/usr/include/gpsim/stimuli.h is in gpsim-dev 0.29.0-2+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 | /*
Copyright (C) 1998 T. Scott Dattalo
This file is part of the libgpsim library of gpsim
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/lgpl-2.1.html>.
*/
#ifndef __STIMULI_H__
#define __STIMULI_H__
#include <iostream>
#include <string>
#include <glib.h>
using namespace std;
#include <list>
#include "gpsim_classes.h"
#include "breakpoints.h"
/* forward references: */
class Stimulus_Node;
class stimulus;
class IOPIN;
class symbol;
/* typedefs */
typedef list<Value*> SymbolList_t;
typedef list<string> StringList_t;
typedef list<stimulus *> StimulusList_t;
typedef list<gpsimObject *> gpsimObjectList_t;
/* Support functions */
extern void dump_stimulus_list(void);
/****************************************************************************
*
* Include file support stimuli.
*
* stimulus TriggerObject
* | \ /
* | -----------------+----
* | |
* |- IOPIN |- source_stimulus
* | |
* |- IO_input |- square_wave
* | |- triangle_wave
* |- IO_open_collector |- asynchronous_stimulus
* |- IO_bi_directional |- dc_supply
* | |- open_collector
* |- IO_bi_directional_pu
*
* A stimulus is used to stimulate stimuli. What's that mean? Well,
* in gpsim, the pic I/O pins are derived from the stimulus base class
* (as can be seen from above). The I/O pins are what interface to the
* 'external' world. In some cases, I/O pins are inputs and others they're
* outputs. The stimulus base class defines the basic functionality of
* a stimulus and how this interface to the outside world is to occur.
*
*/
#define MAX_DRIVE 0x100000
#define MAX_ANALOG_DRIVE 0x1000
class Stimulus_Node : public gpsimObject, public TriggerObject
{
public:
bool warned; // keeps track of node warnings (e.g. floating node, contention)
double voltage; // The most recent target voltage of this node
double Cth; // The most recent capacitance (to ground) measured on this node.
double Zth; // The most recent thevenin resistance computed on this node.
double current_time_constant; // The most recent time constant for the attached stimuli.
double delta_voltage; // Amplitude of initial change
double minThreshold; // Use DC value when voltage this close
guint64 cap_start_cycle; // cycles when RC value last calculated
guint64 future_cycle; // cycles when next callback expected
double initial_voltage; // node voltage at the instant of change
double DCVoltage; // Target voltage when settling
bool bSettling; // true when the voltage is settling
stimulus *stimuli; // Pointer to the first stimulus connected to this node.
int nStimuli; // number of stimuli attached to this node.
Stimulus_Node(const char *n = 0);
virtual ~Stimulus_Node();
void set_nodeVoltage(double v);
double get_nodeVoltage();
double get_nodeZth() { return Zth;}
double get_nodeCth() { return Cth; }
void update();
void attach_stimulus(stimulus *);
void detach_stimulus(stimulus *);
// When a node is given a name, it is also added to the symbol
// table. If bClearableSymbol is true, then the symbol can be
// automatically removed when the symbol table is cleared.
virtual void new_name(const char *, bool bClearableSymbol=false);
virtual void new_name(string &, bool bClearableSymbol=false);
// When the node is settling (due to RC charging/discharging)
// it's voltage is periodically updated by invoking callback()
virtual void callback(void);
virtual void callback_print(void);
// factory function
static Stimulus_Node * construct(const char * psName);
virtual string toString();
protected:
void update(guint64 current_time); // deprecated
void refresh();
void updateStimuli();
guint64 calc_settlingTimeStep();
guint64 settlingTimeStep;
};
//========================================================================
//
// stimulus
//
// The stimulus class is the base class for all of the analog interfaces
// between modules. A stimulus is a 1-node device that has a characteristic
// impedance and voltage. If you're familiar with circuit analysis, these
// are the Thevenin voltage and impedance.
//
// gpsim is not a spice simulator. So complex devices like transistors or
// opamps are not modeled. In fact, even simple devices like capacitors and
// inductors are not modeled.
//
class stimulus : public Value
{
public:
Stimulus_Node *snode; // Node to which this stimulus is attached
stimulus *next; // next stimulus that's on the snode
stimulus(const char *n=0,
double _Vth=5.0,
double _Zth=1e3
);
virtual ~stimulus();
// When a stimulus is given a name, it is also added to the symbol
// table. If bClearableSymbol is true, then the symbol can be
// automatically removed when the symbol table is cleared.
virtual void new_name(const char *, bool bClearableSymbol=true);
virtual void new_name(string &, bool bClearableSymbol=true);
// Functions for accessing/manipulating the thevenin voltage and impedance.
virtual void getThevenin(double &v, double &z, double &c);
virtual double get_Vth() { return Vth; }
virtual void set_Vth(double v) { Vth = v; }
virtual double get_Zth() { return Zth; }
virtual void set_Zth(double z) { Zth = z; }
virtual double get_Cth() { return Cth; }
virtual void set_Cth(double c) { Cth = c; }
virtual double get_nodeVoltage() { return nodeVoltage; }
virtual void set_nodeVoltage(double v) { nodeVoltage = v; }
virtual bool getDriving() { return bDriving; }
virtual void setDriving(bool bNewDriving) { bDriving=bNewDriving; }
// Functions for accessing/manipulating the stimulus state
// Control the driving state, i.e. the state this stimulus wishes to drive
virtual bool getDrivingState(void) {return bDrivingState;};
virtual void setDrivingState(bool new_dstate) { bDrivingState = new_dstate;};
virtual void setDrivingState(char new3State)
{ bDrivingState = new3State=='1';};
// Control the driven state, i.e. the state some external node wishes to
// drive this stimulus.
virtual bool getDrivenState(void) { return getDrivingState(); }
virtual void setDrivenState(bool new_dstate) { setDrivingState(new_dstate);}
// Control the 'state' of the node.
virtual bool getState() { return getDrivingState(); }
virtual void putState(bool new_dstate) { setDrivingState(new_dstate);}
// getBitChar - this complements the Register class' getBitStr function
virtual char getBitChar() { return getState() ? '1':'0'; }
virtual void attach(Stimulus_Node *s);
virtual void detach(Stimulus_Node *s);
// If a stimulus changes its state, it can signal this change to
// any other stimuli that are connected to it.
virtual void updateNode(void) { if(snode) snode->update();}
// Display info about the stimulus.
virtual void show();
virtual string toString();
protected:
bool bDrivingState; // 0/1 digitization of the analog state we're driving
bool bDriving; // True if this stimulus is a driver
double Vth; // Open-circuit or Thevenin voltage
double Zth; // Input or Thevenin resistance
double Cth; // Stimulus capacitance.
double nodeVoltage; // The voltage driven on to this stimulus by the snode
// These are only here because they're pure virtual functions in the parent class.
virtual unsigned int get_value(void) { return 0;}
virtual void put_value(unsigned int new_value) {}
// factory function
static stimulus * construct(const char * psName);
};
class source_stimulus : public stimulus, public TriggerObject
{
public:
enum SOURCE_TYPE
{
DC,
SQW,
ASY,
TRI,
RESISTOR,
OPEN_COLLECTOR,
EVENT
};
source_stimulus() {
period = 0;
duty = 0;
phase = 0;
initial_state = 0;
start_cycle = 0;
time = 0;
digital = true;
};
virtual void callback(void);
virtual void callback_print(void);
virtual void put_period(Value *);
virtual void put_duty(Value *);
virtual void put_phase(Value *);
virtual void put_initial_state(Value *);
virtual void put_start_cycle(Value *);
virtual void set_digital(void) { digital = true;}
virtual void set_analog(void) { digital = false;}
virtual void start(void) { };
virtual void show();
protected:
bool digital;
guint64
start_cycle,
time,
period,
duty,
phase;
double
initial_state;
};
///------------------------------------------------------------
///
/// SignalSink - A pure virtual class that allows signals driven by external
/// stimuli to be routed to one or more objects monitoring them (e.g. one
/// sink may be a bit in a port register while another may be a peripheral)
class SignalSink
{
public:
virtual ~SignalSink()
{
}
virtual void setSinkState(char)=0;
virtual void release()=0;
};
///-------------------------------------------------------------
///
/// AnalogSink - An analog sink is similar to a digital sink. The primary
/// difference is that an analog sink redirects an analog signal to one
/// or more objects. A signal sink only redirects digital signals.
class AnalogSink
{
public:
virtual ~AnalogSink()
{
}
virtual void setSinkState(double)=0;
virtual void release()=0;
};
///------------------------------------------------------------
/// The PinMonitor class allows other objects to be notified whenever
/// a Pin changes states.
/// (Note: In older versions of gpsim, iopins notified the Port registers
/// in which they were contained by direcly calling the register setbit()
/// method. This is deprecated - and eventually will cause compile time errors.)
class PinMonitor
{
public:
PinMonitor();
virtual ~PinMonitor();
void addSink(SignalSink *);
void removeSink(SignalSink *);
void addSink(AnalogSink *);
void removeSink(AnalogSink *);
virtual void setDrivenState(char)=0;
virtual void setDrivingState(char)=0;
virtual void set_nodeVoltage(double)=0;
virtual void putState(char)=0;
virtual void setDirection()=0;
virtual void updateUI() {} // FIXME - make this pure virtual too.
protected:
/// The SignalSink list is a list of all sinks that can receive digital data
list <SignalSink *> sinks;
/// The AnalogSink list is a list of all sinks that can receive analog data
list <AnalogSink *> analogSinks;
};
class IOPIN : public stimulus
{
public:
enum IOPIN_TYPE
{
INPUT_ONLY, // e.g. MCLR
BI_DIRECTIONAL, // most iopins
BI_DIRECTIONAL_PU, // same as bi_directional, but with pullup resistor. e.g. portb
OPEN_COLLECTOR // bit4 in porta on the 18 pin midrange devices.
};
enum IOPIN_DIRECTION
{
DIR_INPUT,
DIR_OUTPUT
};
IOPIN(const char *n=0,
double _Vth=5.0,
double _Zth=1e8,
double _ZthWeak = 1e6,
double _ZthFloating = 1e7
);
~IOPIN();
virtual void setMonitor(PinMonitor *);
virtual PinMonitor *getMonitor() { return m_monitor; }
virtual void set_nodeVoltage(double v);
virtual bool getDrivingState(void);
virtual void setDrivingState(bool new_dstate);
virtual void setDrivingState(char);
virtual bool getDrivenState(void);
virtual void setDrivenState(bool new_dstate);
virtual void forceDrivenState(char);
virtual char getForcedDrivenState();
virtual bool getState();
virtual void putState(bool new_dstate);
virtual void putState(double new_Vth);
virtual void set_digital_threshold(double vdd);
virtual void set_ZthWeak(double Z) { ZthWeak=Z;}
virtual double get_ZthWeak() { return ZthWeak;}
virtual void set_ZthFloating(double Z) { ZthFloating=Z;}
virtual double get_ZthFloating() { return ZthFloating;}
virtual void set_l2h_threshold(double V) {l2h_threshold=V;}
virtual double get_l2h_threshold() { return l2h_threshold;}
virtual void set_h2l_threshold(double V) {h2l_threshold=V;}
virtual double get_h2l_threshold() { return h2l_threshold;}
virtual void toggle(void);
virtual void attach(Stimulus_Node *s);
// These functions don't apply to Inputs, but provide an
// interface for the derived classes.
virtual void update_direction(unsigned int x, bool refresh){ };
virtual IOPIN_DIRECTION get_direction(void) {return DIR_INPUT; };
virtual void update_pullup(char new_state, bool refresh) {}
virtual void set_is_analog(bool flag) {}
virtual double get_Vth();
virtual char getBitChar();
virtual void show();
/// Change object name without affecting stimulus
virtual void newGUIname(const char *);
virtual string &GUIname(void) const;
virtual bool is_newGUIname(void) { return gui_name_updated; }
virtual void clr_is_newGUIname(void) { gui_name_updated = false; }
protected:
bool is_analog; // Pin is in analog mode
bool gui_name_updated; // True if object name has changed
string gui_name; //
bool bDrivenState; // binary state we're being driven to
char cForcedDrivenState; // forced state when no snode is attached.
PinMonitor *m_monitor;
// When connected to a node, these are thresholds used to determine whether
// we're being driven by a weak driver or not.
double ZthWeak;
double ZthFloating;
// These are the low to high and high to low input thresholds. The
// units are volts.
double l2h_threshold;
double h2l_threshold;
double Vdrive_high;
double Vdrive_low;
};
class IO_bi_directional : public IOPIN
{
public:
IO_bi_directional(const char *n=0,
double _Vth=5.0,
double _Zth=150,
double _ZthWeak = 1e6,
double _ZthFloating = 1e7,
double _VthIn = 0.3,
double _ZthIn = 1e10);
virtual double get_Zth();
virtual double get_Vth();
virtual double get_VthIn() { return VthIn;}
virtual double get_ZthIn() { return ZthIn;}
virtual void set_VthIn(double _VthIn) { VthIn = _VthIn;}
virtual void set_ZthIn(double _ZthIn) { ZthIn = _ZthIn;}
virtual char getBitChar();
virtual void set_nodeVoltage(double new_nodeVoltage);
virtual void putState(bool new_state);
virtual void putState(double new_Vth);
virtual void update_direction(unsigned int,bool refresh);
virtual IOPIN_DIRECTION get_direction(void)
{return ((getDriving()) ? DIR_OUTPUT : DIR_INPUT);}
protected:
/// Impedance of the IOPIN when it's not driving.
double ZthIn;
/// Voltage of the IOPIN when it's not driving
/// (this is the voltage the I/O pin floats to when there's
/// nothing connected to it)
double VthIn;
};
class IO_bi_directional_pu : public IO_bi_directional
{
public:
IO_bi_directional_pu(const char *n=0,
double _Vth=5.0,
double _Zth=150,
double _ZthWeak = 1e6,
double _ZthFloating = 1e7,
double _VthIn = 0.3,
double _ZthIn = 1e8,
double _Zpullup = 20e3
);
~IO_bi_directional_pu();
virtual double get_Vth();
virtual double get_Zth();
virtual void set_Zpullup(double Z) { Zpullup = Z; }
virtual double get_Zpullup() { return Zpullup; }
virtual void set_Vpullup(double V) { Vpullup = V; }
virtual double get_Vpullup() { return Vpullup; }
virtual char getBitChar();
virtual void update_pullup(char new3State, bool refresh);
virtual void set_is_analog(bool flag);
protected:
bool bPullUp; // True when pullup is enabled
double Zpullup; // resistance of the pullup
double Vpullup; // Voltage the pullup resistor is tied to.
};
class IO_open_collector : public IO_bi_directional_pu
{
public:
IO_open_collector(const char *n=0);
virtual double get_Vth();
virtual double get_Zth();
virtual char getBitChar();
};
class square_wave : public source_stimulus
{
public:
square_wave(unsigned int _period, unsigned int _duty, unsigned int _phase, const char *n=0);
virtual double get_Vth();
};
class triangle_wave : public source_stimulus
{
public:
double m1,b1,m2,b2;
triangle_wave(unsigned int _period, unsigned int _duty, unsigned int _phase, const char *n=0);
virtual double get_Vth();
};
class StimulusData {
public:
guint64 time;
double value;
};
class ValueStimulusData {
public:
guint64 time;
Value *v;
};
/// ValueStimulus
///
class ValueStimulus : public source_stimulus
{
protected:
ValueStimulusData initial;
Value *current;
guint64 future_cycle;
ValueStimulusData next_sample;
list<ValueStimulusData> samples;
list<ValueStimulusData>::iterator sample_iterator;
public:
virtual void callback();
virtual void put_data(ValueStimulusData &data_point);
virtual void put_initial_state(Value *);
virtual double get_Vth();
virtual void start();
ValueStimulus(const char*n=0);
virtual ~ValueStimulus();
virtual void show();
protected:
ValueStimulusData *getNextSample();
};
class AttributeStimulus : public ValueStimulus
{
Value *attr;
public:
AttributeStimulus(const char *n=0);
// virtual ~AttributeStimulus();
virtual void callback();
void setClientAttribute(Value *);
virtual void show();
};
/*
* An "Event" is a special stimulus that will assert for a single clock
* cycle.
*
* Since Events are derived from the source_stimulus class, they can
* be either single shot or repetitive.
*
*/
class Event : public source_stimulus
{
public:
unsigned int current_state;
virtual void callback(void);
Event(void);
};
#endif // __STIMULI_H__
|