/usr/share/gauche-0.9/0.9.5/lib/srfi-113.scm is in gauche 0.9.5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 | ;;
;; Copyright (C) John Cowan 2013. All Rights Reserved.
;;
;; Permission is hereby granted, free of charge, to any person obtaining
;; a copy of this software and associated documentation
;; files (the "Software"), to deal in the Software without restriction,
;; including without limitation the rights to use, copy, modify, merge,
;; publish, distribute, sublicense, and/or sell copies of the Software,
;; and to permit persons to whom the Software is furnished to do so,
;; subject to the following conditions:
;;
;; The above copyright notice and this permission notice shall be
;; included in all copies or substantial portions of the Software.
;;
;; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
;; EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
;; MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
;; NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
;; LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
;; OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
;; WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
;; Apapted to Gauche by Shiro Kawai
;;;; Implementation of general sets and bags for SRFI 113
;;; A "sob" object is the representation of both sets and bags.
;;; This allows each set-* and bag-* procedure to be implemented
;;; using the same code, without having to deal in ugly indirections
;;; over the field accessors. There are three fields, "sob-multi?",
;;; "sob-hash-table", and "sob-comparator."
;;; The value of "sob-multi?" is #t for bags and #f for sets.
;;; "Sob-hash-table" maps the elements of the sob to the number of times
;;; the element appears, which is always 1 for a set, any positive value
;;; for a bag. "Sob-comparator" is the comparator for the elements of
;;; the set.
;;; Note that sob-* procedures do not do type checking or (typically) the
;;; copying required for supporting pure functional update. These things
;;; are done by the set-* and bag-* procedures, which are externally
;;; exposed (but trivial and mostly uncommented below).
;;; Shim to convert from SRFI 69 to the future "intermediate hash tables"
;;; SRFI. Unfortunately, hash-table-fold is incompatible between the two
;;; and so is not usable.
(define-module srfi-113
(use srfi-114)
(use gauche.collection)
(use gauche.generator)
(export set set-unfold
set? set-contains? set-empty? set-disjoint?
set-member set-element-comparator
set-adjoin set-adjoin! set-replace set-replace!
set-delete set-delete! set-delete-all set-delete-all! set-search!
set-size set-find set-count set-any? set-every?
set-map set-for-each set-fold
set-filter set-remove set-remove set-partition
set-filter! set-remove! set-partition!
set-copy set->list list->set list->set!
set=? set<? set>? set<=? set>=?
set-union set-intersection set-difference set-xor
set-union! set-intersection! set-difference! set-xor!
set-comparator
bag bag-unfold
bag? bag-contains? bag-empty? bag-disjoint?
bag-member bag-element-comparator
bag-adjoin bag-adjoin! bag-replace bag-replace!
bag-delete bag-delete! bag-delete-all bag-delete-all! bag-search!
bag-size bag-find bag-count bag-any? bag-every?
bag-map bag-for-each bag-fold
bag-filter bag-remove bag-partition
bag-filter! bag-remove! bag-partition!
bag-copy bag->list list->bag list->bag!
bag=? bag<? bag>? bag<=? bag>=?
bag-union bag-intersection bag-difference bag-xor
bag-union! bag-intersection! bag-difference! bag-xor!
bag-comparator
bag-sum bag-sum! bag-product bag-product!
bag-unique-size bag-element-count bag-for-each-unique bag-fold-unique
bag-increment! bag-decrement! bag->set set->bag set->bag!
bag->alist alist->bag
))
(select-module srfi-113)
;; Gauche adaptation
(define hash-table-contains? hash-table-exists?)
(define (hash-table-for-each proc hash-table) ; argument order reversed
((with-module gauche hash-table-for-each) hash-table proc))
(define make-hash-table/comparator make-hash-table)
(define hash-table-size hash-table-num-entries)
(define hash-table-ref/default hash-table-get)
(define hash-table-set! hash-table-put!)
(define hash-table-update!/default hash-table-update!)
(define-class <sob> (<collection>)
((table :init-keyword :table)))
(define-class <set> (<sob>) ())
(define-class <bag> (<sob>) ())
(define (raw-make-sob hash-table comparator multi?)
(if multi?
(make <bag> :table hash-table)
(make <set> :table hash-table)))
(define (set? obj) (is-a? obj <set>))
(define (bag? obj) (is-a? obj <bag>))
;; we assume sob is either <set> or <bag>
(define (sob-hash-table sob) (slot-ref sob 'table))
(define (sob-comparator sob) (hash-table-comparator (slot-ref sob'table)))
(define (sob-multi? sob) (is-a? sob <bag>))
(define-method object-hash ((obj <sob>)) (sob-hash obj))
(define-method object-equal? ((a <set>) (b <set>)) (sob=? a b))
(define-method object-equal? ((a <bag>) (b <bag>)) (sob=? a b))
(define-method call-with-iterator ((obj <sob>) proc :allow-other-keys)
($ call-with-iterator (sob-hash-table obj)
(^[end? next]
(define current (if (end?) #f (next))) ; (<item> . <count>)
(define (over?) (or (not current) (and (end?) (zero? (cdr current)))))
(define (get) (and (pair? current)
(if (zero? (cdr current))
(and (not (end?))
(begin (set! current (next))
(dec! (cdr current))
(car current)))
(begin (dec! (cdr current))
(car current)))))
(proc over? get))))
;; TODO: To impelment call-with-builder, we need some way to specify
;; comparator argument for the constructor.
;; The following code is mostly intact from the reference implementation
;; (I commented out some irrelevant definitions.)
;;; Record definition and core typing/checking procedures
;; (define-record-type sob
;; (raw-make-sob hash-table comparator multi?)
;; sob?
;; (hash-table sob-hash-table)
;; (comparator sob-comparator)
;; (multi? sob-multi?))
;; (define (set? obj) (and (sob? obj) (not (sob-multi? obj))))
;; (define (bag? obj) (and (sob? obj) (sob-multi? obj)))
(define (check-set obj) (if (not (set? obj)) (error "not a set" obj)))
(define (check-bag obj) (if (not (bag? obj)) (error "not a bag" obj)))
;; These procedures verify that not only are their arguments all sets
;; or all bags as the case may be, but also share the same comparator.
(define (check-all-sets list)
(for-each (lambda (obj) (check-set obj)) list)
(sob-check-comparators list))
(define (check-all-bags list)
(for-each (lambda (obj) (check-bag obj)) list)
(sob-check-comparators list))
(define (sob-check-comparators list)
(if (not (null? list))
(for-each
(lambda (sob)
(check-same-comparator (car list) sob))
(cdr list))))
;; This procedure is used directly when there are exactly two arguments.
;; [SK] Gauche's equal? is more permissive than eq? when comparing comparators.
(define (check-same-comparator a b)
(if (not (equal? (sob-comparator a) (sob-comparator b)))
(error "different comparators" a b)))
;; This procedure defends against inserting an element
;; into a sob that violates its constructor, since
;; typical hash-table implementations don't check for us.
(define (check-element sob element)
(comparator-check-type (sob-comparator sob) element))
;;; Constructors
;; Construct an arbitrary empty sob out of nothing.
(define (make-sob comparator multi?)
(raw-make-sob (make-hash-table/comparator comparator) comparator multi?))
;; Copy a sob, sharing the constructor.
(define (sob-copy sob)
(raw-make-sob (hash-table-copy (sob-hash-table sob))
(sob-comparator sob)
(sob-multi? sob)))
(define (set-copy set)
(check-set set)
(sob-copy set))
(define (bag-copy bag)
(check-bag bag)
(sob-copy bag))
;; Construct an empty sob that shares the constructor of an existing sob.
(define (sob-empty-copy sob)
(make-sob (sob-comparator sob) (sob-multi? sob)))
;; Construct a set or a bag and insert elements into it. These are the
;; simplest external constructors.
(define (set comparator . elements)
(let ((result (make-sob comparator #f)))
(for-each (lambda (x) (sob-increment! result x 1)) elements)
result))
(define (bag comparator . elements)
(let ((result (make-sob comparator #t)))
(for-each (lambda (x) (sob-increment! result x 1)) elements)
result))
;; The fundamental (as opposed to simplest) constructor: unfold the
;; results of iterating a function as a set. In line with SRFI 1,
;; we provide an opportunity to map the sequence of seeds through a
;; mapper function.
(define (sob-unfold stop? mapper successor seed comparator multi?)
(let ((result (make-sob comparator multi?)))
(let loop ((seed seed))
(if (stop? seed)
result
(begin
(sob-increment! result (mapper seed) 1)
(loop (successor seed)))))))
(define (set-unfold continue? mapper successor seed comparator)
(sob-unfold continue? mapper successor seed comparator #f))
(define (bag-unfold continue? mapper successor seed comparator)
(sob-unfold continue? mapper successor seed comparator #t))
;;; Predicates
;; Just a wrapper of hash-table-contains?.
(define (sob-contains? sob member)
(hash-table-contains? (sob-hash-table sob) member))
(define (set-contains? set member)
(check-set set)
(sob-contains? set member))
(define (bag-contains? bag member)
(check-bag bag)
(sob-contains? bag member))
;; A sob is empty if its size is 0.
(define (sob-empty? sob)
(= 0 (hash-table-size (sob-hash-table sob))))
(define (set-empty? set)
(check-set set)
(sob-empty? set))
(define (bag-empty? bag)
(check-bag bag)
(sob-empty? bag))
;; Two sobs are disjoint if, when looping through one, we can't find
;; any of its elements in the other. We have to try both ways:
;; sob-half-disjoint checks just one direction for simplicity.
(define (sob-half-disjoint? a b)
(let ((ha (sob-hash-table a))
(hb (sob-hash-table b)))
(call/cc
(lambda (return)
(hash-table-for-each
(lambda (key val) (if (hash-table-contains? hb key) (return #f)))
ha)
#t))))
(define (set-disjoint? a b)
(check-set a)
(check-set b)
(check-same-comparator a b)
(and (sob-half-disjoint? a b) (sob-half-disjoint? b a)))
(define (bag-disjoint? a b)
(check-bag a)
(check-bag b)
(check-same-comparator a b)
(and (sob-half-disjoint? a b) (sob-half-disjoint? b a)))
;; Accessors
;; If two objects are indistinguishable by the comparator's
;; equality procedure, only one of them will be represented in the sob.
;; This procedure lets us find out which one it is; it will return
;; the value stored in the sob that is equal to the element.
;; Note that we have to search the whole hash table item by item.
;; The default is returned if there is no such element.
(define (sob-member sob element default)
(define (same? a b) (=? (sob-comparator sob) a b))
(call/cc
(lambda (return)
(hash-table-for-each
(lambda (key val) (if (same? key element) (return key)))
(sob-hash-table sob))
default)))
(define (set-member set element default)
(check-set set)
(sob-member set element default))
(define (bag-member bag element default)
(check-bag bag)
(sob-member bag element default))
;; Retrieve the comparator.
(define (set-element-comparator set)
(check-set set)
(sob-comparator set))
(define (bag-element-comparator bag)
(check-bag bag)
(sob-comparator bag))
;; Updaters (pure functional and linear update)
;; The primitive operation for adding an element to a sob.
;; There are a few cases where we bypass this for efficiency.
(define (sob-increment! sob element count)
(check-element sob element)
(hash-table-update!/default
(sob-hash-table sob)
element
(if (sob-multi? sob)
(lambda (value) (+ value count))
(lambda (value) 1))
0))
;; The primitive operation for removing an element from a sob. Note this
;; procedure is incomplete: it allows the count of an element to drop below 1.
;; Therefore, whenever it is used it is necessary to call sob-cleanup!
;; to fix things up. This is done because it is unsafe to remove an
;; object from a hash table while iterating through it.
(define (sob-decrement! sob element count)
(hash-table-update!/default
(sob-hash-table sob)
element
(lambda (value) (- value count))
0))
;; This is the cleanup procedure, which happens in two passes: it
;; iterates through the sob, deciding which elements to remove (those
;; with non-positive counts), and collecting them in a list. When the
;; iteration is done, it is safe to remove the elements using the list,
;; because we are no longer iterating over the hash table. It returns
;; its argument, because it is often tail-called at the end of some
;; procedure that wants to return the clean sob.
(define (sob-cleanup! sob)
(let ((ht (sob-hash-table sob)))
(for-each (lambda (key) (hash-table-delete! ht key))
(nonpositive-keys ht))
sob))
(define (nonpositive-keys ht)
(let ((result '()))
(hash-table-for-each
(lambda (key value)
(when (<= value 0)
(set! result (cons key result))))
ht)
result))
;; We expose these for bags but not sets.
(define (bag-increment! bag element count)
(check-bag bag)
(sob-increment! bag element count)
bag)
(define (bag-decrement! bag element count)
(check-bag bag)
(sob-decrement! bag element count)
(sob-cleanup! bag)
bag)
;; The primitive operation to add elements from a list. We expose
;; this two ways: with a list argument and with multiple arguments.
(define (sob-adjoin-all! sob elements)
(for-each
(lambda (elem)
(sob-increment! sob elem 1))
elements))
(define (set-adjoin! set . elements)
(check-set set)
(sob-adjoin-all! set elements)
set)
(define (bag-adjoin! bag . elements)
(check-bag bag)
(sob-adjoin-all! bag elements)
bag)
;; These versions copy the set or bag before adjoining.
(define (set-adjoin set . elements)
(check-set set)
(let ((result (sob-copy set)))
(sob-adjoin-all! result elements)
result))
(define (bag-adjoin bag . elements)
(check-bag bag)
(let ((result (sob-copy bag)))
(sob-adjoin-all! result elements)
result))
;; Given an element which resides in a set, this makes sure that the
;; specified element is represented by the form given. Thus if a
;; sob contains 2 and the equality predicate is =, then calling
;; (sob-replace! sob 2.0) will replace the 2 with 2.0. Does nothing
;; if there is no such element in the sob.
(define (sob-replace! sob element)
(let* ((comparator (sob-comparator sob))
(= (comparator-equality-predicate comparator))
(ht (sob-hash-table sob)))
(comparator-check-type comparator element)
(call/cc
(lambda (return)
(hash-table-for-each
(lambda (key value)
(when (= key element)
(hash-table-delete! ht key)
(hash-table-set! ht element value)
(return sob)))
ht)
sob))))
(define (set-replace! set element)
(check-set set)
(sob-replace! set element)
set)
(define (bag-replace! bag element)
(check-bag bag)
(sob-replace! bag element)
bag)
;; Non-destructive versions that copy the set first. Yes, a little
;; bit inefficient because it copies the element to be replaced before
;; actually replacing it.
(define (set-replace set element)
(check-set set)
(let ((result (sob-copy set)))
(sob-replace! result element)
result))
(define (bag-replace bag element)
(check-bag bag)
(let ((result (sob-copy bag)))
(sob-replace! result element)
result))
;; The primitive operation to delete elemnets from a list.
;; Like sob-adjoin-all!, this is exposed two ways. It calls
;; sob-cleanup! itself, so its callers don't need to (though it is safe
;; to do so.)
(define (sob-delete-all! sob elements)
(for-each (lambda (element) (sob-decrement! sob element 1)) elements)
(sob-cleanup! sob)
sob)
(define (set-delete! set . elements)
(check-set set)
(sob-delete-all! set elements))
(define (bag-delete! bag . elements)
(check-bag bag)
(sob-delete-all! bag elements))
(define (set-delete-all! set elements)
(check-set set)
(sob-delete-all! set elements))
(define (bag-delete-all! bag elements)
(check-bag bag)
(sob-delete-all! bag elements))
;; Non-destructive version copy first; this is inefficient.
(define (set-delete set . elements)
(check-set set)
(sob-delete-all! (sob-copy set) elements))
(define (bag-delete bag . elements)
(check-bag bag)
(sob-delete-all! (sob-copy bag) elements))
(define (set-delete-all set elements)
(check-set set)
(sob-delete-all! (sob-copy set) elements))
(define (bag-delete-all bag elements)
(check-bag bag)
(sob-delete-all! (sob-copy bag) elements))
;; Flag used by sob-search! to represent a missing object.
(define missing (string-copy "missing"))
;; Searches and then dispatches to user-defined procedures on failure
;; and success, which in turn should reinvoke a procedure to take some
;; action on the set (insert, ignore, replace, or remove).
(define (sob-search! sob element failure success)
(define (insert obj)
(sob-increment! sob element 1)
(values sob obj))
(define (ignore obj)
(values sob obj))
(define (update new-elem obj)
(sob-decrement! sob element 1)
(sob-increment! sob new-elem 1)
(values (sob-cleanup! sob) obj))
(define (remove obj)
(sob-decrement! sob element 1)
(values (sob-cleanup! sob) obj))
(let ((true-element (sob-member sob element missing)))
(if (eq? true-element missing)
(failure insert ignore)
(success true-element update remove))))
(define (set-search! set element failure success)
(check-set set)
(sob-search! set element failure success))
(define (bag-search! bag element failure success)
(check-bag bag)
(sob-search! bag element failure success))
;; Return the size of a sob. If it's a set, we can just use the
;; number of associations in the hash table, but if it's a bag, we
;; have to add up the counts.
(define (sob-size sob)
(if (sob-multi? sob)
(let ((result 0))
(hash-table-for-each
(lambda (elem count) (set! result (+ count result)))
(sob-hash-table sob))
result)
(hash-table-size (sob-hash-table sob))))
(define (set-size set)
(check-set set)
(sob-size set))
(define (bag-size bag)
(check-bag bag)
(sob-size bag))
;; Search a sob to find something that matches a predicate. You don't
;; know which element you will get, so this is not as useful as finding
;; an element in a list or other ordered container. If it's not there,
;; call the failure thunk.
(define (sob-find pred sob failure)
(call/cc
(lambda (return)
(hash-table-for-each
(lambda (key value)
(if (pred key) (return key)))
(sob-hash-table sob))
(failure))))
(define (set-find pred set failure)
(check-set set)
(sob-find pred set failure))
(define (bag-find pred bag failure)
(check-bag bag)
(sob-find pred bag failure))
;; Count the number of elements in the sob that satisfy the predicate.
;; This is a special case of folding.
(define (sob-count pred sob)
(sob-fold
(lambda (elem total) (if (pred elem) (+ total 1) total))
0
sob))
(define (set-count pred set)
(check-set set)
(sob-count pred set))
(define (bag-count pred bag)
(check-bag bag)
(sob-count pred bag))
;; Check if any of the elements in a sob satisfy a predicate. Breaks out
;; early (with call/cc) if a success is found.
(define (sob-any? pred sob)
(call/cc
(lambda (return)
(hash-table-for-each
(lambda (elem value) (if (pred elem) (return #t)))
(sob-hash-table sob))
#f)))
(define (set-any? pred set)
(check-set set)
(sob-any? pred set))
(define (bag-any? pred bag)
(check-bag bag)
(sob-any? pred bag))
;; Analogous to set-any?. Breaks out early if a failure is found.
(define (sob-every? pred sob)
(call/cc
(lambda (return)
(hash-table-for-each
(lambda (elem value) (if (not (pred elem)) (return #f)))
(sob-hash-table sob))
#t)))
(define (set-every? pred set)
(check-set set)
(sob-every? pred set))
(define (bag-every? pred bag)
(check-bag bag)
(sob-every? pred bag))
;;; Mapping and folding
;; A utility for iterating a command n times. This is used by sob-for-each
;; to execute a procedure over the repeated elements in a bag. Because
;; of the representation of sets, it works for them too.
(define (do-n-times cmd n)
(let loop ((n n))
(when (> n 0)
(cmd)
(loop (- n 1)))))
;; Basic iterator over a sob.
(define (sob-for-each proc sob)
(hash-table-for-each
(lambda (key value) (do-n-times (lambda () (proc key)) value))
(sob-hash-table sob)))
(define (set-for-each proc set)
(check-set set)
(sob-for-each proc set))
(define (bag-for-each proc bag)
(check-bag bag)
(sob-for-each proc bag))
;; Fundamental mapping operator. We map over the associations directly,
;; because each instance of an element in a bag will be treated identically
;; anyway; we insert them all at once with sob-increment!.
(define (sob-map proc comparator sob)
(let ((result (make-sob comparator (sob-multi? sob))))
(hash-table-for-each
(lambda (key value) (sob-increment! result (proc key) value))
(sob-hash-table sob))
result))
(define (set-map comparator proc set)
(check-set set)
(sob-map comparator proc set))
(define (bag-map comparator proc bag)
(check-bag bag)
(sob-map comparator proc bag))
;; The fundamental deconstructor. Note that there are no left vs. right
;; folds because there is no order. Each element in a bag is fed into
;; the fold separately.
(define (sob-fold proc nil sob)
(let ((result nil))
(sob-for-each
(lambda (elem) (set! result (proc elem result)))
sob)
result))
(define (set-fold proc nil set)
(check-set set)
(sob-fold proc nil set))
(define (bag-fold proc nil bag)
(check-bag bag)
(sob-fold proc nil bag))
;; Process every element and copy the ones that satisfy the predicate.
;; Identical elements are processed all at once. This is used for both
;; filter and remove.
(define (sob-filter pred sob)
(let ((result (sob-empty-copy sob)))
(hash-table-for-each
(lambda (key value)
(if (pred key) (sob-increment! result key value)))
(sob-hash-table sob))
result))
(define (set-filter pred set)
(check-set set)
(sob-filter pred set))
(define (bag-filter pred bag)
(check-bag bag)
(sob-filter pred bag))
(define (set-remove pred set)
(check-set set)
(sob-filter (lambda (x) (not (pred x))) set))
(define (bag-remove pred bag)
(check-bag bag)
(sob-filter (lambda (x) (not (pred x))) bag))
;; Process each element and remove those that don't satisfy the filter.
;; This does its own cleanup, and is used for both filter! and remove!.
(define (sob-filter! pred sob)
(hash-table-for-each
(lambda (key value)
(if (not (pred key)) (sob-decrement! sob key value)))
(sob-hash-table sob))
(sob-cleanup! sob))
(define (set-filter! pred set)
(check-set set)
(sob-filter! pred set))
(define (bag-filter! pred bag)
(check-bag bag)
(sob-filter! pred bag))
(define (set-remove! pred set)
(check-set set)
(sob-filter! (lambda (x) (not (pred x))) set))
(define (bag-remove! pred bag)
(check-bag bag)
(sob-filter! (lambda (x) (not (pred x))) bag))
;; Create two sobs and copy the elements that satisfy the predicate into
;; one of them, all others into the other. This is more efficient than
;; filtering and removing separately.
(define (sob-partition pred sob)
(let ((res1 (sob-empty-copy sob))
(res2 (sob-empty-copy sob)))
(hash-table-for-each
(lambda (key value)
(if (pred key)
(sob-increment! res1 key value)
(sob-increment! res2 key value)))
(sob-hash-table sob))
(values res1 res2)))
(define (set-partition pred set)
(check-set set)
(sob-partition pred set))
(define (bag-partition pred bag)
(check-bag bag)
(sob-partition pred bag))
;; Create a sob and iterate through the given sob. Anything that satisfies
;; the predicate is left alone; anything that doesn't is removed from the
;; given sob and added to the new sob.
(define (sob-partition! pred sob)
(let ((result (sob-empty-copy sob)))
(hash-table-for-each
(lambda (key value)
(if (not (pred key))
(begin
(sob-decrement! sob key value)
(sob-increment! result key value))))
(sob-hash-table sob))
(values (sob-cleanup! sob) result)))
(define (set-partition! pred set)
(check-set set)
(sob-partition! pred set))
(define (bag-partition! pred bag)
(check-bag bag)
(sob-partition! pred bag))
;;; Copying and conversion
;;; Convert a sob to a list; a special case of sob-fold.
(define (sob->list sob)
(sob-fold (lambda (elem list) (cons elem list)) '() sob))
(define (set->list set)
(check-set set)
(sob->list set))
(define (bag->list bag)
(check-bag bag)
(sob->list bag))
;; Convert a list to a sob. Probably could be done using unfold, but
;; since sobs are mutable anyway, it's just as easy to add the elements
;; by side effect.
(define (list->sob! sob list)
(for-each (lambda (elem) (sob-increment! sob elem 1)) list)
sob)
(define (list->set comparator list)
(list->sob! (make-sob comparator #f) list))
(define (list->bag comparator list)
(list->sob! (make-sob comparator #t) list))
(define (list->set! set list)
(check-set set)
(list->sob! set list))
(define (list->bag! bag list)
(check-bag bag)
(list->sob! bag list))
;;; Subsets
;; All of these procedures follow the same pattern. The
;; sob<op>? procedures are case-lambdas that reduce the multi-argument
;; case to the two-argument case. As usual, the set<op>? and
;; bag<op>? procedures are trivial layers over the sob<op>? procedure.
;; The dyadic-sob<op>? procedures are where it gets interesting, so see
;; the comments on them.
(define sob=?
(case-lambda
((sob) #t)
((sob1 sob2) (dyadic-sob=? sob1 sob2))
((sob1 sob2 . sobs)
(and (dyadic-sob=? sob1 sob2)
(apply sob=? sob2 sobs)))))
(define (set=? . sets)
(check-all-sets sets)
(apply sob=? sets))
(define (bag=? . bags)
(check-all-bags bags)
(apply sob=? bags))
;; First we check that there are the same number of entries in the
;; hashtables of the two sobs; if that's not true, they can't be equal.
;; Then we check that for each key, the values are the same (where
;; being absent counts as a value of 0). If any values aren't equal,
;; again they can't be equal.
(define (dyadic-sob=? sob1 sob2)
(call/cc
(lambda (return)
(let ((ht1 (sob-hash-table sob1))
(ht2 (sob-hash-table sob2)))
(if (not (= (hash-table-size ht1) (hash-table-size ht2)))
(return #f))
(hash-table-for-each
(lambda (key value)
(if (not (= value (hash-table-ref/default ht2 key 0)))
(return #f)))
ht1))
#t)))
(define sob<=?
(case-lambda
((sob) #t)
((sob1 sob2) (dyadic-sob<=? sob1 sob2))
((sob1 sob2 . sobs)
(and (dyadic-sob<=? sob1 sob2)
(apply sob<=? sob2 sobs)))))
(define (set<=? . sets)
(check-all-sets sets)
(apply sob<=? sets))
(define (bag<=? . bags)
(check-all-bags bags)
(apply sob<=? bags))
;; This is analogous to dyadic-sob=?, except that we have to check
;; both sobs to make sure each value is <= in order to be sure
;; that we've traversed all the elements in either sob.
(define (dyadic-sob<=? sob1 sob2)
(call/cc
(lambda (return)
(let ((ht1 (sob-hash-table sob1))
(ht2 (sob-hash-table sob2)))
(if (not (<= (hash-table-size ht1) (hash-table-size ht2)))
(return #f))
(hash-table-for-each
(lambda (key value)
(if (not (<= value (hash-table-ref/default ht2 key 0)))
(return #f)))
ht1))
#t)))
(define sob>?
(case-lambda
((sob) #t)
((sob1 sob2) (dyadic-sob>? sob1 sob2))
((sob1 sob2 . sobs)
(and (dyadic-sob>? sob1 sob2)
(apply sob>? sob2 sobs)))))
(define (set>? . sets)
(check-all-sets sets)
(apply sob>? sets))
(define (bag>? . bags)
(check-all-bags bags)
(apply sob>? bags))
;; > is the negation of <=. Note that this is only true at the dyadic
;; level; we can't just replace sob>? with a negation of sob<=?.
(define (dyadic-sob>? sob1 sob2)
(not (dyadic-sob<=? sob1 sob2)))
(define sob<?
(case-lambda
((sob) #t)
((sob1 sob2) (dyadic-sob<? sob1 sob2))
((sob1 sob2 . sobs)
(and (dyadic-sob<? sob1 sob2)
(apply sob<? sob2 sobs)))))
(define (set<? . sets)
(check-all-sets sets)
(apply sob<? sets))
(define (bag<? . bags)
(check-all-bags bags)
(apply sob<? bags))
;; < is the inverse of >. Again, this is only true dyadically.
(define (dyadic-sob<? sob1 sob2)
(dyadic-sob>? sob2 sob1))
(define sob>=?
(case-lambda
((sob) #t)
((sob1 sob2) (dyadic-sob>=? sob1 sob2))
((sob1 sob2 . sobs)
(and (dyadic-sob>=? sob1 sob2)
(apply sob>=? sob2 sobs)))))
(define (set>=? . sets)
(check-all-sets sets)
(apply sob>=? sets))
(define (bag>=? . bags)
(check-all-bags bags)
(apply sob>=? bags))
;; Finally, >= is the negation of <. Good thing we have tail recursion.
(define (dyadic-sob>=? sob1 sob2)
(not (dyadic-sob<? sob1 sob2)))
;;; Set theory operations
;; A trivial helper function which upper-bounds n by one if multi? is false.
(define (max-one n multi?)
(if multi? n (if (> n 1) 1 n)))
;; The logic of union, intersection, difference, and sum is the same: the
;; sob-* and sob-*! procedures do the reduction to the dyadic-sob-*!
;; procedures. The difference is that the sob-* procedures allocate
;; an empty copy of the first sob to accumulate the results in, whereas
;; the sob-*! procedures work directly in the first sob.
;; Note that there is no set-sum, as it is the same as set-union.
(define (sob-union sob1 . sobs)
(if (null? sobs)
sob1
(let ((result (sob-empty-copy sob1)))
(dyadic-sob-union! result sob1 (car sobs))
(for-each
(lambda (sob) (dyadic-sob-union! result result sob))
(cdr sobs))
result)))
;; For union, we take the max of the counts of each element found
;; in either sob and put that in the result. On the pass through
;; sob2, we know that the intersection is already accounted for,
;; so we just copy over things that aren't in sob1.
(define (dyadic-sob-union! result sob1 sob2)
(let ((sob1-ht (sob-hash-table sob1))
(sob2-ht (sob-hash-table sob2))
(result-ht (sob-hash-table result)))
(hash-table-for-each
(lambda (key value1)
(let ((value2 (hash-table-ref/default sob2-ht key 0)))
(hash-table-set! result-ht key (max value1 value2))))
sob1-ht)
(hash-table-for-each
(lambda (key value2)
(let ((value1 (hash-table-ref/default sob1-ht key 0)))
(if (= value1 0)
(hash-table-set! result-ht key value2))))
sob2-ht)))
(define (set-union . sets)
(check-all-sets sets)
(apply sob-union sets))
(define (bag-union . bags)
(check-all-bags bags)
(apply sob-union bags))
(define (sob-union! sob1 . sobs)
(for-each
(lambda (sob) (dyadic-sob-union! sob1 sob1 sob))
sobs)
sob1)
(define (set-union! . sets)
(check-all-sets sets)
(apply sob-union! sets))
(define (bag-union! . bags)
(check-all-bags bags)
(apply sob-union! bags))
(define (sob-intersection sob1 . sobs)
(if (null? sobs)
sob1
(let ((result (sob-empty-copy sob1)))
(dyadic-sob-intersection! result sob1 (car sobs))
(for-each
(lambda (sob) (dyadic-sob-intersection! result result sob))
(cdr sobs))
(sob-cleanup! result))))
;; For intersection, we compute the min of the counts of each element.
;; We only have to scan sob1. We clean up the result when we are
;; done, in case it is the same as sob1.
(define (dyadic-sob-intersection! result sob1 sob2)
(let ((sob1-ht (sob-hash-table sob1))
(sob2-ht (sob-hash-table sob2))
(result-ht (sob-hash-table result)))
(hash-table-for-each
(lambda (key value1)
(let ((value2 (hash-table-ref/default sob2-ht key 0)))
(hash-table-set! result-ht key (min value1 value2))))
sob1-ht)))
(define (set-intersection . sets)
(check-all-sets sets)
(apply sob-intersection sets))
(define (bag-intersection . bags)
(check-all-bags bags)
(apply sob-intersection bags))
(define (sob-intersection! sob1 . sobs)
(for-each
(lambda (sob) (dyadic-sob-intersection! sob1 sob1 sob))
sobs)
(sob-cleanup! sob1))
(define (set-intersection! . sets)
(check-all-sets sets)
(apply sob-intersection! sets))
(define (bag-intersection! . bags)
(check-all-bags bags)
(apply sob-intersection! bags))
(define (sob-difference sob1 . sobs)
(if (null? sobs)
sob1
(let ((result (sob-empty-copy sob1)))
(dyadic-sob-difference! result sob1 (car sobs))
(for-each
(lambda (sob) (dyadic-sob-difference! result result sob))
(cdr sobs))
(sob-cleanup! result))))
;; For difference, we use (big surprise) the numeric difference, bounded
;; by zero. We only need to scan sob1, but we clean up the result in
;; case it is the same as sob1.
(define (dyadic-sob-difference! result sob1 sob2)
(let ((sob1-ht (sob-hash-table sob1))
(sob2-ht (sob-hash-table sob2))
(result-ht (sob-hash-table result)))
(hash-table-for-each
(lambda (key value1)
(let ((value2 (hash-table-ref/default sob2-ht key 0)))
(hash-table-set! result-ht key (- value1 value2))))
sob1-ht)))
(define (set-difference . sets)
(check-all-sets sets)
(apply sob-difference sets))
(define (bag-difference . bags)
(check-all-bags bags)
(apply sob-difference bags))
(define (sob-difference! sob1 . sobs)
(for-each
(lambda (sob) (dyadic-sob-difference! sob1 sob1 sob))
sobs)
(sob-cleanup! sob1))
(define (set-difference! . sets)
(check-all-sets sets)
(apply sob-difference! sets))
(define (bag-difference! . bags)
(check-all-bags bags)
(apply sob-difference! bags))
(define (sob-sum sob1 . sobs)
(if (null? sobs)
sob1
(let ((result (sob-empty-copy sob1)))
(dyadic-sob-sum! result sob1 (car sobs))
(for-each
(lambda (sob) (dyadic-sob-sum! result result sob))
(cdr sobs))
result)))
;; Sum is just like union, except that we take the sum rather than the max.
(define (dyadic-sob-sum! result sob1 sob2)
(let ((sob1-ht (sob-hash-table sob1))
(sob2-ht (sob-hash-table sob2))
(result-ht (sob-hash-table result)))
(hash-table-for-each
(lambda (key value1)
(let ((value2 (hash-table-ref/default sob2-ht key 0)))
(hash-table-set! result-ht key (+ value1 value2))))
sob1-ht)
(hash-table-for-each
(lambda (key value2)
(let ((value1 (hash-table-ref/default sob1-ht key 0)))
(if (= value1 0)
(hash-table-set! result-ht key value2))))
sob2-ht)))
;; Sum is defined for bags only; for sets, it is the same as union.
(define (bag-sum . bags)
(check-all-bags bags)
(apply sob-sum bags))
(define (sob-sum! sob1 . sobs)
(for-each
(lambda (sob) (dyadic-sob-sum! sob1 sob1 sob))
sobs)
sob1)
(define (bag-sum! . bags)
(check-all-bags bags)
(apply sob-sum! bags))
;; For xor exactly two arguments are required, so the above structures are
;; not necessary. This version accepts a result sob and computes the
;; absolute difference between the counts in the first sob and the
;; corresponding counts in the second.
;; We start by copying the entries in the second sob but not the first
;; into the first. Then we scan the first sob, computing the absolute
;; difference of the values and writing them back into the first sob.
;; It's essential to scan the second sob first, as we are not going to
;; damage it in the process. (Hat tip: Sam Tobin-Hochstadt.)
(define (sob-xor! result sob1 sob2)
(let ((sob1-ht (sob-hash-table sob1))
(sob2-ht (sob-hash-table sob2))
(result-ht (sob-hash-table result)))
(hash-table-for-each
(lambda (key value2)
(let ((value1 (hash-table-ref/default sob1-ht key 0)))
(if (= value1 0)
(hash-table-set! result-ht key value2))))
sob2-ht)
(hash-table-for-each
(lambda (key value1)
(let ((value2 (hash-table-ref/default sob2-ht key 0)))
(hash-table-set! result-ht key (abs (- value1 value2)))))
sob1-ht)
(sob-cleanup! result)))
(define (set-xor set1 set2)
(check-set set1)
(check-set set2)
(check-same-comparator set1 set2)
(sob-xor! (sob-empty-copy set1) set1 set2))
(define (bag-xor bag1 bag2)
(check-bag bag1)
(check-bag bag2)
(check-same-comparator bag1 bag2)
(sob-xor! (sob-empty-copy bag1) bag1 bag2))
(define (set-xor! set1 set2)
(check-set set1)
(check-set set2)
(check-same-comparator set1 set2)
(sob-xor! set1 set1 set2))
(define (bag-xor! bag1 bag2)
(check-bag bag1)
(check-bag bag2)
(check-same-comparator bag1 bag2)
(sob-xor! bag1 bag1 bag2))
;;; A few bag-specific procedures
(define (sob-product! n result sob)
(let ((rht (sob-hash-table result)))
(hash-table-for-each
(lambda (elem count) (hash-table-set! rht elem (* count n)))
(sob-hash-table sob))
result))
(define (valid-n n)
(and (integer? n) (exact? n) (positive? n)))
(define (bag-product n bag)
(check-bag bag)
(valid-n n)
(sob-product! n (sob-empty-copy bag) bag))
(define (bag-product! n bag)
(check-bag bag)
(valid-n n)
(sob-product! n bag bag))
(define (bag-unique-size bag)
(check-bag bag)
(hash-table-size (sob-hash-table bag)))
(define (bag-element-count bag elem)
(check-bag bag)
(hash-table-ref/default (sob-hash-table bag) elem 0))
(define (bag-for-each-unique proc bag)
(check-bag bag)
(hash-table-for-each
(lambda (key value) (proc key value))
(sob-hash-table bag)))
(define (bag-fold-unique proc nil bag)
(check-bag bag)
(let ((result nil))
(hash-table-for-each
(lambda (elem count) (set! result (proc elem count result)))
(sob-hash-table bag))
result))
(define (bag->set bag)
(check-bag bag)
(let ((result (make-sob (sob-comparator bag) #f)))
(hash-table-for-each
(lambda (key value) (sob-increment! result key value))
(sob-hash-table bag))
result))
(define (set->bag set)
(check-set set)
(let ((result (make-sob (sob-comparator set) #t)))
(hash-table-for-each
(lambda (key value) (sob-increment! result key value))
(sob-hash-table set))
result))
(define (set->bag! bag set)
(check-bag bag)
(check-set set)
(check-same-comparator set bag)
(hash-table-for-each
(lambda (key value) (sob-increment! bag key value))
(sob-hash-table set))
bag)
(define (bag->alist bag)
(check-bag bag)
(bag-fold-unique
(lambda (elem count list) (cons (cons elem count) list))
'()
bag))
(define (alist->bag comparator alist)
(let* ((result (bag comparator))
(ht (sob-hash-table result)))
(for-each
(lambda (assoc)
(let ((element (car assoc)))
(if (not (hash-table-contains? ht element))
(sob-increment! result element (cdr assoc)))))
alist)
result))
;;; Comparators
;; Hash over sobs
(define (sob-hash sob)
(let ((hash (comparator-hash-function (sob-comparator sob))))
(sob-fold
(lambda (element result) (logxor (hash element) result))
5381
sob)))
;; Set and bag comparator
(define set-comparator (make-comparator set? set=? #f sob-hash 'set-comparator))
(define bag-comparator (make-comparator bag? bag=? #f sob-hash 'bag-comparator))
;;; Register above comparators for use by default-comparator
;; (comparator-register-default! set-comparator)
;; (comparator-register-default! bag-comparator)
;;; Set/bag printer (for debugging)
;; (define (sob-print sob port)
;; (display (if (sob-multi? sob) "&bag[" "&set[") port)
;; (sob-for-each
;; (lambda (elem) (display " " port) (write elem port))
;; sob)
;; (display " ]" port))
;; ;; Chicken-specific
;; (cond-expand
;; (chicken
;; (define-record-printer sob sob-print))
;; (else))
|