/usr/bin/gpaw-plot-parallel-timings is in gpaw 1.1.0-1+b2.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 | #! /usr/bin/python
from optparse import OptionParser
import pylab as pl
#from glob import glob
p = OptionParser(usage='%prog [OPTION] FILE...',
description='plot timings from gpaw parallel timer. '
'The timer dumps a lot of files called "timings.<...>.txt". '
'This programme plots the contents of those files. '
'Typically one would run "%prog timings.*.txt" to plot '
'timings on all cores. (Note: The plotting code is '
'rather hacky and ugly at the moment.)')
p.add_option('--threshold', type=float, default=0.01, metavar='FRACTION',
help='suppress entries of less than FRACTION of total CPU time. '
'Such entries are shown as black. Default: %default')
p.add_option('--ignore', metavar='TIMERS', default='',
help='comma-separated list of timer names to be ignored.')
p.add_option('--noxcc', action='store_true',
help='add "XC correction" to --ignore. XC Correction '
'is called once for every atom in each SCF step which clutters '
'the graph a lot.')
p.add_option('--interval', metavar='TIME1:TIME2',
help='plot only timings within TIME1 and TIME2 '
'after start of calculation.')
p.add_option('--unit', default='s',
help='time unit. s, m or h. Default: %default.')
p.add_option('--align', default='SCF-cycle', metavar='TIMER',
help='align timings of all processes to first call of '
'TIMER[=%default].')
opts, fnames = p.parse_args()
timeunit = {'s': 1.0, 'm': 60.0, 'h': 3600.0}[opts.unit]
ignored_timers = set(opts.ignore.split(','))
if opts.noxcc:
ignored_timers.add('XC Correction')
fnames.sort()
class Entry:
def __init__(self, name, t1, parent=None, childnumber=None):
self.name = name
self.t1 = t1
self.parent = parent
self.children = []
self.childnumber = childnumber
if parent is None:
self.level = -1
else:
self.level = parent.level + 1
def __repr__(self):
return 'Entry(name=%s, t1=%s, ...)' % (self.name, self.t1)
def stop(self, t2):
self.t2 = t2
self.dt = self.t2 - self.t1
def subentry(self, name, time):
subentry = Entry(name, time, self, len(self.children))
self.children.append(subentry)
return subentry
def iterate(self):
for child1 in self.children:
yield child1
for child2 in child1.iterate():
yield child2
def normalize(self, start):
# note: here we "magically" use the timeunit
offset = start
scale = 1.0 / timeunit
self.transform(offset, scale)
def transform(self, offset, scale):
self.t1 = scale * (self.t1 - offset)
self.t2 = scale * (self.t2 - offset)
self.dt = self.t2 - self.t1
for child in self.children:
child.transform(offset, scale)
def get_first_occurrence(self, name):
for child in self.iterate():
if child.name == name:
return child
else:
raise ValueError('Entry not found: %s' % name)
class EntryCollection:
def __init__(self, entries):
tstart = min([entry.t1 for entry in entries])
tstop = max([entry.t2 for entry in entries])
try:
scf_cycle_starttimes = [entry.get_first_occurrence(opts.align).t1
for entry in entries]
except ValueError:
print('Warning: No "%s" entry found. Times may not '
'be synchronized so well' % opts.align)
scf_cycle_starttimes = [0] * len(entries)
abs_starttimes = [entry.t1 for entry in entries]
max_diff = max([scftime - starttime for scftime, starttime
in zip(scf_cycle_starttimes, abs_starttimes)])
for entry in entries:
assert entry.level == -1
start_time = entry.t1
sync_time = entry.t1
for child in entry.iterate():
if child.name == 'SCF-cycle': # hardcoded name!
sync_time = child.t1
break
entry.normalize(sync_time - max_diff)
#entry.normalize(tstart, tstop)
self.entries = entries
self.totals = self.get_totals()
def get_totals(self):
totals = {}
for entry in self.entries:
for child in entry.iterate():
if child.name not in totals:
totals[child.name] = 0.0
totals[child.name] += child.dt / len(self.entries)
return totals
def get_timings(fname):
root = Entry('root', 0.0)
head = root
for line in open(fname):
try:
line = line.strip()
part1, part2, action = line.rsplit(' ', 2)
tokens = part1.split(' ', 3)
t = float(tokens[2])
name = tokens[3]
if action == 'started':
head = head.subentry(name, t)
else:
assert action == 'stopped', action
assert name == head.name
head.stop(t)
head = head.parent
except StandardError: # guard against interrupted file I/O
pass
while head != root: # If file is incomplete, cut remaining timers short
head.stop(t)
head = head.parent
#assert head == root
root.t1 = root.children[0].t1
root.stop(root.children[-1].t2)
return root
alltimings = []
metadata = None
for rank, fname in enumerate(fnames):
if fname.endswith('metadata.txt'):
assert metadata is None
metadata = [line.strip() for line in open(fname)]
else:
alltimings.append(get_timings(fname))
if len(alltimings) == 0:
p.error('no timings found')
if metadata is None:
metadata = map(str, range(len(alltimings)))
entries = EntryCollection(alltimings)
ordered_names = []
fig = pl.figure(figsize=(12, 6))
fig2 = pl.figure()
ax = fig.add_subplot(111)
#nameax = fig.add_subplot(122)
nameax = fig2.add_subplot(111)
nameax.set_yticks([])
nameax.set_xticks([])
#nameax = [fig2.add_subplot(2, 2, i + 1) for i in range(4)]
styles = {}
thecolors = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow',
'darkred', 'indigo', 'springgreen', 'purple']
thehatches = ['', '//', 'O', '*', 'o', r'\\', '.', '|']
def getstyle(i):
return thecolors[i % len(thecolors)], thehatches[i // len(thecolors)]
if opts.interval:
plotstarttime, plotendtime = map(float, opts.interval.split(':'))
else:
plotstarttime = 0
plotendtime = max([timing.t2 for timing in alltimings])
nstyles_used = 0
for rank, rootnode in enumerate(alltimings):
for child in rootnode.iterate():
if child.name in ignored_timers:
continue
t1 = child.t1
t2 = child.t2
if t2 < plotstarttime:
continue
if plotendtime < t1:
continue
t1 = max(t1, plotstarttime)
t2 = min(t2, plotendtime)
dt = t2 - t1
if child.name not in styles:
if entries.totals[child.name] < opts.threshold:
#color, hatch = ('k', '')
continue
else:
color, hatch = getstyle(nstyles_used)
assert (color, hatch) not in styles.values()
nstyles_used += 1
ordered_names.append(child.name)
#nameax[child.level].plot([], [],
# color=color,
# #hatch=hatch,
# marker='s', ls='',
# label=child.name)
assert child.name not in styles
styles[child.name] = color, hatch
color, hatch = styles[child.name]
centerx = t1 + dt * 0.5
centery = child.level + 0.5
x = [t1, t2, t2, t1]
y = [child.level, child.level, child.level + 1, child.level + 1]
# hardcoded to max 5. Graphs will overlap if larger.
compression = 5.0
y = [y1 / compression + rank - 0.25 for y1 in y]
ax.fill(x, y, color=color,
label='__nolegend__')
ax.fill(x, y, color='None', hatch=hatch, edgecolor='k',
alpha=0.7,
label='__nolegend__')
ax.set_ylabel('rank')
ax.set_yticks(range(len(metadata)))
ax.set_yticklabels([txt.replace('=', '') for txt in metadata])
ax.set_xlabel('time / %s' % opts.unit)
ax.axis(xmin=plotstarttime, xmax=plotendtime)
for i, name in enumerate(ordered_names):
color, hatch = styles[name]
x = [0, 0.8, 0.8, 0]
y = [i, i, i + 0.8, i + .8]
nameax.fill(x, y, color=color,
label='__nolegend__')
nameax.fill(x, y, color='None', hatch=hatch, edgecolor='k',
alpha=0.7,
label='__nolegend__')
nameax.text(1.0, i + 0.4, name, va='center', ha='left', color='k')
nameax.axis(xmin=-1, xmax=len(ordered_names))
pl.show()
|