/usr/include/ace/Map_Manager.cpp is in libace-dev 6.3.3+dfsg-1.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 | #ifndef ACE_MAP_MANAGER_CPP
#define ACE_MAP_MANAGER_CPP
#include "ace/Map_Manager.h"
#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */
#include "ace/Malloc_Base.h"
#if !defined (__ACE_INLINE__)
#include "ace/Map_Manager.inl"
#endif /* __ACE_INLINE__ */
ACE_BEGIN_VERSIONED_NAMESPACE_DECL
ACE_ALLOC_HOOK_DEFINE(ACE_Map_Entry)
ACE_ALLOC_HOOK_DEFINE(ACE_Map_Manager)
ACE_ALLOC_HOOK_DEFINE(ACE_Map_Const_Iterator_Base)
ACE_ALLOC_HOOK_DEFINE(ACE_Map_Iterator_Base)
ACE_ALLOC_HOOK_DEFINE(ACE_Map_Const_Iterator)
ACE_ALLOC_HOOK_DEFINE(ACE_Map_Iterator)
ACE_ALLOC_HOOK_DEFINE(ACE_Map_Reverse_Iterator)
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::open (size_t size,
ACE_Allocator *alloc)
{
ACE_WRITE_GUARD_RETURN (ACE_LOCK, ace_mon, this->lock_, -1);
// Close old map (if any).
this->close_i ();
// Use the user specified allocator or the default singleton one.
if (alloc == 0)
alloc = ACE_Allocator::instance ();
this->allocator_ = alloc;
// This assertion is here to help track a situation that shouldn't
// happen.
ACE_ASSERT (size != 0);
// Active_Map_Manager depends on the <slot_index_> being of fixed
// size. It cannot be size_t because size_t is 64-bits on 64-bit
// platform and 32-bits on 32-bit platforms. Size of the <slot_index_>
// has to be consistent across platforms. ACE_UIN32 is chosen as
// ACE_UIN32_MAX is big enough. The assert is to ensure that the user
// doesn't open the ACE_Map_Manager with a bigger size than we can
// handle.
ACE_ASSERT (size <= ACE_UINT32_MAX);
// Resize from 0 to <size>. Note that this will also set up the
// circular free list.
return this->resize_i ((ACE_UINT32) size);
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::close_i (void)
{
// Free entries.
this->free_search_structure ();
// Reset sizes.
this->total_size_ = 0;
this->cur_size_ = 0;
// Reset circular free list.
this->free_list_.next (this->free_list_id ());
this->free_list_.prev (this->free_list_id ());
// Reset circular occupied list.
this->occupied_list_.next (this->occupied_list_id ());
this->occupied_list_.prev (this->occupied_list_id ());
return 0;
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::bind_i (const EXT_ID &ext_id,
const INT_ID &int_id)
{
// Try to find the key.
ACE_UINT32 slot = 0;
int result = this->find_and_return_index (ext_id,
slot);
if (result == 0)
// We found the key. Nothing to change.
return 1;
else
// We didn't find the key.
return this->shared_bind (ext_id,
int_id);
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::next_free (ACE_UINT32 &free_slot)
{
// Look in the free list for an empty slot.
free_slot = this->free_list_.next ();
// If we do find a free slot, return successfully.
if (free_slot != this->free_list_id ())
return 0;
#if defined (ACE_HAS_LAZY_MAP_MANAGER)
// Move any free slots from occupied list to free list.
this->move_all_free_slots_from_occupied_list ();
// Try again in case we found any free slots in the occupied list.
free_slot = this->free_list_.next ();
// If we do find a free slot, return successfully.
if (free_slot != this->free_list_id ())
return 0;
#endif /* ACE_HAS_LAZY_MAP_MANAGER */
// Resize the map.
int result = this->resize_i (this->new_size ());
// Check for errors.
if (result == 0)
// New free slot.
free_slot = this->free_list_.next ();
return result;
}
#if defined (ACE_HAS_LAZY_MAP_MANAGER)
template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::move_all_free_slots_from_occupied_list (void)
{
//
// In the case of lazy map managers, the movement of free slots from
// the occupied list to the free list is delayed until we run out of
// free slots in the free list.
//
// Go through the entire occupied list, moving free slots to the
// free list. Note that all free slots in the occupied list are
// moved in this loop.
for (ACE_UINT32 i = this->occupied_list_.next ();
i != this->occupied_list_id ();
)
{
//
// Note the trick used here: Information about the current slot
// is first noted; <i> then moves to the next occupied slot;
// only after this is the slot (potentially) moved from the
// occupied list to the free list. This order of things, i.e.,
// moving <i> before moving the free slot is necessary,
// otherwise we'll forget which our next occupied slot is.
//
// Note information about current slot.
ACE_Map_Entry<EXT_ID, INT_ID> ¤t_slot = this->search_structure_[i];
ACE_UINT32 position_of_current_slot = i;
// Move <i> to next occupied slot.
i = this->search_structure_[i].next ();
// If current slot is free
if (current_slot.free_)
{
// Reset free flag to zero before moving to free list.
current_slot.free_ = false;
// Move from occupied list to free list.
this->move_from_occupied_list_to_free_list (position_of_current_slot);
}
}
}
#endif /* ACE_HAS_LAZY_MAP_MANAGER */
template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::shared_move (ACE_UINT32 slot,
ACE_Map_Entry<EXT_ID, INT_ID> ¤t_list,
ACE_UINT32 current_list_id,
ACE_Map_Entry<EXT_ID, INT_ID> &new_list,
ACE_UINT32 new_list_id)
{
// Grab the entry.
ENTRY &entry = this->search_structure_[slot];
// Remove from current list.
// Fix the entry before us.
ACE_UINT32 current_list_prev = entry.prev ();
if (current_list_prev == current_list_id)
current_list.next (entry.next ());
else
this->search_structure_[current_list_prev].next (entry.next ());
// Fix the entry after us.
ACE_UINT32 current_list_next = entry.next ();
if (current_list_next == current_list_id)
current_list.prev (entry.prev ());
else
this->search_structure_[current_list_next].prev (entry.prev ());
// Add to new list.
// Fix us.
ACE_UINT32 new_list_next = new_list.next ();
entry.next (new_list_next);
entry.prev (new_list_id);
// Fix entry before us.
new_list.next (slot);
// Fix entry after us.
if (new_list_next == new_list_id)
new_list.prev (slot);
else
this->search_structure_[new_list_next].prev (slot);
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::shared_bind (const EXT_ID &ext_id,
const INT_ID &int_id)
{
// This function assumes that the find() has already been done, and
// therefore, simply adds to the map.
// Find an empty slot.
ACE_UINT32 slot = 0;
int result = this->next_free (slot);
if (result == 0)
{
// Copy key and value.
this->search_structure_[slot].int_id_ = int_id;
this->search_structure_[slot].ext_id_ = ext_id;
// Move from free list to occupied list
this->move_from_free_list_to_occupied_list (slot);
// Update the current size.
++this->cur_size_;
}
return result;
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::rebind_i (const EXT_ID &ext_id,
const INT_ID &int_id,
EXT_ID &old_ext_id,
INT_ID &old_int_id)
{
// First try to find the key.
ACE_UINT32 slot = 0;
int result = this->find_and_return_index (ext_id,
slot);
if (result == 0)
{
// We found it, so make copies of the old entries and rebind
// current entries.
ENTRY &ss = this->search_structure_[slot];
old_ext_id = ss.ext_id_;
old_int_id = ss.int_id_;
ss.ext_id_ = ext_id;
ss.int_id_ = int_id;
// Sync changed entry.
this->allocator_->sync (&ss, sizeof ss);
return 1;
}
else
// We didn't find it, so let's add it.
return this->shared_bind (ext_id,
int_id);
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::rebind_i (const EXT_ID &ext_id,
const INT_ID &int_id,
INT_ID &old_int_id)
{
// First try to find the key.
ACE_UINT32 slot = 0;
int result = this->find_and_return_index (ext_id,
slot);
if (result == 0)
{
// We found it, so make copies of the old entries and rebind
// current entries.
ENTRY &ss = this->search_structure_[slot];
old_int_id = ss.int_id_;
ss.ext_id_ = ext_id;
ss.int_id_ = int_id;
// Sync changed entry.
this->allocator_->sync (&ss, sizeof ss);
return 1;
}
else
// We didn't find it, so let's add it.
return this->shared_bind (ext_id,
int_id);
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::rebind_i (const EXT_ID &ext_id,
const INT_ID &int_id)
{
// First try to find the key.
ACE_UINT32 slot = 0;
int result = this->find_and_return_index (ext_id,
slot);
if (result == 0)
{
// We found it, so rebind current entries.
ENTRY &ss = this->search_structure_[slot];
ss.ext_id_ = ext_id;
ss.int_id_ = int_id;
// Sync changed entry.
this->allocator_->sync (&ss, sizeof ss);
return 1;
}
else
// We didn't find it, so let's add it.
return this->shared_bind (ext_id,
int_id);
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::trybind_i (const EXT_ID &ext_id,
INT_ID &int_id)
{
// Try to find the key.
ACE_UINT32 slot = 0;
int result = this->find_and_return_index (ext_id,
slot);
if (result == 0)
{
// Key was found. Make a copy of value, but *don't* update
// anything in the map!
int_id = this->search_structure_[slot].int_id_;
return 1;
}
else
// We didn't find it, so let's bind it!
return this->bind_i (ext_id,
int_id);
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::find_and_return_index (const EXT_ID &ext_id,
ACE_UINT32 &slot)
{
// Go through the entire occupied list looking for the key.
for (ACE_UINT32 i = this->occupied_list_.next ();
i != this->occupied_list_id ();
i = this->search_structure_[i].next ())
{
#if defined (ACE_HAS_LAZY_MAP_MANAGER)
if (this->search_structure_[i].free_)
continue;
#endif /* ACE_HAS_LAZY_MAP_MANAGER */
if (this->equal (this->search_structure_[i].ext_id_,
ext_id))
{
// If found, return slot.
slot = i;
return 0;
}
}
// Key was not found.
return -1;
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::unbind_all (void)
{
// Go through the entire occupied list.
for (ACE_UINT32 i = this->occupied_list_.next ();
i != this->occupied_list_id ();
)
{
//
// Note the trick used here: Information about the current slot
// is first noted; <i> then moves to the next occupied slot;
// only after this is the slot (potentially) moved from the
// occupied list to the free list. This order of things, i.e.,
// moving <i> before moving the free slot is necessary,
// otherwise we'll forget which our next occupied slot is.
//
// Note information about current slot.
ACE_Map_Entry<EXT_ID, INT_ID> ¤t_slot =
this->search_structure_[i];
ACE_UINT32 position_of_current_slot = i;
// Move <i> to next occupied slot.
i = current_slot.next ();
#if defined (ACE_HAS_LAZY_MAP_MANAGER)
if (current_slot.free_)
continue;
#endif /* ACE_HAS_LAZY_MAP_MANAGER */
this->unbind_slot (position_of_current_slot);
}
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::find_i (const EXT_ID &ext_id,
INT_ID &int_id)
{
// Try to find the key.
ACE_UINT32 slot = 0;
int result = this->find_and_return_index (ext_id,
slot);
if (result == 0)
// Key was found. Make a copy of value.
int_id = this->search_structure_[slot].int_id_;
return result;
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::unbind_and_return_index (const EXT_ID &ext_id,
ACE_UINT32 &slot)
{
// Try to find the key.
int result = this->find_and_return_index (ext_id,
slot);
if (result == 0)
this->unbind_slot (slot);
return result;
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::unbind_slot (ACE_UINT32 slot)
{
#if defined (ACE_HAS_LAZY_MAP_MANAGER)
//
// In the case of lazy map managers, the movement of free slots
// from the occupied list to the free list is delayed until we
// run out of free slots in the free list.
//
this->search_structure_[slot].free_ = true;
#else
// Move from occupied list to free list.
this->move_from_occupied_list_to_free_list (slot);
#endif /* ACE_HAS_LAZY_MAP_MANAGER */
// Update the current size.
--this->cur_size_;
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::unbind_i (const EXT_ID &ext_id,
INT_ID &int_id)
{
// Unbind the entry.
ACE_UINT32 slot = 0;
int result = this->unbind_and_return_index (ext_id,
slot);
if (result == 0)
// If found, copy the value.
int_id = this->search_structure_[slot].int_id_;
return result;
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::resize_i (ACE_UINT32 new_size)
{
ACE_UINT32 i;
ENTRY *temp = 0;
// Allocate new memory.
ACE_ALLOCATOR_RETURN (temp,
(ENTRY *) this->allocator_->malloc (new_size * sizeof (ENTRY)),
-1);
// Copy over the occupied entires.
for (i = this->occupied_list_.next ();
i != this->occupied_list_id ();
i = this->search_structure_[i].next ())
// Call the copy constructor using operator placement new.
new (&(temp[i])) ENTRY (this->search_structure_[i]);
// Copy over the free entires.
for (i = this->free_list_.next ();
i != this->free_list_id ();
i = this->search_structure_[i].next ())
// Call the copy constructor using operator placement new.
new (&(temp[i])) ENTRY (this->search_structure_[i]);
// Construct the new elements.
for (i = this->total_size_; i < new_size; i++)
{
// Call the constructor for each element in the array using
// operator placement new. Note that this requires a default
// constructor for <EXT_ID> and <INT_ID>.
new (&(temp[i])) ENTRY;
temp[i].next (i + 1);
temp[i].prev (i - 1);
#if defined (ACE_HAS_LAZY_MAP_MANAGER)
// Even though this slot is initially free, we need the <free_>
// flag to be zero so that we don't have to set it when the slot
// is moved to the occupied list. In addition, this flag has no
// meaning while this slot is in the free list.
temp[i].free_ = false;
#endif /* ACE_HAS_LAZY_MAP_MANAGER */
}
// Add new entries to the free list.
this->free_list_.next (this->total_size_);
this->free_list_.prev (new_size - 1);
temp[new_size - 1].next (this->free_list_id ());
temp[this->total_size_].prev (this->free_list_id ());
// Remove/free old elements, update the new totoal size.
this->free_search_structure ();
this->total_size_ = new_size;
// Start using new elements.
this->search_structure_ = temp;
return 0;
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> ACE_UINT32
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::new_size (void)
{
// Calculate the new size.
ACE_UINT32 current_size = this->total_size_;
if (current_size < MAX_EXPONENTIAL)
// Exponentially increase if we haven't reached MAX_EXPONENTIAL.
current_size *= 2;
else
// Linear increase if we have reached MAX_EXPONENTIAL.
current_size += LINEAR_INCREASE;
// This should be the new size.
return current_size;
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::free_search_structure (void)
{
// Free up the structure.
if (this->search_structure_ != 0)
{
for (ACE_UINT32 i = 0; i < this->total_size_; i++)
// Explicitly call the destructor.
{
ENTRY *ss = &this->search_structure_[i];
// The "if" second argument results in a no-op instead of
// deallocation.
ACE_DES_FREE_TEMPLATE2 (ss, ACE_NOOP,
ACE_Map_Entry, EXT_ID, INT_ID);
}
// Actually free the memory.
this->allocator_->free (this->search_structure_);
this->search_structure_ = 0;
}
}
template <class EXT_ID, class INT_ID> void
ACE_Map_Entry<EXT_ID, INT_ID>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACELIB_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACELIB_DEBUG ((LM_DEBUG, ACE_TEXT ("next_ = %d"), this->next_));
ACELIB_DEBUG ((LM_DEBUG, ACE_TEXT ("prev_ = %d"), this->prev_));
#if defined (ACE_HAS_LAZY_MAP_MANAGER)
ACELIB_DEBUG ((LM_DEBUG, ACE_TEXT ("free_ = %d"), this->free_));
#endif /* ACE_HAS_LAZY_MAP_MANAGER */
ACELIB_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACELIB_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACELIB_DEBUG ((LM_DEBUG, ACE_TEXT ("total_size_ = %d"), this->total_size_));
ACELIB_DEBUG ((LM_DEBUG, ACE_TEXT ("\ncur_size_ = %d"), this->cur_size_));
this->allocator_->dump ();
this->lock_.dump ();
ACELIB_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Iterator_Base<EXT_ID, INT_ID, ACE_LOCK>::dump_i (void) const
{
#if defined (ACE_HAS_DUMP)
ACELIB_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACELIB_DEBUG ((LM_DEBUG, ACE_TEXT ("next_ = %d"), this->next_));
ACELIB_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Const_Iterator_Base<EXT_ID, INT_ID, ACE_LOCK>::dump_i (void) const
{
#if defined (ACE_HAS_DUMP)
ACELIB_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACELIB_DEBUG ((LM_DEBUG, ACE_TEXT ("next_ = %d"), this->next_));
ACELIB_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Iterator<EXT_ID, INT_ID, ACE_LOCK>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
this->dump_i ();
#endif /* ACE_HAS_DUMP */
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Const_Iterator<EXT_ID, INT_ID, ACE_LOCK>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
this->dump_i ();
#endif /* ACE_HAS_DUMP */
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Reverse_Iterator<EXT_ID, INT_ID, ACE_LOCK>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
this->dump_i ();
#endif /* ACE_HAS_DUMP */
}
ACE_END_VERSIONED_NAMESPACE_DECL
#endif /* ACE_MAP_MANAGER_CPP */
|