This file is indexed.

/usr/include/x86_64-linux-gnu/qcc/BigNum.h is in liballjoyn-common-dev-1504 15.04b-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
#ifndef _BIGNUM_H
#define _BIGNUM_H
/**
 * @file
 *
 * This file implements an arbitrary precision (big number) arithmetic class.
 */


/******************************************************************************
 * Copyright AllSeen Alliance. All rights reserved.
 *
 *    Permission to use, copy, modify, and/or distribute this software for any
 *    purpose with or without fee is hereby granted, provided that the above
 *    copyright notice and this permission notice appear in all copies.
 *
 *    THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *    WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *    MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *    ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 ******************************************************************************/

#include <qcc/platform.h>
#include <qcc/String.h>

#include <assert.h>
#include <stdio.h>
#include <string.h>

#define BENCHMARKING

namespace qcc {

// This class implements arbitrary precision arithmetic.
class BigNum {
  public:

    // Default constructor - initializes the BigNum to zero
    BigNum() : digits((uint32_t*) &zero_digit), length(1), neg(false), storage(NULL) { }

    // Constructor that initializes a BigNum from a small integer value.
    BigNum(uint32_t v);

    // Copy constructor
    BigNum(const BigNum& other);

    // Assignment operator
    BigNum& operator=(const BigNum& other);

    // The constant value zero
    static const BigNum zero;

    // Generate a crypographically random number.
    //
    // @param len  The length of the number in bytes.
    void gen_rand(size_t len);

    // Set value from a hexadecimal string
    //@returns false if number was not a hex string
    bool set_hex(const qcc::String& number);

    // Set a (positive) value from a byte array in big-endian order.
    // Use the negation operator to make the number negative.
    //
    // @param data  The data to set
    // @param len   The length of the data
    void set_bytes(const uint8_t* data, size_t len);

    // Set value from a decimal string
    //@returns false if number was not a decimal string
    bool set_dec(const qcc::String& number);

    // Render the value as a hexadecimal string
    qcc::String get_hex(bool toLower = false) const;

    // Render the value as bytes in big-endian order. The value is optionally zero padded (most
    // significant bits) if the BigNum value is smaller than the length of buffer.
    //
    // @param data  The buffer to receive the data.
    // @param len   The length of the buffer
    // @param pad   If true leading zeroes are added to fill the buffer.
    //
    // @return The number of bytes gotten.
    size_t get_bytes(uint8_t* buffer, size_t len, bool pad = false) const;

    // Addition operation
    BigNum operator+(const BigNum& n) const;

    // Monadic addition
    BigNum& operator+=(const BigNum& n);

    // Add an integer to an BigNum returning a new BigNum
    BigNum operator+(uint32_t i) const;

    // Monadic addtion of an integer to an BigNum
    BigNum& operator+=(uint32_t i);

    // Subtraction operation
    BigNum operator-(const BigNum& n) const;

    // Monadic subtraction
    BigNum& operator-=(const BigNum& n);

    // Subtract an integer from an BigNum
    BigNum operator-(uint32_t i) const;

    // Mondadic subtraction of an integer from an BigNum
    BigNum& operator-=(uint32_t i);

    // Negation
    BigNum operator-() const;

    // Absolute value
    BigNum abs() const { return neg ? -(*this) : (*this); }

    // Multiplication operation
    BigNum operator*(const BigNum& n) const;

    // Multiplication by an integer
    BigNum operator*(uint32_t i) const;

    // Division operation
    //
    // @param n The divisor
    //
    // @return  The quotient after dividing this BigNum by the BigNum n.
    BigNum operator/(const BigNum& n) const;

    // Division by an integer
    //
    // @param i The divisor
    //
    // @return  The quotient after dividing this BigNum by i.
    //
    BigNum operator/(uint32_t i) const;

    // Modulus operation
    //
    // Reduce a bignum modulo the specified value. That is the remainder after dividing by m.
    //
    // @parm m  The modulus.
    //
    // @return  The remainder after division by the modulus
    BigNum operator%(const BigNum& m) const;

    // Exponentiation
    //
    // Raises a bignum to the specified power.
    //
    // @parm e  The exponent (power) to raise the number to
    //
    // @return  The new BigNum
    BigNum exp(const BigNum& e) const;

    // Less-than operator
    bool operator<(const BigNum& n) const { return compare(*this, n) < 0; }

    // Greater-than operator
    bool operator>(const BigNum& n) const { return compare(*this, n) > 0; }

    // Less-than-or-equal operator
    bool operator<=(const BigNum& n) const { return compare(*this, n) <= 0; }

    // Greater-than-or-equal operator
    bool operator>=(const BigNum& n) const { return compare(*this, n) >= 0; }

    // Equals operator
    bool operator==(const BigNum& n) const { return compare(*this, n) == 0; }

    // Not-equals operator
    bool operator!=(const BigNum& n) const { return compare(*this, n) != 0; }

    // Right-shift operator
    //
    // @param shift  The number of bits for the shift
    //
    BigNum operator>>(uint32_t shift) const;

    // In-place right-shift operator
    //
    // @param shift  The number of bits for the shift
    //
    // @return  Reference to this BigNum shifted right as specified
    BigNum& operator>>=(uint32_t shift);

    // Left-shift operator
    //
    // @param shift  The number of bits for the shift
    //
    BigNum operator<<(uint32_t shift) const;

    // In-place left-shift operator
    //
    // @param shift  The number of bits for the shift
    //
    // @return  Reference to this BigNum shifted left as specified
    BigNum& operator<<=(uint32_t shift);

    // Test if value is even
    bool is_even() const { return !(digits[0] & 1); }

    // Test if value is odd
    bool is_odd() const { return (digits[0] & 1); }

    // Modular exponentiation
    //
    // @param e   The exponent
    // @param mod The modulus
    BigNum mod_exp(const BigNum& e, const BigNum& mod) const;

    // Returns the bit length of this BigNum
    size_t bit_len() const;

    // Returns the byte (octet) length of this BigNum
    size_t byte_len() const { return (7 + bit_len()) / 8; }

    // Test if a specific bit is set.
    bool test_bit(size_t index) const {
        size_t d = index >> 5;
        return (d < length) && (digits[d] & (1 << (index & 0x1F)));
    }

    // Destructor
    ~BigNum();

  private:

    // Montgomery multiplication
    // @param r    Returns the Montgomery product
    // @param n    The multiplicand
    // @param m    The modulus
    // @param rho  The inverse modulus
    BigNum& monty_mul(BigNum& r, const BigNum& n, const BigNum& m, uint32_t rho) const;

    // Mongtomery modular exponentiation
    BigNum monty_mod_exp(const BigNum& n, const BigNum& mod) const;

    // Count the trailing zeroes
    uint32_t num_trailing_zeroes() const;

    // Private constructor that allocates but doesn't initialize storage
    BigNum(size_t len, bool neg);

    // Makes a copy of an BigNum optionally adding extra (zero'd) space
    BigNum clone(size_t extra = 0) const;

    // Extend length zero padding most significant digits
    BigNum& zero_ext(size_t size);

    // reset an BigNum allocating storage if required
    BigNum& reset(size_t len, bool neg = false, bool clear = true);

    // compare two BigNums. Returns -1, 0, or 1
    static int AJ_CALL compare(const BigNum& a, const BigNum& b);

    // Remove leading zeroes
    static BigNum& AJ_CALL strip_lz(BigNum& n) {
        while (n.msdigit() == 0) {
            if (n.length == 1) {
                n.neg = false;
                break;
            } else {
                --n.length;
            }
        }
        return n;
    }

    // Right shift
    static BigNum& AJ_CALL right_shift(BigNum& result, const BigNum& n, uint32_t shift);

    // Multiplication by an integer putting result into an existing BigNum
    static BigNum& AJ_CALL mul(BigNum& result, const BigNum& a, uint32_t b, bool neg);

    // Multiplication putting result into an existing BigNum
    static BigNum& AJ_CALL mul(BigNum& result, const BigNum& a, const BigNum& b);

    // Division with remainder
    BigNum div(const BigNum& y, BigNum& rem) const;

    // Returns reference to the most significant digit
    uint32_t& msdigit() const { return digits[length - 1]; }

    // Check if value has unsuppressed leading zeroes
    bool haslz() const { return length > 1 && digits[length - 1] == 0; }

    // Convenience function for temporary values that don't own storage
    BigNum& Set(uint32_t* digits, size_t length, bool neg = false) {
        this->digits = digits;
        this->length = length;
        this->neg = neg;
        this->storage = NULL;
        return *this;
    }

    // Inplace subtraction for use with temporary values only
    BigNum& sub(const BigNum& n, size_t shift = 0);

    // Pointer to the digits array
    uint32_t* digits;

    // Length of the digits array
    size_t length;

    // True if the value is negative
    bool neg;

    // Opaque type for storage
    class Storage;

    // Pointer to storage
    Storage* storage;

    // Shared zero value
    static uint32_t zero_digit;
};

}
#endif