/usr/include/ace/Malloc_T.h is in libace-dev 6.3.3+dfsg-1.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 | // -*- C++ -*-
//==========================================================================
/**
* @file Malloc_T.h
*
* @author Douglas C. Schmidt <schmidt@cs.wustl.edu> and
* Irfan Pyarali <irfan@cs.wustl.edu>
*/
//==========================================================================
#ifndef ACE_MALLOC_T_H
#define ACE_MALLOC_T_H
#include /**/ "ace/pre.h"
#include "ace/Malloc.h" /* Need ACE_Control_Block */
#include "ace/Malloc_Base.h" /* Need ACE_Allocator */
#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */
#include "ace/Malloc_Allocator.h"
#include "ace/Free_List.h"
#include "ace/Guard_T.h"
ACE_BEGIN_VERSIONED_NAMESPACE_DECL
/**
* @class ACE_Cached_Mem_Pool_Node
*
* @brief ACE_Cached_Mem_Pool_Node keeps unused memory within a free
* list.
*
* The length of a piece of unused memory must be greater than
* sizeof (void*). This makes sense because we'll waste even
* more memory if we keep them in a separate data structure.
* This class should really be placed within the ACE_Cached_Allocator
* class but this can't be done due to C++ compiler portability problems.
*/
template <class T>
class ACE_Cached_Mem_Pool_Node
{
public:
/// Return the address of free memory.
T *addr (void);
/// Get the next ACE_Cached_Mem_Pool_Node in a list.
ACE_Cached_Mem_Pool_Node<T> *get_next (void);
/// Set the next ACE_Cached_Mem_Pool_Node.
void set_next (ACE_Cached_Mem_Pool_Node<T> *ptr);
private:
/**
* Since memory is not used when placed in a free list,
* we can use it to maintain the structure of free list.
* I was using union to hide the fact of overlapping memory
* usage. However, that cause problem on MSVC. So, I now turn
* back to hack this with casting.
*/
ACE_Cached_Mem_Pool_Node<T> *next_;
};
/**
* @class ACE_Cached_Allocator
*
* @brief A fixed-size allocator that caches items for quicker access.
*
* This class enables caching of dynamically allocated,
* fixed-sized classes. Notice that the <code>sizeof (TYPE)</code>
* must be greater than or equal to <code> sizeof (void*) </code> for
* this to work properly.
*
* This class can be configured flexibly with different types of
* ACE_LOCK strategies that support the @a ACE_Thread_Mutex,
* @a ACE_Thread_Semaphore, @a ACE_Process_Mutex, and @a
* ACE_Process_Semaphore constructor API.
*
* @sa ACE_Dynamic_Cached_Allocator
*/
template <class T, class ACE_LOCK>
class ACE_Cached_Allocator : public ACE_New_Allocator
{
public:
/// Create a cached memory pool with @a n_chunks chunks
/// each with sizeof (TYPE) size.
ACE_Cached_Allocator (size_t n_chunks);
/// Clear things up.
~ACE_Cached_Allocator (void);
/**
* Get a chunk of memory from free list cache. Note that @a nbytes is
* only checked to make sure that it's less or equal to sizeof T, and is
* otherwise ignored since @c malloc() always returns a pointer to an
* item of sizeof (T).
*/
void *malloc (size_t nbytes = sizeof (T));
/**
* Get a chunk of memory from free list cache, giving them
* @a initial_value. Note that @a nbytes is only checked to make sure
* that it's less or equal to sizeof T, and is otherwise ignored since
* calloc() always returns a pointer to an item of sizeof (T).
*/
virtual void *calloc (size_t nbytes,
char initial_value = '\0');
/// This method is a no-op and just returns 0 since the free list
/// only works with fixed sized entities.
virtual void *calloc (size_t n_elem,
size_t elem_size,
char initial_value = '\0');
/// Return a chunk of memory back to free list cache.
void free (void *);
/// Return the number of chunks available in the cache.
size_t pool_depth (void);
private:
/// Remember how we allocate the memory in the first place so
/// we can clear things up later.
char *pool_;
/// Maintain a cached memory free list.
ACE_Locked_Free_List<ACE_Cached_Mem_Pool_Node<T>, ACE_LOCK> free_list_;
};
/**
* @class ACE_Dynamic_Cached_Allocator
*
* @brief A size-based allocator that caches blocks for quicker access.
*
* This class enables caching of dynamically allocated,
* fixed-size chunks. Notice that the <code>chunk_size</code>
* must be greater than or equal to <code> sizeof (void*) </code> for
* this to work properly.
*
* This class can be configured flexibly with different types of
* ACE_LOCK strategies that support the @a ACE_Thread_Mutex and @a
* ACE_Process_Mutex constructor API.
*
* @sa ACE_Cached_Allocator
*/
template <class ACE_LOCK>
class ACE_Dynamic_Cached_Allocator : public ACE_New_Allocator
{
public:
/// Create a cached memory pool with @a n_chunks chunks
/// each with @a chunk_size size.
ACE_Dynamic_Cached_Allocator (size_t n_chunks, size_t chunk_size);
/// Clear things up.
~ACE_Dynamic_Cached_Allocator (void);
/**
* Get a chunk of memory from free list cache. Note that @a nbytes is
* only checked to make sure that it's less or equal to @a chunk_size,
* and is otherwise ignored since malloc() always returns a pointer to an
* item of @a chunk_size size.
*/
void *malloc (size_t nbytes = 0);
/**
* Get a chunk of memory from free list cache, giving them
* @a initial_value. Note that @a nbytes is only checked to make sure
* that it's less or equal to @a chunk_size, and is otherwise ignored
* since calloc() always returns a pointer to an item of @a chunk_size.
*/
virtual void *calloc (size_t nbytes,
char initial_value = '\0');
/// This method is a no-op and just returns 0 since the free list
/// only works with fixed sized entities.
virtual void *calloc (size_t n_elem,
size_t elem_size,
char initial_value = '\0');
/// Return a chunk of memory back to free list cache.
void free (void *);
/// Return the number of chunks available in the cache.
size_t pool_depth (void);
private:
/// Remember how we allocate the memory in the first place so
/// we can clear things up later.
char *pool_;
/// Maintain a cached memory free list. We use @c char as template
/// parameter, although sizeof(char) is usually less than
/// sizeof(void*). Really important is that @a chunk_size
/// must be greater or equal to sizeof(void*).
ACE_Locked_Free_List<ACE_Cached_Mem_Pool_Node<char>, ACE_LOCK> free_list_;
/// Remember the size of our chunks.
size_t chunk_size_;
};
/**
* @class ACE_Allocator_Adapter
*
* @brief This class is an adapter that allows the ACE_Allocator to
* use the ACE_Malloc class below.
*/
template <class MALLOC>
class ACE_Allocator_Adapter : public ACE_Allocator
{
public:
// Trait.
typedef MALLOC ALLOCATOR;
typedef const typename MALLOC::MEMORY_POOL_OPTIONS *MEMORY_POOL_OPTIONS;
// = Initialization.
/**
* Note that @a pool_name should be located in
* a directory with the appropriate visibility and protection so
* that all processes that need to access it can do so. */
ACE_Allocator_Adapter (const char *pool_name = 0);
/**
* Note that @a pool_name should be located in
* a directory with the appropriate visibility and protection so
* that all processes that need to access it can do so.
*/
ACE_Allocator_Adapter (const char *pool_name,
const char *lock_name,
MEMORY_POOL_OPTIONS options = 0);
#if defined (ACE_HAS_WCHAR)
/**
* Note that @a pool_name should be located in
* a directory with the appropriate visibility and protection so
* that all processes that need to access it can do so. */
ACE_Allocator_Adapter (const wchar_t *pool_name);
/**
* Note that @a pool_name should be located in
* a directory with the appropriate visibility and protection so
* that all processes that need to access it can do so.
*/
ACE_Allocator_Adapter (const wchar_t *pool_name,
const wchar_t *lock_name,
MEMORY_POOL_OPTIONS options = 0);
#endif /* ACE_HAS_WCHAR */
/// Destructor.
virtual ~ACE_Allocator_Adapter (void);
// = Memory Management
/// Allocate @a nbytes, but don't give them any initial value.
virtual void *malloc (size_t nbytes);
/// Allocate @a nbytes, giving them all an @a initial_value.
virtual void *calloc (size_t nbytes, char initial_value = '\0');
/// Allocate @a n_elem each of size @a elem_size, giving them
/// @a initial_value.
virtual void *calloc (size_t n_elem,
size_t elem_size,
char initial_value = '\0');
/// Free @a ptr (must have been allocated by ACE_Allocator::malloc()).
virtual void free (void *ptr);
/// Remove any resources associated with this memory manager.
virtual int remove (void);
// = Map manager like functions
/**
* Associate @a name with @a pointer. If @a duplicates == 0 then do
* not allow duplicate @a name/pointer associations, else if
* @a duplicates != 0 then allow duplicate @a name/pointer
* associations. Returns 0 if successfully binds (1) a previously
* unbound @a name or (2) @a duplicates != 0, returns 1 if trying to
* bind a previously bound @a name and @a duplicates == 0, else
* returns -1 if a resource failure occurs.
*/
virtual int bind (const char *name, void *pointer, int duplicates = 0);
/**
* Associate @a name with @a pointer. Does not allow duplicate
* name/pointer associations. Returns 0 if successfully binds
* (1) a previously unbound @a name, 1 if trying to bind a previously
* bound @a name, or returns -1 if a resource failure occurs. When
* this call returns, @a pointer's value will always reference the
* void * that @a name is associated with. Thus, if the caller needs
* to use @a pointer (e.g., to free it) a copy must be maintained by
* the caller.
*/
virtual int trybind (const char *name, void *&pointer);
/// Locate @a name and pass out parameter via pointer. If found,
/// return 0, returns -1 if @a name isn't found.
virtual int find (const char *name, void *&pointer);
/// Returns 0 if the name is in the mapping and -1 if not.
virtual int find (const char *name);
/// Unbind (remove) the name from the map. Don't return the pointer
/// to the caller
virtual int unbind (const char *name);
/// Break any association of name. Returns the value of pointer in
/// case the caller needs to deallocate memory.
virtual int unbind (const char *name, void *&pointer);
// = Protection and "sync" (i.e., flushing data to backing store).
/**
* Sync @a len bytes of the memory region to the backing store
* starting at @c this->base_addr_. If @a len == -1 then sync the
* whole region.
*/
virtual int sync (ssize_t len = -1, int flags = MS_SYNC);
/// Sync @a len bytes of the memory region to the backing store
/// starting at @c addr_.
virtual int sync (void *addr, size_t len, int flags = MS_SYNC);
/**
* Change the protection of the pages of the mapped region to @a prot
* starting at @c this->base_addr_ up to @a len bytes. If @a len == -1
* then change protection of all pages in the mapped region.
*/
virtual int protect (ssize_t len = -1, int prot = PROT_RDWR);
/// Change the protection of the pages of the mapped region to @a prot
/// starting at @a addr up to @a len bytes.
virtual int protect (void *addr, size_t len, int prot = PROT_RDWR);
/// Returns the underlying allocator.
ALLOCATOR &alloc (void);
#if defined (ACE_HAS_MALLOC_STATS)
/// Dump statistics of how malloc is behaving.
virtual void print_stats (void) const;
#endif /* ACE_HAS_MALLOC_STATS */
/// Dump the state of the object.
virtual void dump (void) const;
private:
/// ALLOCATOR instance, which is owned by the adapter.
ALLOCATOR allocator_;
};
/**
* @class ACE_Static_Allocator
*
* @brief Defines a class that provided a highly optimized memory
* management scheme for allocating memory statically.
*
* This class allocates a fixed-size @c POOL_SIZE of memory and
* uses the ACE_Static_Allocator_Base class implementations of
* malloc() and calloc() to optimize memory allocation from this
* pool.
*/
template <size_t POOL_SIZE>
class ACE_Static_Allocator : public ACE_Static_Allocator_Base
{
public:
ACE_Static_Allocator (void)
: ACE_Static_Allocator_Base (pool_, POOL_SIZE)
{
// This function <{must}> be inlined!!!
}
private:
/// Pool contents.
char pool_[POOL_SIZE];
};
// Forward declaration.
template <ACE_MEM_POOL_1, class ACE_LOCK, class ACE_CB>
class ACE_Malloc_LIFO_Iterator_T;
// Ensure backwards compatibility...
#define ACE_Malloc_Iterator ACE_Malloc_LIFO_Iterator
// Forward declaration.
template <ACE_MEM_POOL_1, class ACE_LOCK, class ACE_CB>
class ACE_Malloc_FIFO_Iterator_T;
/**
* @class ACE_Malloc_T
*
* @brief A class template that uses parameterized types to provide
* an extensible mechanism for encapsulating various dynamic
* memory management strategies.
*
* This class can be configured flexibly with different
* MEMORY_POOL strategies and different types of ACE_LOCK
* strategies that support the ACE_Thread_Mutex and ACE_Process_Mutex
* constructor API.
*
* Common MEMORY_POOL strategies to use with this class are:
* - ACE_Local_Memory_Pool
* - ACE_MMAP_Memory_Pool
* - ACE_Pagefile_Memory_Pool
* - ACE_Shared_Memory_Pool
* - ACE_Sbrk_Memory_Pool
*
* The MEMORY_POOL class must provide the following methods:
* - constructor (const ACE_TCHAR *pool_name)
* - constructor (const ACE_TCHAR *pool_name, const MEMORY_POOL_OPTIONS *options)
* - void dump (void) const (needed if ACE is built with ACE_HAS_DUMP defined)
* - void *init_acquire (size_t nbytes, size_t &rounded_bytes, int &first_time);
* - int release (void)
* - void *acquire (size_t nbytes, size_t &rounded_bytes)
* - void *base_addr (void)
* - seh_selector() (only needed on Windows)
*
* Note that the ACE_Allocator_Adapter class can be used to integrate allocator
* classes which do not meet the interface requirements of ACE_Malloc_T.
*
* @Note The bind() and find() methods use linear search, so
* it's not a good idea to use them for managing a large number of
* entities. If you need to manage a large number of entities, it's
* recommended that you bind() an ACE_Hash_Map_Manager that
* resides in shared memory, use find() to locate it, and then
* store/retrieve the entities in the hash map.
*/
template <ACE_MEM_POOL_1, class ACE_LOCK, class ACE_CB>
class ACE_Malloc_T
{
public:
friend class ACE_Malloc_LIFO_Iterator_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_CB>;
friend class ACE_Malloc_FIFO_Iterator_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_CB>;
typedef ACE_MEM_POOL MEMORY_POOL;
typedef ACE_MEM_POOL_OPTIONS MEMORY_POOL_OPTIONS;
typedef typename ACE_CB::ACE_Name_Node NAME_NODE;
typedef typename ACE_CB::ACE_Malloc_Header MALLOC_HEADER;
// = Initialization and termination methods.
/**
* Initialize ACE_Malloc. This constructor passes @a pool_name to
* initialize the memory pool, and uses ACE::basename() to
* automatically extract out the name used for the underlying lock
* name (if necessary).
*
* Note that @a pool_name should be located in
* a directory with the appropriate visibility and protection so
* that all processes that need to access it can do so.
*/
ACE_Malloc_T (const ACE_TCHAR *pool_name = 0);
/**
* Initialize ACE_Malloc. This constructor passes @a pool_name to
* initialize the memory pool, and uses @a lock_name to automatically
* extract out the name used for the underlying lock name (if
* necessary). In addition, @a options is passed through to
* initialize the underlying memory pool.
*
* Note that @a pool_name should be located in
* a directory with the appropriate visibility and protection so
* that all processes that need to access it can do so.
*/
ACE_Malloc_T (const ACE_TCHAR *pool_name,
const ACE_TCHAR *lock_name,
const ACE_MEM_POOL_OPTIONS *options = 0);
/**
* Initialize an ACE_Malloc with an external ACE_LOCK.
* This constructor passes @a pool_name and @a options to initialize
* the memory pool. @a lock is used as the pool lock, and must be
* properly set up and ready for use before being passed to this method.
*/
ACE_Malloc_T (const ACE_TCHAR *pool_name,
const ACE_MEM_POOL_OPTIONS *options,
ACE_LOCK *lock);
/// Destructor
~ACE_Malloc_T (void);
/// Get Reference counter.
int ref_counter (void);
/// Release ref counter.
int release (int close = 0);
/// Releases resources allocated by this object.
int remove (void);
// = Memory management
/// Allocate @a nbytes, but don't give them any initial value.
void *malloc (size_t nbytes);
/// Allocate @a nbytes, giving them @a initial_value.
void *calloc (size_t nbytes, char initial_value = '\0');
/// Allocate @a n_elem each of size @a elem_size, giving them
/// @a initial_value.
void *calloc (size_t n_elem,
size_t elem_size,
char initial_value = '\0');
/// Deallocate memory pointed to by @a ptr, which must have been
/// allocated previously by malloc().
void free (void *ptr);
/// Returns a reference to the underlying memory pool.
MEMORY_POOL &memory_pool (void);
// = Map manager like functions
/**
* Associate @a name with @a pointer. If @a duplicates == 0 then do
* not allow duplicate name/pointer associations, else if
* @a duplicates != 0 then allow duplicate name/pointer
* associations. Returns 0 if successfully binds (1) a previously
* unbound @a name or (2) @a duplicates != 0, returns 1 if trying to
* bind a previously bound @a name and @a duplicates == 0, else
* returns -1 if a resource failure occurs.
*/
int bind (const char *name, void *pointer, int duplicates = 0);
/**
* Associate @a name with @a pointer. Does not allow duplicate
* name/pointer associations. Returns 0 if successfully binds
* (1) a previously unbound @a name, 1 if trying to bind a previously
* bound @a name, or returns -1 if a resource failure occurs. When
* this call returns @a pointer's value will always reference the
* void * that @a name is associated with. Thus, if the caller needs
* to use @a pointer (e.g., to free it) a copy must be maintained by
* the caller.
*/
int trybind (const char *name, void *&pointer);
/// Locate @a name and pass out parameter via @a pointer. If found,
/// return 0, returns -1 if failure occurs.
int find (const char *name, void *&pointer);
/// Returns 0 if @a name is in the mapping. -1, otherwise.
int find (const char *name);
/**
* Unbind (remove) the name from the map. Don't return the pointer
* to the caller. If you want to remove all occurrences of @a name
* you'll need to call this method multiple times until it fails...
*/
int unbind (const char *name);
/**
* Unbind (remove) one association of @a name to @a pointer. Returns
* the value of pointer in case the caller needs to deallocate
* memory. If you want to remove all occurrences of @a name you'll
* need to call this method multiple times until it fails...
*/
int unbind (const char *name, void *&pointer);
// = Protection and "sync" (i.e., flushing data to backing store).
/**
* Sync @a len bytes of the memory region to the backing store
* starting at @c this->base_addr_. If @a len == -1 then sync the
* whole region.
*/
int sync (ssize_t len = -1, int flags = MS_SYNC);
/// Sync @a len bytes of the memory region to the backing store
/// starting at @c addr_.
int sync (void *addr, size_t len, int flags = MS_SYNC);
/**
* Change the protection of the pages of the mapped region to @a prot
* starting at @c this->base_addr_ up to @a len bytes. If @a len == -1
* then change protection of all pages in the mapped region.
*/
int protect (ssize_t len = -1, int prot = PROT_RDWR);
/// Change the protection of the pages of the mapped region to @a prot
/// starting at @a addr up to @a len bytes.
int protect (void *addr, size_t len, int prot = PROT_RDWR);
/**
* Returns a count of the number of available chunks that can hold
* @a size byte allocations. Function can be used to determine if you
* have reached a water mark. This implies a fixed amount of allocated
* memory.
*
* @param size The chunk size of that you would like a count of
* @return Function returns the number of chunks of the given size
* that would fit in the currently allocated memory.
*/
ssize_t avail_chunks (size_t size) const;
#if defined (ACE_HAS_MALLOC_STATS)
/// Dump statistics of how malloc is behaving.
void print_stats (void) const;
#endif /* ACE_HAS_MALLOC_STATS */
/// Returns a pointer to the lock used to provide mutual exclusion to
/// an ACE_Malloc allocator.
ACE_LOCK &mutex (void);
/// Dump the state of an object.
void dump (void) const;
/// Declare the dynamic allocation hooks.
ACE_ALLOC_HOOK_DECLARE;
/// Return cb_ptr value.
void *base_addr (void);
/**
* Bad flag. This operation should be called immediately after the
* construction of the Malloc object to query whether the object was
* constructed successfully. If not, the user should invoke @c
* remove and release the object (it is not usable.)
* @retval 0 if all is fine. non-zero if this malloc object is
* unuable.
*/
int bad (void);
private:
/// Initialize the Malloc pool.
int open (void);
/// Associate @a name with @a pointer. Assumes that locks are held by
/// callers.
int shared_bind (const char *name,
void *pointer);
/**
* Try to locate @a name. If found, return the associated
* ACE_Name_Node, else returns 0 if can't find the @a name.
* Assumes that locks are held by callers. Remember to cast the
* return value to ACE_CB::ACE_Name_Node*.
*/
void *shared_find (const char *name);
/// Allocate memory. Assumes that locks are held by callers.
void *shared_malloc (size_t nbytes);
/// Deallocate memory. Assumes that locks are held by callers.
void shared_free (void *ptr);
/// Pointer to the control block that is stored in memory controlled
/// by <MEMORY_POOL>.
ACE_CB *cb_ptr_;
/// Pool of memory used by ACE_Malloc to manage its freestore.
MEMORY_POOL memory_pool_;
/// Lock that ensures mutual exclusion for the memory pool.
ACE_LOCK *lock_;
/// True if destructor should delete the lock
bool delete_lock_;
/// Keep track of failure in constructor.
int bad_flag_;
};
/*****************************************************************************/
/**
* @class ACE_Malloc_Lock_Adapter_T
*
* @brief Template functor adapter for lock strategies used with ACE_Malloc_T.
*
* This class acts as a factory for lock strategies that have various ctor
* signatures. If the lock strategy's ctor takes an ACE_TCHAR* as the first
* and only required parameter, it will just work. Otherwise use template
* specialization to create a version that matches the lock strategy's ctor
* signature. See ACE_Process_Semaphore and ACE_Thread_Semaphore for
* examples.
*/
/*****************************************************************************/
/**
* @class ACE_Malloc_LIFO_Iterator_T
*
* @brief LIFO iterator for names stored in Malloc'd memory.
*
* This class can be configured flexibly with different types of
* ACE_LOCK strategies that support the @a ACE_Thread_Mutex and @a
* ACE_Process_Mutex constructor API.
*
* Does not support deletions while iteration is occurring.
*/
template <ACE_MEM_POOL_1, class ACE_LOCK, class ACE_CB>
class ACE_Malloc_LIFO_Iterator_T
{
public:
typedef typename ACE_CB::ACE_Name_Node NAME_NODE;
typedef typename ACE_CB::ACE_Malloc_Header MALLOC_HEADER;
// = Initialization method.
/// If @a name = 0 it will iterate through everything else only
/// through those entries whose @a name match.
ACE_Malloc_LIFO_Iterator_T (ACE_Malloc_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_CB> &malloc,
const char *name = 0);
/// Destructor.
~ACE_Malloc_LIFO_Iterator_T (void);
// = Iteration methods.
/// Returns 1 when all items have been seen, else 0.
int done (void) const;
/// Pass back the next entry in the set that hasn't yet been
/// visited. Returns 0 when all items have been seen, else 1.
int next (void *&next_entry);
/**
* Pass back the next entry (and the name associated with it) in
* the set that hasn't yet been visited. Returns 0 when all items
* have been seen, else 1.
*/
int next (void *&next_entry, const char *&name);
/// Move forward by one element in the set. Returns 0 when all the
/// items in the set have been seen, else 1.
int advance (void);
/// Dump the state of an object.
void dump (void) const;
/// Declare the dynamic allocation hooks.
ACE_ALLOC_HOOK_DECLARE;
private:
/// Malloc we are iterating over.
ACE_Malloc_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_CB> &malloc_;
/// Keeps track of how far we've advanced...
NAME_NODE *curr_;
// FUZZ: disable check_for_ACE_Guard
/// Lock Malloc for the lifetime of the iterator.
ACE_Read_Guard<ACE_LOCK> guard_;
// FUZZ: enable check_for_ACE_Guard
/// Name that we are searching for.
const char *name_;
};
/**
* @class ACE_Malloc_FIFO_Iterator_T
*
* @brief FIFO iterator for names stored in Malloc'd memory.
*
* This class can be configured flexibly with different types of
* ACE_LOCK strategies that support the @a ACE_Thread_Mutex and @a
* ACE_Process_Mutex constructor API.
*
* Does not support deletions while iteration is occurring.
*/
template <ACE_MEM_POOL_1, class ACE_LOCK, class ACE_CB>
class ACE_Malloc_FIFO_Iterator_T
{
public:
typedef typename ACE_CB::ACE_Name_Node NAME_NODE;
typedef typename ACE_CB::ACE_Malloc_Header MALLOC_HEADER;
/// If @a name = 0 it will iterate through everything else only
/// through those entries whose @a name match.
ACE_Malloc_FIFO_Iterator_T (ACE_Malloc_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_CB> &malloc,
const char *name = 0);
/// Destructor.
~ACE_Malloc_FIFO_Iterator_T (void);
// = Iteration methods.
/// Returns 1 when all items have been seen, else 0.
int done (void) const;
/// Pass back the next entry in the set that hasn't yet been
/// visited. Returns 0 when all items have been seen, else 1.
int next (void *&next_entry);
/**
* Pass back the next entry (and the name associated with it) in
* the set that hasn't yet been visited. Returns 0 when all items
* have been seen, else 1.
*/
int next (void *&next_entry, const char *&name);
/// Move forward by one element in the set. Returns 0 when all the
/// items in the set have been seen, else 1.
int advance (void);
/// Go to the starting element that was inserted first. Returns 0
/// when there is no item in the set, else 1.
int start (void);
/// Dump the state of an object.
void dump (void) const;
/// Declare the dynamic allocation hooks.
ACE_ALLOC_HOOK_DECLARE;
private:
/// Malloc we are iterating over.
ACE_Malloc_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_CB> &malloc_;
/// Keeps track of how far we've advanced...
NAME_NODE *curr_;
// FUZZ: disable check_for_ACE_Guard
/// Lock Malloc for the lifetime of the iterator.
ACE_Read_Guard<ACE_LOCK> guard_;
// FUZZ: enable check_for_ACE_Guard
/// Name that we are searching for.
const char *name_;
};
template <ACE_MEM_POOL_1, class ACE_LOCK>
class ACE_Malloc : public ACE_Malloc_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_Control_Block>
{
public:
// = Initialization and termination methods.
/**
* Initialize ACE_Malloc. This constructor passes @a pool_name to
* initialize the memory pool, and uses ACE::basename() to
* automatically extract out the name used for the underlying lock
* name (if necessary). Note that @a pool_name should be located in
* a directory with the appropriate visibility and protection so
* that all processes that need to access it can do so.
*/
ACE_Malloc (const ACE_TCHAR *pool_name = 0);
/**
* Initialize ACE_Malloc. This constructor passes @a pool_name to
* initialize the memory pool, and uses @a lock_name to automatically
* extract out the name used for the underlying lock name (if
* necessary). In addition, @a options is passed through to
* initialize the underlying memory pool. Note that @a pool_name
* should be located in a directory with the appropriate visibility
* and protection so that all processes that need to access it can
* do so.
*/
ACE_Malloc (const ACE_TCHAR *pool_name,
const ACE_TCHAR *lock_name,
const ACE_MEM_POOL_OPTIONS *options = 0);
};
template <ACE_MEM_POOL_1, class ACE_LOCK>
class ACE_Malloc_LIFO_Iterator : public ACE_Malloc_LIFO_Iterator_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_Control_Block>
{
public:
/// If @a name = 0 it will iterate through everything else only
/// through those entries whose @a name match.
ACE_Malloc_LIFO_Iterator (ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK> &malloc,
const char *name = 0);
};
template <ACE_MEM_POOL_1, class ACE_LOCK>
class ACE_Malloc_FIFO_Iterator : public ACE_Malloc_FIFO_Iterator_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_Control_Block>
{
public:
/// If @a name = 0 it will iterate through everything else only
/// through those entries whose @a name match.
ACE_Malloc_FIFO_Iterator (ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK> &malloc,
const char *name = 0);
};
template <class ACE_LOCK>
class ACE_Malloc_Lock_Adapter_T
{
public:
ACE_LOCK * operator () (const ACE_TCHAR *myname);
};
ACE_END_VERSIONED_NAMESPACE_DECL
#if defined (__ACE_INLINE__)
#include "ace/Malloc_T.inl"
#endif /* __ACE_INLINE__ */
#if defined (ACE_TEMPLATES_REQUIRE_SOURCE)
#include "ace/Malloc_T.cpp"
#endif /* ACE_TEMPLATES_REQUIRE_SOURCE */
#if defined (ACE_TEMPLATES_REQUIRE_PRAGMA)
#pragma implementation ("Malloc_T.cpp")
#endif /* ACE_TEMPLATES_REQUIRE_PRAGMA */
#include /**/ "ace/post.h"
#endif /* ACE_MALLOC_H */
|