/usr/include/coin/CoinSimpFactorization.hpp is in coinor-libcoinutils-dev 2.9.15-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 | /* $Id: CoinSimpFactorization.hpp 1416 2011-04-17 09:57:29Z stefan $ */
// Copyright (C) 2008, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
/*
This is a simple factorization of the LP Basis
*/
#ifndef CoinSimpFactorization_H
#define CoinSimpFactorization_H
#include <iostream>
#include <string>
#include <cassert>
#include "CoinTypes.hpp"
#include "CoinIndexedVector.hpp"
#include "CoinDenseFactorization.hpp"
class CoinPackedMatrix;
/// pointers used during factorization
class FactorPointers{
public:
double *rowMax;
int *firstRowKnonzeros;
int *prevRow;
int *nextRow;
int *firstColKnonzeros;
int *prevColumn;
int *nextColumn;
int *newCols;
//constructor
FactorPointers( int numRows, int numCols, int *UrowLengths_, int *UcolLengths_ );
// destructor
~ FactorPointers();
};
class CoinSimpFactorization : public CoinOtherFactorization {
friend void CoinSimpFactorizationUnitTest( const std::string & mpsDir );
public:
/**@name Constructors and destructor and copy */
//@{
/// Default constructor
CoinSimpFactorization ( );
/// Copy constructor
CoinSimpFactorization ( const CoinSimpFactorization &other);
/// Destructor
virtual ~CoinSimpFactorization ( );
/// = copy
CoinSimpFactorization & operator = ( const CoinSimpFactorization & other );
/// Clone
virtual CoinOtherFactorization * clone() const ;
//@}
/**@name Do factorization - public */
//@{
/// Gets space for a factorization
virtual void getAreas ( int numberRows,
int numberColumns,
CoinBigIndex maximumL,
CoinBigIndex maximumU );
/// PreProcesses column ordered copy of basis
virtual void preProcess ( );
/** Does most of factorization returning status
0 - OK
-99 - needs more memory
-1 - singular - use numberGoodColumns and redo
*/
virtual int factor ( );
/// Does post processing on valid factorization - putting variables on correct rows
virtual void postProcess(const int * sequence, int * pivotVariable);
/// Makes a non-singular basis by replacing variables
virtual void makeNonSingular(int * sequence, int numberColumns);
//@}
/**@name general stuff such as status */
//@{
/// Total number of elements in factorization
virtual inline int numberElements ( ) const {
return numberRows_*(numberColumns_+numberPivots_);
}
/// Returns maximum absolute value in factorization
double maximumCoefficient() const;
//@}
/**@name rank one updates which do exist */
//@{
/** Replaces one Column to basis,
returns 0=OK, 1=Probably OK, 2=singular, 3=no room
If checkBeforeModifying is true will do all accuracy checks
before modifying factorization. Whether to set this depends on
speed considerations. You could just do this on first iteration
after factorization and thereafter re-factorize
partial update already in U */
virtual int replaceColumn ( CoinIndexedVector * regionSparse,
int pivotRow,
double pivotCheck ,
bool checkBeforeModifying=false,
double acceptablePivot=1.0e-8);
//@}
/**@name various uses of factorization (return code number elements)
which user may want to know about */
//@{
/** Updates one column (FTRAN) from regionSparse2
Tries to do FT update
number returned is negative if no room
regionSparse starts as zero and is zero at end.
Note - if regionSparse2 packed on input - will be packed on output
*/
virtual int updateColumnFT ( CoinIndexedVector * regionSparse,
CoinIndexedVector * regionSparse2,
bool noPermute=false);
/** This version has same effect as above with FTUpdate==false
so number returned is always >=0 */
virtual int updateColumn ( CoinIndexedVector * regionSparse,
CoinIndexedVector * regionSparse2,
bool noPermute=false) const;
/// does FTRAN on two columns
virtual int updateTwoColumnsFT(CoinIndexedVector * regionSparse1,
CoinIndexedVector * regionSparse2,
CoinIndexedVector * regionSparse3,
bool noPermute=false);
/// does updatecolumn if save==true keeps column for replace column
int upColumn ( CoinIndexedVector * regionSparse,
CoinIndexedVector * regionSparse2,
bool noPermute=false, bool save=false) const;
/** Updates one column (BTRAN) from regionSparse2
regionSparse starts as zero and is zero at end
Note - if regionSparse2 packed on input - will be packed on output
*/
virtual int updateColumnTranspose ( CoinIndexedVector * regionSparse,
CoinIndexedVector * regionSparse2) const;
/// does updateColumnTranspose, the other is a wrapper
int upColumnTranspose ( CoinIndexedVector * regionSparse,
CoinIndexedVector * regionSparse2) const;
//@}
/// *** Below this user may not want to know about
/**@name various uses of factorization
which user may not want to know about (left over from my LP code) */
//@{
/// Get rid of all memory
inline void clearArrays()
{ gutsOfDestructor();}
/// Returns array to put basis indices in
inline int * indices() const
{ return reinterpret_cast<int *> (elements_+numberRows_*numberRows_);}
/// Returns permute in
virtual inline int * permute() const
{ return pivotRow_;}
//@}
/// The real work of destructor
void gutsOfDestructor();
/// The real work of constructor
void gutsOfInitialize();
/// The real work of copy
void gutsOfCopy(const CoinSimpFactorization &other);
/// calls factorization
void factorize(int numberOfRows,
int numberOfColumns,
const int colStarts[],
const int indicesRow[],
const double elements[]);
/// main loop of factorization
int mainLoopFactor (FactorPointers &pointers );
/// copies L by rows
void copyLbyRows();
/// copies U by columns
void copyUbyColumns();
/// finds a pivot element using Markowitz count
int findPivot(FactorPointers &pointers, int &r, int &s, bool &ifSlack);
/// finds a pivot in a shortest column
int findPivotShCol(FactorPointers &pointers, int &r, int &s);
/// finds a pivot in the first column available
int findPivotSimp(FactorPointers &pointers, int &r, int &s);
/// does Gauss elimination
void GaussEliminate(FactorPointers &pointers, int &r, int &s);
/// finds short row that intersects a given column
int findShortRow(const int column, const int length, int &minRow,
int &minRowLength, FactorPointers &pointers);
/// finds short column that intersects a given row
int findShortColumn(const int row, const int length, int &minCol,
int &minColLength, FactorPointers &pointers);
/// finds maximum absolute value in a row
double findMaxInRrow(const int row, FactorPointers &pointers);
/// does pivoting
void pivoting(const int pivotRow, const int pivotColumn,
const double invPivot, FactorPointers &pointers);
/// part of pivoting
void updateCurrentRow(const int pivotRow, const int row,
const double multiplier, FactorPointers &pointers,
int &newNonZeros);
/// allocates more space for L
void increaseLsize();
/// allocates more space for a row of U
void increaseRowSize(const int row, const int newSize);
/// allocates more space for a column of U
void increaseColSize(const int column, const int newSize, const bool b);
/// allocates more space for rows of U
void enlargeUrow(const int numNewElements);
/// allocates more space for columns of U
void enlargeUcol(const int numNewElements, const bool b);
/// finds a given row in a column
int findInRow(const int row, const int column);
/// finds a given column in a row
int findInColumn(const int column, const int row);
/// declares a row inactive
void removeRowFromActSet(const int row, FactorPointers &pointers);
/// declares a column inactive
void removeColumnFromActSet(const int column, FactorPointers &pointers);
/// allocates space for U
void allocateSpaceForU();
/// allocates several working arrays
void allocateSomeArrays();
/// initializes some numbers
void initialSomeNumbers();
/// solves L x = b
void Lxeqb(double *b) const;
/// same as above but with two rhs
void Lxeqb2(double *b1, double *b2) const;
/// solves U x = b
void Uxeqb(double *b, double *sol) const;
/// same as above but with two rhs
void Uxeqb2(double *b1, double *sol1, double *sol2, double *b2) const;
/// solves x L = b
void xLeqb(double *b) const;
/// solves x U = b
void xUeqb(double *b, double *sol) const;
/// updates factorization after a Simplex iteration
int LUupdate(int newBasicCol);
/// creates a new eta vector
void newEta(int row, int numNewElements);
/// makes a copy of row permutations
void copyRowPermutations();
/// solves H x = b, where H is a product of eta matrices
void Hxeqb(double *b) const;
/// same as above but with two rhs
void Hxeqb2(double *b1, double *b2) const;
/// solves x H = b
void xHeqb(double *b) const;
/// does FTRAN
void ftran(double *b, double *sol, bool save) const;
/// same as above but with two columns
void ftran2(double *b1, double *sol1, double *b2, double *sol2) const;
/// does BTRAN
void btran(double *b, double *sol) const;
///---------------------------------------
//@}
protected:
/** Returns accuracy status of replaceColumn
returns 0=OK, 1=Probably OK, 2=singular */
int checkPivot(double saveFromU, double oldPivot) const;
////////////////// data //////////////////
protected:
/**@name data */
//@{
/// work array (should be initialized to zero)
double *denseVector_;
/// work array
double *workArea2_;
/// work array
double *workArea3_;
/// array of labels (should be initialized to zero)
int *vecLabels_;
/// array of indices
int *indVector_;
/// auxiliary vector
double *auxVector_;
/// auxiliary vector
int *auxInd_;
/// vector to keep for LUupdate
double *vecKeep_;
/// indices of this vector
int *indKeep_;
/// number of nonzeros
mutable int keepSize_;
/// Starts of the rows of L
int *LrowStarts_;
/// Lengths of the rows of L
int *LrowLengths_;
/// L by rows
double *Lrows_;
/// indices in the rows of L
int *LrowInd_;
/// Size of Lrows_;
int LrowSize_;
/// Capacity of Lrows_
int LrowCap_;
/// Starts of the columns of L
int *LcolStarts_;
/// Lengths of the columns of L
int *LcolLengths_;
/// L by columns
double *Lcolumns_;
/// indices in the columns of L
int *LcolInd_;
/// numbers of elements in L
int LcolSize_;
/// maximum capacity of L
int LcolCap_;
/// Starts of the rows of U
int *UrowStarts_;
/// Lengths of the rows of U
int *UrowLengths_;
#ifdef COIN_SIMP_CAPACITY
/// Capacities of the rows of U
int *UrowCapacities_;
#endif
/// U by rows
double *Urows_;
/// Indices in the rows of U
int *UrowInd_;
/// maximum capacity of Urows
int UrowMaxCap_;
/// number of used places in Urows
int UrowEnd_;
/// first row in U
int firstRowInU_;
/// last row in U
int lastRowInU_;
/// previous row in U
int *prevRowInU_;
/// next row in U
int *nextRowInU_;
/// Starts of the columns of U
int *UcolStarts_;
/// Lengths of the columns of U
int *UcolLengths_;
#ifdef COIN_SIMP_CAPACITY
/// Capacities of the columns of U
int *UcolCapacities_;
#endif
/// U by columns
double *Ucolumns_;
/// Indices in the columns of U
int *UcolInd_;
/// previous column in U
int *prevColInU_;
/// next column in U
int *nextColInU_;
/// first column in U
int firstColInU_;
/// last column in U
int lastColInU_;
/// maximum capacity of Ucolumns_
int UcolMaxCap_;
/// last used position in Ucolumns_
int UcolEnd_;
/// indicator of slack variables
int *colSlack_;
/// inverse values of the elements of diagonal of U
double *invOfPivots_;
/// permutation of columns
int *colOfU_;
/// position of column after permutation
int *colPosition_;
/// permutations of rows
int *rowOfU_;
/// position of row after permutation
int *rowPosition_;
/// permutations of rows during LUupdate
int *secRowOfU_;
/// position of row after permutation during LUupdate
int *secRowPosition_;
/// position of Eta vector
int *EtaPosition_;
/// Starts of eta vectors
int *EtaStarts_;
/// Lengths of eta vectors
int *EtaLengths_;
/// columns of eta vectors
int *EtaInd_;
/// elements of eta vectors
double *Eta_;
/// number of elements in Eta_
int EtaSize_;
/// last eta row
int lastEtaRow_;
/// maximum number of eta vectors
int maxEtaRows_;
/// Capacity of Eta_
int EtaMaxCap_;
/// minimum storage increase
int minIncrease_;
/// maximum size for the diagonal of U after update
double updateTol_;
/// do Shul heuristic
bool doSuhlHeuristic_;
/// maximum of U
double maxU_;
/// bound on the growth rate
double maxGrowth_;
/// maximum of A
double maxA_;
/// maximum number of candidates for pivot
int pivotCandLimit_;
/// number of slacks in basis
int numberSlacks_;
/// number of slacks in irst basis
int firstNumberSlacks_;
//@}
};
#endif
|