This file is indexed.

/usr/include/x86_64-linux-gnu/qcc/ManagedObj.h is in liballjoyn-common-dev-1504 15.04b-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
/**
 * @file
 *
 * This template class provides reference counting based heap allocation
 * for objects.
 */

/******************************************************************************
 * Copyright AllSeen Alliance. All rights reserved.
 *
 *    Permission to use, copy, modify, and/or distribute this software for any
 *    purpose with or without fee is hereby granted, provided that the above
 *    copyright notice and this permission notice appear in all copies.
 *
 *    THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *    WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *    MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *    ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 ******************************************************************************/
#ifndef _QCC_MANAGEDOBJ_H
#define _QCC_MANAGEDOBJ_H

#include <qcc/platform.h>

#if defined(QCC_OS_ANDROID)
// This must be included before #include <new> for building on Froyo with
// certain versions of STLPort.
#include <stdlib.h>
#endif

#include <new>

#include <stdlib.h>
#include <assert.h>

#include <qcc/atomic.h>

namespace qcc {
#if defined(QCC_OS_GROUP_WINDOWS)
/*
 * pragmas in the code should be avoided.  This pragma is only being used in
 * this specific situation because. When compiling code on Visual Studio the
 * fact that ManagedObj has two copy constructors will cause the compiler to
 * generate two 4521 errors everytime a ManagedObj is used in the code.
 * Resulting in hundreds of warnings. The extra copy constructor exists to avoid
 * ambiguity with the ManagedObj<T>(A1& arg) constructor and can not be removed
 * without breaking the code.
 */
#pragma warning(push)
#pragma warning(disable: 4521)
#endif
/**
 * ManagedObj manages heap allocation and reference counting for a template parameter type T.
 * ManagedObj@<T@> allocates T and sets its reference count to 1 when it is created. Each time the
 * managed object is passed by value or otherwise copied (which is an inexpensive operation), the
 * underlying heap allocated T's reference count is incremented. Each time a ManagedObj instance
 * is destructed, the underlying T reference count is decremented. When the reference count reaches
 * zero, T itself is deallocated using delete.
 */
template <typename T>
class ManagedObj {
  private:

    static const uint32_t ManagedCtxMagic = (('M') | ('C' << 8) | (('T' << 16)  + ('X' << 24)));

    struct ManagedCtx {
        ManagedCtx(int32_t refCount) : refCount(refCount), magic(ManagedCtxMagic) { }
        int32_t refCount;
        uint32_t magic;
    };

    ManagedCtx* context;
    T* object;

  public:

    /** The underlying type that is being managed */
    typedef T ManagedType;

    /** Copy constructor */
    ManagedObj<T>(const ManagedObj<T>&copyMe)
    {
        context = copyMe.context;
        object = copyMe.object;
        IncRef();
    }

    /** non-const Copy constructor needed to avoid ambiguity with ManagedObj<T>(A1& arg) constructor */
    ManagedObj<T>(ManagedObj<T>&copyMe)
    {
        context = copyMe.context;
        object = copyMe.object;
        IncRef();
    }

    /**
     * Create a copy of managed object T.
     *
     * If isDeep is true
     * Create a deep (clone) copy of a managed object.
     * A ManagedObject created using this constructor copies the underlying T
     * object and wraps it in a new ManagedObject with 1 reference.
     *
     * if isDeep is false
     * Do not make a deep copy of the managed object instead make a new reference
     * to the existing object and increment the reference counter by +1.
     *
     * @param other   ManagedObject to make a copy of.
     * @param isDeep  Specify if this is a deep (clone) copy or a normal copy
     */
    ManagedObj<T>(const ManagedObj<T>&other, bool isDeep)
    {
        if (isDeep) {
            /* Deep copy */
            const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
            context = reinterpret_cast<ManagedCtx*>(malloc(offset + sizeof(T)));
            if (NULL == context) {
                abort();
            }
            context = new (context) ManagedCtx(1);
            object = new ((char*)context + offset)T(*other);
        } else {
            /* Normal copy constructor (inc ref) of existing object */
            context = other.context;
            object = other.object;
            IncRef();
        }
    }

    /** Allocate T() on the heap and set it's reference count to 1. */
    ManagedObj<T>()
    {
        const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
        context = reinterpret_cast<ManagedCtx*>(malloc(offset + sizeof(T)));
        if (NULL == context) {
            abort();
        }
        context = new (context) ManagedCtx(1);
        object = new ((char*)context + offset)T();
    }

    /**
     * Static method to wrap an existing T that is already managed in its managed object type.
     * This method is typically called from within a method of the inner T class to provide
     * a managed object instance that can be passed to methods that required that type.
     *
     * @param naked  A unwrapped managed object instance.
     * @returns      The managed object instance re-wrapped in a ManageObj template class
     */
    static ManagedObj<T> wrap(T* naked)
    {
        static const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
        return ManagedObj<T>((ManagedCtx*)((char*)naked - offset), naked);
    }

    /**
     * Static method to convert between managed objects of related types.
     *
     * @param other  A managed object instance of a related type.
     * @returns      A managed object cast to the required type
     */
    template <class T2> static ManagedObj<T> cast(T2& other)
    {
        static const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
        return ManagedObj<T>((ManagedCtx*)((char*)other.unwrap() - offset), static_cast<T*>(other.unwrap()));
    }

    /**
     * Allocate T(arg1) on the heap and set it's reference count to 1.
     * @param arg1   First arg to T constructor.
     */
    template <typename A1> ManagedObj<T>(A1 & arg1)
    {
        const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
        context = reinterpret_cast<ManagedCtx*>(malloc(offset + sizeof(T)));
        if (NULL == context) {
            abort();
        }
        context = new (context) ManagedCtx(1);
        object = new ((char*)context + offset)T(arg1);
    }

    /**
     * Allocate T(arg1, arg2) on the heap and set it's reference count to 1.
     * @param arg1   First arg to T constructor.
     * @param arg2   Second arg to T constructor.
     */
    template <typename A1, typename A2> ManagedObj<T>(A1 & arg1, A2 & arg2)
    {
        const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
        context = reinterpret_cast<ManagedCtx*>(malloc(offset + sizeof(T)));
        context = new (context) ManagedCtx(1);
        object = new ((char*)context + offset)T(arg1, arg2);
    }

    /**
     * Allocate T(arg1, arg2, arg3) on the heap and set it's reference count to 1.
     * @param arg1   First arg to T constructor.
     * @param arg2   Second arg to T constructor.
     * @param arg3   Third arg to T constructor.
     */
    template <typename A1, typename A2, typename A3> ManagedObj<T>(A1 & arg1, A2 & arg2, A3 & arg3)
    {
        const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
        context = reinterpret_cast<ManagedCtx*>(malloc(offset + sizeof(T)));
        if (NULL == context) {
            abort();
        }
        context = new (context) ManagedCtx(1);
        object = new ((char*)context + offset)T(arg1, arg2, arg3);
    }

    /**
     * Allocate T(arg1, arg2, arg3, arg4) on the heap and set it's reference count to 1.
     * @param arg1   First arg to T constructor.
     * @param arg2   Second arg to T constructor.
     * @param arg3   Third arg to T constructor.
     * @param arg4   Fourth arg to T constructor.
     */
    template <typename A1, typename A2, typename A3, typename A4> ManagedObj<T>(A1 & arg1, A2 & arg2, A3 & arg3, A4 & arg4)
    {
        const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
        context = reinterpret_cast<ManagedCtx*>(malloc(offset + sizeof(T)));
        context = new (context) ManagedCtx(1);
        object = new ((char*)context + offset)T(arg1, arg2, arg3, arg4);
    }

    /**
     * Allocate T(arg1, arg2, arg3, arg4, arg5) on the heap and set it's reference count to 1.
     * @param arg1   First arg to T constructor.
     * @param arg2   Second arg to T constructor.
     * @param arg3   Third arg to T constructor.
     * @param arg4   Fourth arg to T constructor.
     * @param arg5   Fifth arg to T constructor.
     */
    template <typename A1, typename A2, typename A3, typename A4, typename A5> ManagedObj<T>(A1 & arg1, A2 & arg2, A3 & arg3, A4 & arg4, A5 & arg5)
    {
        const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
        context = reinterpret_cast<ManagedCtx*>(malloc(offset + sizeof(T)));
        if (NULL == context) {
            abort();
        }
        context = new (context) ManagedCtx(1);
        object = new ((char*)context + offset)T(arg1, arg2, arg3, arg4, arg5);
    }

    /**
     * Allocate T(arg1, arg2, arg3, arg4, arg5, arg6) on the heap and set it's reference count to 1.
     * @param arg1   First arg to T constructor.
     * @param arg2   Second arg to T constructor.
     * @param arg3   Third arg to T constructor.
     * @param arg4   Fourth arg to T constructor.
     * @param arg5   Fifth arg to T constructor.
     * @param arg6   Sixth arg to T constructor.
     */
    template <typename A1, typename A2, typename A3, typename A4, typename A5, typename A6> ManagedObj<T>(A1 & arg1, A2 & arg2, A3 & arg3, A4 & arg4, A5 & arg5, A6 & arg6)
    {
        const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
        context = reinterpret_cast<ManagedCtx*>(malloc(offset + sizeof(T)));
        if (NULL == context) {
            abort();
        }
        context = new (context) ManagedCtx(1);
        object = new ((char*)context + offset)T(arg1, arg2, arg3, arg4, arg5, arg6);
    }

    /**
     * Allocate T(arg1, arg2, arg3, arg4, arg5, arg6, arg7) on the heap and set it's reference count to 1.
     * @param arg1   First arg to T constructor.
     * @param arg2   Second arg to T constructor.
     * @param arg3   Third arg to T constructor.
     * @param arg4   Fourth arg to T constructor.
     * @param arg5   Fifth arg to T constructor.
     * @param arg6   Sixth arg to T constructor.
     * @param arg7   Seventh arg to T constructor.
     */
    template <typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7> ManagedObj<T>(A1 & arg1, A2 & arg2, A3 & arg3, A4 & arg4, A5 & arg5, A6 & arg6, A7 & arg7)
    {
        const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
        context = reinterpret_cast<ManagedCtx*>(malloc(offset + sizeof(T)));
        if (NULL == context) {
            abort();
        }
        context = new (context) ManagedCtx(1);
        object = new ((char*)context + offset)T(arg1, arg2, arg3, arg4, arg5, arg6, arg7);
    }

    /**
     * Allocate T(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8) on the heap and set it's reference count to 1.
     * @param arg1   First arg to T constructor.
     * @param arg2   Second arg to T constructor.
     * @param arg3   Third arg to T constructor.
     * @param arg4   Fourth arg to T constructor.
     * @param arg5   Fifth arg to T constructor.
     * @param arg6   Sixth arg to T constructor.
     * @param arg7   Seventh arg to T constructor.
     * @param arg8   Eight arg to T constructor.
     */
    template <typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8> ManagedObj<T>(A1 & arg1, A2 & arg2, A3 & arg3, A4 & arg4, A5 & arg5, A6 & arg6, A7 & arg7, A8 & arg8)
    {
        const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
        context = reinterpret_cast<ManagedCtx*>(malloc(offset + sizeof(T)));
        if (NULL == context) {
            abort();
        }
        context = new (context) ManagedCtx(1);
        object = new ((char*)context + offset)T(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8);
    }

    /**
     * Allocate T(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9) on the heap and set it's reference count to 1.
     * @param arg1   First arg to T constructor.
     * @param arg2   Second arg to T constructor.
     * @param arg3   Third arg to T constructor.
     * @param arg4   Fourth arg to T constructor.
     * @param arg5   Fifth arg to T constructor.
     * @param arg6   Sixth arg to T constructor.
     * @param arg7   Seventh arg to T constructor.
     * @param arg8   Eight arg to T constructor.
     * @param arg9   Ninth arg to T constructor.
     */
    template <typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9> ManagedObj<T>(A1 & arg1, A2 & arg2, A3 & arg3, A4 & arg4, A5 & arg5, A6 & arg6, A7 & arg7, A8 & arg8, A9 & arg9)
    {
        const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
        context = reinterpret_cast<ManagedCtx*>(malloc(offset + sizeof(T)));
        if (NULL == context) {
            abort();
        }
        context = new (context) ManagedCtx(1);
        object = new ((char*)context + offset)T(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9);
    }

    /**
     * Allocate T(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9, arg10) on the heap and set it's reference count to 1.
     * @param arg1   First arg to T constructor.
     * @param arg2   Second arg to T constructor.
     * @param arg3   Third arg to T constructor.
     * @param arg4   Fourth arg to T constructor.
     * @param arg5   Fifth arg to T constructor.
     * @param arg6   Sixth arg to T constructor.
     * @param arg7   Seventh arg to T constructor.
     * @param arg8   Eight arg to T constructor.
     * @param arg9   Ninth arg to T constructor.
     * @param arg10  Tenth arg to T constructor.
     */
    template <typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9, typename A10> ManagedObj<T>(A1 & arg1, A2 & arg2, A3 & arg3, A4 & arg4, A5 & arg5, A6 & arg6, A7 & arg7, A8 & arg8, A9 & arg9, A10 & arg10)
    {
        const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
        context = reinterpret_cast<ManagedCtx*>(malloc(offset + sizeof(T)));
        if (NULL == context) {
            abort();
        }
        context = new (context) ManagedCtx(1);
        object = new ((char*)context + offset)T(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9, arg10);
    }

    /**
     * ManagedObj destructor.
     * Decrement T's reference count and deallocate if zero.
     */
    ~ManagedObj<T>()
    {
        DecRef();
    }

    /**
     * Assign a ManagedObj<T> to an existing ManagedObj<T>
     * @param assignFromMe   ManagedObj<T> to copy from.
     * @return reference to this MangedObj<T>.
     */
    ManagedObj<T>& operator=(const ManagedObj<T>& assignFromMe)
    {
        if (object != assignFromMe.object) {
            /* Decrement ref of current context */
            DecRef();

            /* Reassign this Managed Obj */
            context = assignFromMe.context;
            object = assignFromMe.object;

            /* Increment the ref */
            IncRef();
        }

        return *this;
    }

    /**
     * Equality for managed objects is whatever equality means for @<T@>
     * @param other  The other managed object to compare.
     * @return  true if the managed objects are equal.
     */
    bool operator==(const ManagedObj<T>& other) const { return (object == other.object) || (*object == *other.object); }

    /**
     * Returns true if the two managed objects managed the same object. This is a more strict
     * comparison thant the equality operator.
     *
     * @param other  The other managed object to compare.
     * @return  true if the managed objects refer to the same underlying object.
     */
    template <class T2> bool iden(const ManagedObj<T2>& other) const { return ((ptrdiff_t)object == (ptrdiff_t)other.unwrap()); }

    /**
     * Inequality for managed objects is whatever inequality means for @<T@>
     * @param other  The other managed object to compare.
     * @return  true if the managed objects are equal.
     */
    bool operator!=(const ManagedObj<T>& other) const { return !(*this == other); }

    /**
     * Less-than for managed objects is whatever less-than means for @<T@>
     * @param other  The other managed object to compare.
     * @return  true if the managed objects are equal.
     */
    bool operator<(const ManagedObj<T>& other) const { return (object != other.object) && (*object < *other.object); }

    /**
     * Get a reference to T.
     * @return A reference to the managed object T.
     */
    T& operator*() { return *object; }

    /**
     * Get a pointer to the managed object T.
     */
    T* unwrap() { return object; }

    /**
     * Get a pointer to the managed object T.
     */
    const T* unwrap() const { return object; }

    /**
     * Get a pointer to T using the dereference operator
     * @return A reference to the managed object T.
     */
    T* operator->() { return object; }

    /**
     * Get a const reference to T.
     * @return A const reference to the managed object T.
     */
    const T& operator*() const { return *object; }

    /**
     * Get a const pointer to T.
     * @return A const pointer to the managed object T.
     */
    const T* operator->() const { return object; }

    /** Increment the ref count */
    void IncRef()
    {
#ifndef NDEBUG
        uint32_t refs =
#endif
        IncrementAndFetch(&context->refCount);

#ifndef NDEBUG
        assert(refs != 1 && "IncRef(): Incrementing from zero reference count!");
#endif

    }

    /** Decrement the ref count and deallocate if necessary. */
    void DecRef()
    {
        uint32_t refs = DecrementAndFetch(&context->refCount);
        if (0 == refs) {
            /* Call the overriden destructor */
            object->~T();
            context->ManagedCtx::~ManagedCtx();
            free(context);
            context = NULL;
        }
    }

    /**
     * Get the reference count
     */
    int32_t GetRefCount() const { return context ? context->refCount : 0; }

  private:

    ManagedObj<T>(ManagedCtx* context, T* object) : context(context), object(object)
    {
        assert(context->magic == ManagedCtxMagic);
        IncRef();
    }
};
#if defined(QCC_OS_GROUP_WINDOWS)
#pragma warning(pop)
#endif

}

#endif