This file is indexed.

/usr/include/ace/Map_Manager.cpp is in libace-dev 6.3.3+dfsg-1.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
#ifndef ACE_MAP_MANAGER_CPP
#define ACE_MAP_MANAGER_CPP

#include "ace/Map_Manager.h"

#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */

#include "ace/Malloc_Base.h"

#if !defined (__ACE_INLINE__)
#include "ace/Map_Manager.inl"
#endif /* __ACE_INLINE__ */

ACE_BEGIN_VERSIONED_NAMESPACE_DECL

ACE_ALLOC_HOOK_DEFINE(ACE_Map_Entry)
ACE_ALLOC_HOOK_DEFINE(ACE_Map_Manager)
ACE_ALLOC_HOOK_DEFINE(ACE_Map_Const_Iterator_Base)
ACE_ALLOC_HOOK_DEFINE(ACE_Map_Iterator_Base)
ACE_ALLOC_HOOK_DEFINE(ACE_Map_Const_Iterator)
ACE_ALLOC_HOOK_DEFINE(ACE_Map_Iterator)
ACE_ALLOC_HOOK_DEFINE(ACE_Map_Reverse_Iterator)

template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::open (size_t size,
                                                 ACE_Allocator *alloc)
{
  ACE_WRITE_GUARD_RETURN (ACE_LOCK, ace_mon, this->lock_, -1);

  // Close old map (if any).
  this->close_i ();

  // Use the user specified allocator or the default singleton one.
  if (alloc == 0)
    alloc = ACE_Allocator::instance ();

  this->allocator_ = alloc;

  // This assertion is here to help track a situation that shouldn't
  // happen.
  ACE_ASSERT (size != 0);

  // Active_Map_Manager depends on the <slot_index_> being of fixed
  // size. It cannot be size_t because size_t is 64-bits on 64-bit
  // platform and 32-bits on 32-bit platforms. Size of the <slot_index_>
  // has to be consistent across platforms. ACE_UIN32 is chosen as
  // ACE_UIN32_MAX is big enough. The assert is to ensure that the user
  // doesn't open the ACE_Map_Manager with a bigger size than we can
  // handle.
  ACE_ASSERT (size <= ACE_UINT32_MAX);

  // Resize from 0 to <size>.  Note that this will also set up the
  // circular free list.
  return this->resize_i ((ACE_UINT32) size);
}

template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::close_i (void)
{
  // Free entries.
  this->free_search_structure ();

  // Reset sizes.
  this->total_size_ = 0;
  this->cur_size_ = 0;

  // Reset circular free list.
  this->free_list_.next (this->free_list_id ());
  this->free_list_.prev (this->free_list_id ());

  // Reset circular occupied list.
  this->occupied_list_.next (this->occupied_list_id ());
  this->occupied_list_.prev (this->occupied_list_id ());

  return 0;
}

template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::bind_i (const EXT_ID &ext_id,
                                                   const INT_ID &int_id)
{
  // Try to find the key.
  ACE_UINT32 slot = 0;
  int result = this->find_and_return_index (ext_id,
                                            slot);

  if (result == 0)
    // We found the key. Nothing to change.
    return 1;
  else
    // We didn't find the key.
    return this->shared_bind (ext_id,
                              int_id);
}

template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::next_free (ACE_UINT32 &free_slot)
{
  // Look in the free list for an empty slot.
  free_slot = this->free_list_.next ();

  // If we do find a free slot, return successfully.
  if (free_slot != this->free_list_id ())
    return 0;

#if defined (ACE_HAS_LAZY_MAP_MANAGER)

  // Move any free slots from occupied list to free list.
  this->move_all_free_slots_from_occupied_list ();

  // Try again in case we found any free slots in the occupied list.
  free_slot = this->free_list_.next ();

  // If we do find a free slot, return successfully.
  if (free_slot != this->free_list_id ())
    return 0;

#endif /* ACE_HAS_LAZY_MAP_MANAGER */

  // Resize the map.
  int result = this->resize_i (this->new_size ());

  // Check for errors.
  if (result == 0)
    // New free slot.
    free_slot = this->free_list_.next ();

  return result;
}

#if defined (ACE_HAS_LAZY_MAP_MANAGER)

template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::move_all_free_slots_from_occupied_list (void)
{
  //
  // In the case of lazy map managers, the movement of free slots from
  // the occupied list to the free list is delayed until we run out of
  // free slots in the free list.
  //

  // Go through the entire occupied list, moving free slots to the
  // free list. Note that all free slots in the occupied list are
  // moved in this loop.
  for (ACE_UINT32 i = this->occupied_list_.next ();
       i != this->occupied_list_id ();
       )
    {
      //
      // Note the trick used here: Information about the current slot
      // is first noted; <i> then moves to the next occupied slot;
      // only after this is the slot (potentially) moved from the
      // occupied list to the free list.  This order of things, i.e.,
      // moving <i> before moving the free slot is necessary,
      // otherwise we'll forget which our next occupied slot is.
      //

      // Note information about current slot.
      ACE_Map_Entry<EXT_ID, INT_ID> &current_slot = this->search_structure_[i];
      ACE_UINT32 position_of_current_slot = i;

      // Move <i> to next occupied slot.
      i = this->search_structure_[i].next ();

      // If current slot is free
      if (current_slot.free_)
        {
          // Reset free flag to zero before moving to free list.
          current_slot.free_ = false;

          // Move from occupied list to free list.
          this->move_from_occupied_list_to_free_list (position_of_current_slot);
        }
    }
}

#endif /* ACE_HAS_LAZY_MAP_MANAGER */

template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::shared_move (ACE_UINT32 slot,
                                                        ACE_Map_Entry<EXT_ID, INT_ID> &current_list,
                                                        ACE_UINT32 current_list_id,
                                                        ACE_Map_Entry<EXT_ID, INT_ID> &new_list,
                                                        ACE_UINT32 new_list_id)
{
  // Grab the entry.
  ENTRY &entry = this->search_structure_[slot];

  // Remove from current list.

  // Fix the entry before us.
  ACE_UINT32 current_list_prev = entry.prev ();

  if (current_list_prev == current_list_id)
    current_list.next (entry.next ());
  else
    this->search_structure_[current_list_prev].next (entry.next ());

  // Fix the entry after us.
  ACE_UINT32 current_list_next = entry.next ();

  if (current_list_next == current_list_id)
    current_list.prev (entry.prev ());
  else
    this->search_structure_[current_list_next].prev (entry.prev ());

  // Add to new list.

  // Fix us.
  ACE_UINT32 new_list_next = new_list.next ();
  entry.next (new_list_next);
  entry.prev (new_list_id);

  // Fix entry before us.
  new_list.next (slot);

  // Fix entry after us.
  if (new_list_next == new_list_id)
    new_list.prev (slot);
  else
    this->search_structure_[new_list_next].prev (slot);
}

template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::shared_bind (const EXT_ID &ext_id,
                                                        const INT_ID &int_id)
{
  // This function assumes that the find() has already been done, and
  // therefore, simply adds to the map.

  // Find an empty slot.
  ACE_UINT32 slot = 0;
  int result = this->next_free (slot);

  if (result == 0)
    {
      // Copy key and value.
      this->search_structure_[slot].int_id_ = int_id;
      this->search_structure_[slot].ext_id_ = ext_id;

      // Move from free list to occupied list
      this->move_from_free_list_to_occupied_list (slot);

      // Update the current size.
      ++this->cur_size_;
    }

  return result;
}

template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::rebind_i (const EXT_ID &ext_id,
                                                     const INT_ID &int_id,
                                                     EXT_ID &old_ext_id,
                                                     INT_ID &old_int_id)
{
  // First try to find the key.
  ACE_UINT32 slot = 0;
  int result = this->find_and_return_index (ext_id,
                                            slot);
  if (result == 0)
    {
      // We found it, so make copies of the old entries and rebind
      // current entries.
      ENTRY &ss = this->search_structure_[slot];
      old_ext_id = ss.ext_id_;
      old_int_id = ss.int_id_;
      ss.ext_id_ = ext_id;
      ss.int_id_ = int_id;

      // Sync changed entry.
      this->allocator_->sync (&ss, sizeof ss);

      return 1;
    }
  else
    // We didn't find it, so let's add it.
    return this->shared_bind (ext_id,
                              int_id);
}

template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::rebind_i (const EXT_ID &ext_id,
                                                     const INT_ID &int_id,
                                                     INT_ID &old_int_id)
{
  // First try to find the key.
  ACE_UINT32 slot = 0;
  int result = this->find_and_return_index (ext_id,
                                            slot);
  if (result == 0)
    {
      // We found it, so make copies of the old entries and rebind
      // current entries.
      ENTRY &ss = this->search_structure_[slot];
      old_int_id = ss.int_id_;
      ss.ext_id_ = ext_id;
      ss.int_id_ = int_id;

      // Sync changed entry.
      this->allocator_->sync (&ss, sizeof ss);

      return 1;
    }
  else
    // We didn't find it, so let's add it.
    return this->shared_bind (ext_id,
                              int_id);
}

template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::rebind_i (const EXT_ID &ext_id,
                                                     const INT_ID &int_id)
{
  // First try to find the key.
  ACE_UINT32 slot = 0;
  int result = this->find_and_return_index (ext_id,
                                            slot);
  if (result == 0)
    {
      // We found it, so rebind current entries.
      ENTRY &ss = this->search_structure_[slot];
      ss.ext_id_ = ext_id;
      ss.int_id_ = int_id;

      // Sync changed entry.
      this->allocator_->sync (&ss, sizeof ss);

      return 1;
    }
  else
    // We didn't find it, so let's add it.
    return this->shared_bind (ext_id,
                              int_id);
}

template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::trybind_i (const EXT_ID &ext_id,
                                                      INT_ID &int_id)
{
  // Try to find the key.
  ACE_UINT32 slot = 0;
  int result = this->find_and_return_index (ext_id,
                                            slot);
  if (result == 0)
    {
      // Key was found.  Make a copy of value, but *don't* update
      // anything in the map!
      int_id = this->search_structure_[slot].int_id_;
      return 1;
    }
  else
    // We didn't find it, so let's bind it!
    return this->bind_i (ext_id,
                         int_id);
}

template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::find_and_return_index (const EXT_ID &ext_id,
                                                                  ACE_UINT32 &slot)
{
  // Go through the entire occupied list looking for the key.
  for (ACE_UINT32 i = this->occupied_list_.next ();
       i != this->occupied_list_id ();
       i = this->search_structure_[i].next ())
    {
#if defined (ACE_HAS_LAZY_MAP_MANAGER)
      if (this->search_structure_[i].free_)
        continue;
#endif /* ACE_HAS_LAZY_MAP_MANAGER */

      if (this->equal (this->search_structure_[i].ext_id_,
                       ext_id))
        {
          // If found, return slot.
          slot = i;
          return 0;
        }
    }

  // Key was not found.
  return -1;
}

template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::unbind_all (void)
{
  // Go through the entire occupied list.
  for (ACE_UINT32 i = this->occupied_list_.next ();
       i != this->occupied_list_id ();
       )
    {
      //
      // Note the trick used here: Information about the current slot
      // is first noted; <i> then moves to the next occupied slot;
      // only after this is the slot (potentially) moved from the
      // occupied list to the free list.  This order of things, i.e.,
      // moving <i> before moving the free slot is necessary,
      // otherwise we'll forget which our next occupied slot is.
      //

      // Note information about current slot.
      ACE_Map_Entry<EXT_ID, INT_ID> &current_slot =
        this->search_structure_[i];
      ACE_UINT32 position_of_current_slot = i;

      // Move <i> to next occupied slot.
      i = current_slot.next ();

#if defined (ACE_HAS_LAZY_MAP_MANAGER)
      if (current_slot.free_)
        continue;
#endif /* ACE_HAS_LAZY_MAP_MANAGER */

      this->unbind_slot (position_of_current_slot);
    }
}

template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::find_i (const EXT_ID &ext_id,
                                                   INT_ID &int_id)
{
  // Try to find the key.
  ACE_UINT32 slot = 0;
  int result = this->find_and_return_index (ext_id,
                                            slot);
  if (result == 0)
    // Key was found.  Make a copy of value.
    int_id = this->search_structure_[slot].int_id_;

  return result;
}

template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::unbind_and_return_index (const EXT_ID &ext_id,
                                                                    ACE_UINT32 &slot)
{
  // Try to find the key.
  int result = this->find_and_return_index (ext_id,
                                            slot);

  if (result == 0)
    this->unbind_slot (slot);

  return result;
}

template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::unbind_slot (ACE_UINT32 slot)
{

#if defined (ACE_HAS_LAZY_MAP_MANAGER)

  //
  // In the case of lazy map managers, the movement of free slots
  // from the occupied list to the free list is delayed until we
  // run out of free slots in the free list.
  //

  this->search_structure_[slot].free_ = true;

#else

  // Move from occupied list to free list.
  this->move_from_occupied_list_to_free_list (slot);

#endif /* ACE_HAS_LAZY_MAP_MANAGER */

  // Update the current size.
  --this->cur_size_;
}

template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::unbind_i (const EXT_ID &ext_id,
                                                     INT_ID &int_id)
{
  // Unbind the entry.
  ACE_UINT32 slot = 0;
  int result = this->unbind_and_return_index (ext_id,
                                              slot);
  if (result == 0)
    // If found, copy the value.
    int_id = this->search_structure_[slot].int_id_;

  return result;
}

template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::resize_i (ACE_UINT32 new_size)
{
  ACE_UINT32 i;
  ENTRY *temp = 0;

  // Allocate new memory.
  ACE_ALLOCATOR_RETURN (temp,
                        (ENTRY *) this->allocator_->malloc (new_size * sizeof (ENTRY)),
                        -1);

  // Copy over the occupied entires.
  for (i = this->occupied_list_.next ();
       i != this->occupied_list_id ();
       i = this->search_structure_[i].next ())
    // Call the copy constructor using operator placement new.
    new (&(temp[i])) ENTRY (this->search_structure_[i]);

  // Copy over the free entires.
  for (i = this->free_list_.next ();
       i != this->free_list_id ();
       i = this->search_structure_[i].next ())
    // Call the copy constructor using operator placement new.
    new (&(temp[i])) ENTRY (this->search_structure_[i]);

  // Construct the new elements.
  for (i = this->total_size_; i < new_size; i++)
    {
      // Call the constructor for each element in the array using
      // operator placement new.  Note that this requires a default
      // constructor for <EXT_ID> and <INT_ID>.
      new (&(temp[i])) ENTRY;
      temp[i].next (i + 1);
      temp[i].prev (i - 1);

#if defined (ACE_HAS_LAZY_MAP_MANAGER)

      // Even though this slot is initially free, we need the <free_>
      // flag to be zero so that we don't have to set it when the slot
      // is moved to the occupied list.  In addition, this flag has no
      // meaning while this slot is in the free list.
      temp[i].free_ = false;

#endif /* ACE_HAS_LAZY_MAP_MANAGER */

    }

  // Add new entries to the free list.
  this->free_list_.next (this->total_size_);
  this->free_list_.prev (new_size - 1);
  temp[new_size - 1].next (this->free_list_id ());
  temp[this->total_size_].prev (this->free_list_id ());

  // Remove/free old elements, update the new totoal size.
  this->free_search_structure ();
  this->total_size_ = new_size;

  // Start using new elements.
  this->search_structure_ = temp;

  return 0;
}

template <class EXT_ID, class INT_ID, class ACE_LOCK> ACE_UINT32
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::new_size (void)
{
  // Calculate the new size.
  ACE_UINT32 current_size = this->total_size_;

  if (current_size < MAX_EXPONENTIAL)
    // Exponentially increase if we haven't reached MAX_EXPONENTIAL.
    current_size *= 2;
  else
    // Linear increase if we have reached MAX_EXPONENTIAL.
    current_size += LINEAR_INCREASE;

  // This should be the new size.
  return current_size;
}

template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::free_search_structure (void)
{
  // Free up the structure.
  if (this->search_structure_ != 0)
    {
      for (ACE_UINT32 i = 0; i < this->total_size_; i++)
        // Explicitly call the destructor.
        {
          ENTRY *ss = &this->search_structure_[i];
          // The "if" second argument results in a no-op instead of
          // deallocation.
          ACE_DES_FREE_TEMPLATE2 (ss, ACE_NOOP,
                                  ACE_Map_Entry, EXT_ID, INT_ID);
        }

      // Actually free the memory.
      this->allocator_->free (this->search_structure_);
      this->search_structure_ = 0;
    }
}

template <class EXT_ID, class INT_ID> void
ACE_Map_Entry<EXT_ID, INT_ID>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
  ACELIB_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
  ACELIB_DEBUG ((LM_DEBUG,  ACE_TEXT ("next_ = %d"), this->next_));
  ACELIB_DEBUG ((LM_DEBUG,  ACE_TEXT ("prev_ = %d"), this->prev_));

#if defined (ACE_HAS_LAZY_MAP_MANAGER)
  ACELIB_DEBUG ((LM_DEBUG,  ACE_TEXT ("free_ = %d"), this->free_));
#endif /* ACE_HAS_LAZY_MAP_MANAGER */

  ACELIB_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}

template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
  ACELIB_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
  ACELIB_DEBUG ((LM_DEBUG,  ACE_TEXT ("total_size_ = %d"), this->total_size_));
  ACELIB_DEBUG ((LM_DEBUG,  ACE_TEXT ("\ncur_size_ = %d"), this->cur_size_));
  this->allocator_->dump ();
  this->lock_.dump ();
  ACELIB_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}

template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Iterator_Base<EXT_ID, INT_ID, ACE_LOCK>::dump_i (void) const
{
#if defined (ACE_HAS_DUMP)
  ACELIB_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
  ACELIB_DEBUG ((LM_DEBUG,  ACE_TEXT ("next_ = %d"), this->next_));
  ACELIB_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}

template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Const_Iterator_Base<EXT_ID, INT_ID, ACE_LOCK>::dump_i (void) const
{
#if defined (ACE_HAS_DUMP)
  ACELIB_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
  ACELIB_DEBUG ((LM_DEBUG,  ACE_TEXT ("next_ = %d"), this->next_));
  ACELIB_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}

template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Iterator<EXT_ID, INT_ID, ACE_LOCK>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
  this->dump_i ();
#endif /* ACE_HAS_DUMP */
}

template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Const_Iterator<EXT_ID, INT_ID, ACE_LOCK>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
  this->dump_i ();
#endif /* ACE_HAS_DUMP */
}

template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Reverse_Iterator<EXT_ID, INT_ID, ACE_LOCK>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
  this->dump_i ();
#endif /* ACE_HAS_DUMP */
}

ACE_END_VERSIONED_NAMESPACE_DECL

#endif /* ACE_MAP_MANAGER_CPP */