/usr/include/ace/Future.cpp is in libace-dev 6.3.3+dfsg-1.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 | #ifndef ACE_FUTURE_CPP
#define ACE_FUTURE_CPP
#include "ace/Future.h"
#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */
#if defined (ACE_HAS_THREADS)
# include "ace/Guard_T.h"
# include "ace/Recursive_Thread_Mutex.h"
ACE_BEGIN_VERSIONED_NAMESPACE_DECL
template <class T>
ACE_Future_Holder<T>::ACE_Future_Holder (void)
{
}
template <class T>
ACE_Future_Holder<T>::ACE_Future_Holder (const ACE_Future<T> &item)
: item_ (item)
{
}
template <class T>
ACE_Future_Holder<T>::~ACE_Future_Holder (void)
{
}
template <class T>
ACE_Future_Observer<T>::ACE_Future_Observer (void)
{
}
template <class T>
ACE_Future_Observer<T>::~ACE_Future_Observer (void)
{
}
// Dump the state of an object.
template <class T> void
ACE_Future_Rep<T>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACELIB_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACELIB_DEBUG ((LM_DEBUG,
"ref_count_ = %d\n",
(int) this->ref_count_));
ACELIB_DEBUG ((LM_INFO,"value_:\n"));
if (this->value_)
ACELIB_DEBUG ((LM_DEBUG, ACE_TEXT (" (NON-NULL)\n")));
else
//FUZZ: disable check_for_NULL
ACELIB_DEBUG ((LM_DEBUG, ACE_TEXT (" (NULL)\n")));
//FUZZ: enable check_for_NULL
ACELIB_DEBUG ((LM_INFO,"value_ready_:\n"));
this->value_ready_.dump ();
ACELIB_DEBUG ((LM_INFO,"value_ready_mutex_:\n"));
this->value_ready_mutex_.dump ();
ACELIB_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
template <class T> ACE_Future_Rep<T> *
ACE_Future_Rep<T>::internal_create (void)
{
ACE_Future_Rep<T> *temp = 0;
ACE_NEW_RETURN (temp,
ACE_Future_Rep<T> (),
0);
return temp;
}
template <class T> ACE_Future_Rep<T> *
ACE_Future_Rep<T>::create (void)
{
// Yes set ref count to zero.
ACE_Future_Rep<T> *temp = internal_create ();
#if defined (ACE_NEW_THROWS_EXCEPTIONS)
if (temp == 0)
ACE_throw_bad_alloc;
#else
ACE_ASSERT (temp != 0);
#endif /* ACE_NEW_THROWS_EXCEPTIONS */
return temp;
}
template <class T> ACE_Future_Rep<T> *
ACE_Future_Rep<T>::attach (ACE_Future_Rep<T>*& rep)
{
ACE_ASSERT (rep != 0);
// Use value_ready_mutex_ for both condition and ref count management
ACE_GUARD_RETURN (ACE_SYNCH_RECURSIVE_MUTEX, r_mon, rep->value_ready_mutex_, 0);
++rep->ref_count_;
return rep;
}
template <class T> void
ACE_Future_Rep<T>::detach (ACE_Future_Rep<T>*& rep)
{
ACE_ASSERT (rep != 0);
// Use value_ready_mutex_ for both condition and ref count management
ACE_GUARD (ACE_SYNCH_RECURSIVE_MUTEX, r_mon, rep->value_ready_mutex_);
if (rep->ref_count_-- == 0)
{
ACE_MT (r_mon.release ());
// We do not need the lock when deleting the representation.
// There should be no side effects from deleting rep and we don
// not want to release a deleted mutex.
delete rep;
}
}
template <class T> void
ACE_Future_Rep<T>::assign (ACE_Future_Rep<T>*& rep, ACE_Future_Rep<T>* new_rep)
{
ACE_ASSERT (rep != 0);
ACE_ASSERT (new_rep != 0);
// Use value_ready_mutex_ for both condition and ref count management
ACE_GUARD (ACE_SYNCH_RECURSIVE_MUTEX, r_mon, rep->value_ready_mutex_);
ACE_Future_Rep<T>* old = rep;
rep = new_rep;
// detached old last for exception safety
if (old->ref_count_-- == 0)
{
ACE_MT (r_mon.release ());
// We do not need the lock when deleting the representation.
// There should be no side effects from deleting rep and we don
// not want to release a deleted mutex.
delete old;
}
}
template <class T>
ACE_Future_Rep<T>::ACE_Future_Rep (void)
: value_ (0),
ref_count_ (0),
value_ready_ (value_ready_mutex_)
{
}
template <class T>
ACE_Future_Rep<T>::~ACE_Future_Rep (void)
{
delete this->value_;
}
template <class T> int
ACE_Future_Rep<T>::ready (void) const
{
return this->value_ != 0;
}
template <class T> int
ACE_Future_Rep<T>::set (const T &r,
ACE_Future<T> &caller)
{
// If the value is already produced, ignore it...
if (this->value_ == 0)
{
ACE_GUARD_RETURN (ACE_SYNCH_RECURSIVE_MUTEX,
ace_mon,
this->value_ready_mutex_,
-1);
// Otherwise, create a new result value. Note the use of the
// Double-checked locking pattern to avoid multiple allocations.
if (this->value_ == 0) // Still no value, so proceed
{
ACE_NEW_RETURN (this->value_,
T (r),
-1);
// Remove and notify all subscribed observers.
typename OBSERVER_COLLECTION::iterator iterator =
this->observer_collection_.begin ();
typename OBSERVER_COLLECTION::iterator end =
this->observer_collection_.end ();
while (iterator != end)
{
OBSERVER *observer = *iterator++;
observer->update (caller);
}
// Signal all the waiting threads.
return this->value_ready_.broadcast ();
}
// Destructor releases the lock.
}
return 0;
}
template <class T> int
ACE_Future_Rep<T>::get (T &value,
ACE_Time_Value *tv) const
{
// If the value is already produced, return it.
if (this->value_ == 0)
{
ACE_GUARD_RETURN (ACE_SYNCH_RECURSIVE_MUTEX, ace_mon,
this->value_ready_mutex_,
-1);
// If the value is not yet defined we must block until the
// producer writes to it.
while (this->value_ == 0)
// Perform a timed wait.
if (this->value_ready_.wait (tv) == -1)
return -1;
// Destructor releases the lock.
}
value = *this->value_;
return 0;
}
template <class T> int
ACE_Future_Rep<T>::attach (ACE_Future_Observer<T> *observer,
ACE_Future<T> &caller)
{
ACE_GUARD_RETURN (ACE_SYNCH_RECURSIVE_MUTEX, ace_mon, this->value_ready_mutex_, -1);
// Otherwise, create a new result value. Note the use of the
// Double-checked locking pattern to avoid corrupting the list.
int result = 1;
// If the value is already produced, then notify observer
if (this->value_ == 0)
result = this->observer_collection_.insert (observer);
else
observer->update (caller);
return result;
}
template <class T> int
ACE_Future_Rep<T>::detach (ACE_Future_Observer<T> *observer)
{
ACE_GUARD_RETURN (ACE_SYNCH_RECURSIVE_MUTEX, ace_mon, this->value_ready_mutex_, -1);
// Remove all occurrences of the specified observer from this
// objects hash map.
return this->observer_collection_.remove (observer);
}
template <class T>
ACE_Future_Rep<T>::operator T ()
{
// If the value is already produced, return it.
if (this->value_ == 0)
{
// Constructor of ace_mon acquires the mutex.
ACE_GUARD_RETURN (ACE_SYNCH_RECURSIVE_MUTEX, ace_mon, this->value_ready_mutex_, 0);
// If the value is not yet defined we must block until the
// producer writes to it.
// Wait ``forever.''
while (this->value_ == 0)
if (this->value_ready_.wait () == -1)
// What to do in this case since we've got to indicate
// failure somehow? Exceptions would be nice, but they're
// not portable...
return 0;
// Destructor releases the mutex
}
return *this->value_;
}
template <class T>
ACE_Future<T>::ACE_Future (void)
: future_rep_ (FUTURE_REP::create ())
{
}
template <class T>
ACE_Future<T>::ACE_Future (const ACE_Future<T> &r)
: future_rep_ (FUTURE_REP::attach (((ACE_Future<T> &) r).future_rep_))
{
}
template <class T>
ACE_Future<T>::ACE_Future (const T &r)
: future_rep_ (FUTURE_REP::create ())
{
this->future_rep_->set (r, *this);
}
template <class T>
ACE_Future<T>::~ACE_Future (void)
{
FUTURE_REP::detach (future_rep_);
}
template <class T> bool
ACE_Future<T>::operator== (const ACE_Future<T> &r) const
{
return r.future_rep_ == this->future_rep_;
}
template <class T> bool
ACE_Future<T>::operator!= (const ACE_Future<T> &r) const
{
return r.future_rep_ != this->future_rep_;
}
template <class T> int
ACE_Future<T>::cancel (const T &r)
{
this->cancel ();
return this->future_rep_->set (r, *this);
}
template <class T> int
ACE_Future<T>::cancel (void)
{
// If this ACE_Future is already attached to a ACE_Future_Rep,
// detach it (maybe delete the ACE_Future_Rep).
FUTURE_REP::assign (this->future_rep_,
FUTURE_REP::create ());
return 0;
}
template <class T> int
ACE_Future<T>::set (const T &r)
{
// Give the pointer to the result to the ACE_Future_Rep.
return this->future_rep_->set (r, *this);
}
template <class T> int
ACE_Future<T>::ready (void) const
{
// We're ready if the ACE_Future_rep is ready...
return this->future_rep_->ready ();
}
template <class T> int
ACE_Future<T>::get (T &value,
ACE_Time_Value *tv) const
{
// We return the ACE_Future_rep.
return this->future_rep_->get (value, tv);
}
template <class T> int
ACE_Future<T>::attach (ACE_Future_Observer<T> *observer)
{
return this->future_rep_->attach (observer, *this);
}
template <class T> int
ACE_Future<T>::detach (ACE_Future_Observer<T> *observer)
{
return this->future_rep_->detach (observer);
}
template <class T>
ACE_Future<T>::operator T ()
{
// note that this will fail (and COREDUMP!)
// if future_rep_ == 0 !
//
// but...
// this is impossible unless somebody is so stupid to
// try something like this:
//
// Future<T> futT;
// T t;
// t = futT;
// perform type conversion on Future_Rep.
return *future_rep_;
}
template <class T> void
ACE_Future<T>::operator = (const ACE_Future<T> &rhs)
{
// assignment:
//
// bind <this> to the same <ACE_Future_Rep> as <r>.
// This will work if &r == this, by first increasing the ref count
ACE_Future<T> &r = (ACE_Future<T> &) rhs;
FUTURE_REP::assign (this->future_rep_,
FUTURE_REP::attach (r.future_rep_));
}
template <class T> void
ACE_Future<T>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACELIB_DEBUG ((LM_DEBUG,
ACE_BEGIN_DUMP, this));
if (this->future_rep_)
this->future_rep_->dump ();
ACELIB_DEBUG ((LM_DEBUG,
ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
template <class T> ACE_Future_Rep<T> *
ACE_Future<T>::get_rep ()
{
return this->future_rep_;
}
ACE_END_VERSIONED_NAMESPACE_DECL
#endif /* ACE_HAS_THREADS */
#endif /* ACE_FUTURE_CPP */
|