigned short));
}
/** Destructor */
~CoinThreadRandom() {}
// Copy
CoinThreadRandom(const CoinThreadRandom & rhs)
{ memcpy(seed_,rhs.seed_,3*sizeof(unsigned short));}
// Assignment
CoinThreadRandom& operator=(const CoinThreadRandom & rhs)
{
if (this != &rhs) {
memcpy(seed_,rhs.seed_,3*sizeof(unsigned short));
}
return *this;
}
//@}
/**@name Sets/gets */
//@{
/** Set seed. */
inline void setSeed(const unsigned short seed[3])
{ memcpy(seed_,seed,3*sizeof(unsigned short));}
/** Set seed. */
inline void setSeed(int seed)
{
union { int i[2]; unsigned short int s[4];} put;
put.i[0]=seed;
put.i[1]=seed;
memcpy(seed_,put.s,3*sizeof(unsigned short));
}
/// return a random number
inline double randomDouble() const
{
double retVal;
#if defined(_MSC_VER) || defined(__MINGW32__) || defined(__CYGWIN32__)
retVal=rand();
retVal=retVal/(double) RAND_MAX;
#else
retVal = erand48(seed_);
#endif
return retVal;
}
/// make more random (i.e. for startup)
inline void randomize(int n=0)
{
if (!n) {
n=seed_[0]+seed_[1]+seed_[2];
n &= 255;
}
for (int i=0;i<n;i++)
randomDouble();
}
//@}
protected:
/**@name Data members
The data members are protected to allow access for derived classes. */
//@{
/// Current seed
mutable unsigned short seed_[3];
//@}
};
#endif
#ifndef COIN_DETAIL
#define COIN_DETAIL_PRINT(s) {}
#else
#define COIN_DETAIL_PRINT(s) s
#endif
#endif
|