/usr/include/x86_64-linux-gnu/qcc/ManagedObj.h is in liballjoyn-common-dev-1504 15.04b-8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 | /**
* @file
*
* This template class provides reference counting based heap allocation
* for objects.
*/
/******************************************************************************
* Copyright AllSeen Alliance. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
******************************************************************************/
#ifndef _QCC_MANAGEDOBJ_H
#define _QCC_MANAGEDOBJ_H
#include <qcc/platform.h>
#if defined(QCC_OS_ANDROID)
// This must be included before #include <new> for building on Froyo with
// certain versions of STLPort.
#include <stdlib.h>
#endif
#include <new>
#include <stdlib.h>
#include <assert.h>
#include <qcc/atomic.h>
namespace qcc {
#if defined(QCC_OS_GROUP_WINDOWS)
/*
* pragmas in the code should be avoided. This pragma is only being used in
* this specific situation because. When compiling code on Visual Studio the
* fact that ManagedObj has two copy constructors will cause the compiler to
* generate two 4521 errors everytime a ManagedObj is used in the code.
* Resulting in hundreds of warnings. The extra copy constructor exists to avoid
* ambiguity with the ManagedObj<T>(A1& arg) constructor and can not be removed
* without breaking the code.
*/
#pragma warning(push)
#pragma warning(disable: 4521)
#endif
/**
* ManagedObj manages heap allocation and reference counting for a template parameter type T.
* ManagedObj@<T@> allocates T and sets its reference count to 1 when it is created. Each time the
* managed object is passed by value or otherwise copied (which is an inexpensive operation), the
* underlying heap allocated T's reference count is incremented. Each time a ManagedObj instance
* is destructed, the underlying T reference count is decremented. When the reference count reaches
* zero, T itself is deallocated using delete.
*/
template <typename T>
class ManagedObj {
private:
static const uint32_t ManagedCtxMagic = (('M') | ('C' << 8) | (('T' << 16) + ('X' << 24)));
struct ManagedCtx {
ManagedCtx(int32_t refCount) : refCount(refCount), magic(ManagedCtxMagic) { }
int32_t refCount;
uint32_t magic;
};
ManagedCtx* context;
T* object;
public:
/** The underlying type that is being managed */
typedef T ManagedType;
/** Copy constructor */
ManagedObj<T>(const ManagedObj<T>©Me)
{
context = copyMe.context;
object = copyMe.object;
IncRef();
}
/** non-const Copy constructor needed to avoid ambiguity with ManagedObj<T>(A1& arg) constructor */
ManagedObj<T>(ManagedObj<T>©Me)
{
context = copyMe.context;
object = copyMe.object;
IncRef();
}
/**
* Create a copy of managed object T.
*
* If isDeep is true
* Create a deep (clone) copy of a managed object.
* A ManagedObject created using this constructor copies the underlying T
* object and wraps it in a new ManagedObject with 1 reference.
*
* if isDeep is false
* Do not make a deep copy of the managed object instead make a new reference
* to the existing object and increment the reference counter by +1.
*
* @param other ManagedObject to make a copy of.
* @param isDeep Specify if this is a deep (clone) copy or a normal copy
*/
ManagedObj<T>(const ManagedObj<T>&other, bool isDeep)
{
if (isDeep) {
/* Deep copy */
const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
context = reinterpret_cast<ManagedCtx*>(malloc(offset + sizeof(T)));
if (NULL == context) {
abort();
}
context = new (context) ManagedCtx(1);
object = new ((char*)context + offset)T(*other);
} else {
/* Normal copy constructor (inc ref) of existing object */
context = other.context;
object = other.object;
IncRef();
}
}
/** Allocate T() on the heap and set it's reference count to 1. */
ManagedObj<T>()
{
const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
context = reinterpret_cast<ManagedCtx*>(malloc(offset + sizeof(T)));
if (NULL == context) {
abort();
}
context = new (context) ManagedCtx(1);
object = new ((char*)context + offset)T();
}
/**
* Static method to wrap an existing T that is already managed in its managed object type.
* This method is typically called from within a method of the inner T class to provide
* a managed object instance that can be passed to methods that required that type.
*
* @param naked A unwrapped managed object instance.
* @returns The managed object instance re-wrapped in a ManageObj template class
*/
static ManagedObj<T> wrap(T* naked)
{
static const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
return ManagedObj<T>((ManagedCtx*)((char*)naked - offset), naked);
}
/**
* Static method to convert between managed objects of related types.
*
* @param other A managed object instance of a related type.
* @returns A managed object cast to the required type
*/
template <class T2> static ManagedObj<T> cast(T2& other)
{
static const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
return ManagedObj<T>((ManagedCtx*)((char*)other.unwrap() - offset), static_cast<T*>(other.unwrap()));
}
/**
* Allocate T(arg1) on the heap and set it's reference count to 1.
* @param arg1 First arg to T constructor.
*/
template <typename A1> ManagedObj<T>(A1 & arg1)
{
const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
context = reinterpret_cast<ManagedCtx*>(malloc(offset + sizeof(T)));
if (NULL == context) {
abort();
}
context = new (context) ManagedCtx(1);
object = new ((char*)context + offset)T(arg1);
}
/**
* Allocate T(arg1, arg2) on the heap and set it's reference count to 1.
* @param arg1 First arg to T constructor.
* @param arg2 Second arg to T constructor.
*/
template <typename A1, typename A2> ManagedObj<T>(A1 & arg1, A2 & arg2)
{
const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
context = reinterpret_cast<ManagedCtx*>(malloc(offset + sizeof(T)));
context = new (context) ManagedCtx(1);
object = new ((char*)context + offset)T(arg1, arg2);
}
/**
* Allocate T(arg1, arg2, arg3) on the heap and set it's reference count to 1.
* @param arg1 First arg to T constructor.
* @param arg2 Second arg to T constructor.
* @param arg3 Third arg to T constructor.
*/
template <typename A1, typename A2, typename A3> ManagedObj<T>(A1 & arg1, A2 & arg2, A3 & arg3)
{
const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
context = reinterpret_cast<ManagedCtx*>(malloc(offset + sizeof(T)));
if (NULL == context) {
abort();
}
context = new (context) ManagedCtx(1);
object = new ((char*)context + offset)T(arg1, arg2, arg3);
}
/**
* Allocate T(arg1, arg2, arg3, arg4) on the heap and set it's reference count to 1.
* @param arg1 First arg to T constructor.
* @param arg2 Second arg to T constructor.
* @param arg3 Third arg to T constructor.
* @param arg4 Fourth arg to T constructor.
*/
template <typename A1, typename A2, typename A3, typename A4> ManagedObj<T>(A1 & arg1, A2 & arg2, A3 & arg3, A4 & arg4)
{
const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
context = reinterpret_cast<ManagedCtx*>(malloc(offset + sizeof(T)));
context = new (context) ManagedCtx(1);
object = new ((char*)context + offset)T(arg1, arg2, arg3, arg4);
}
/**
* Allocate T(arg1, arg2, arg3, arg4, arg5) on the heap and set it's reference count to 1.
* @param arg1 First arg to T constructor.
* @param arg2 Second arg to T constructor.
* @param arg3 Third arg to T constructor.
* @param arg4 Fourth arg to T constructor.
* @param arg5 Fifth arg to T constructor.
*/
template <typename A1, typename A2, typename A3, typename A4, typename A5> ManagedObj<T>(A1 & arg1, A2 & arg2, A3 & arg3, A4 & arg4, A5 & arg5)
{
const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
context = reinterpret_cast<ManagedCtx*>(malloc(offset + sizeof(T)));
if (NULL == context) {
abort();
}
context = new (context) ManagedCtx(1);
object = new ((char*)context + offset)T(arg1, arg2, arg3, arg4, arg5);
}
/**
* Allocate T(arg1, arg2, arg3, arg4, arg5, arg6) on the heap and set it's reference count to 1.
* @param arg1 First arg to T constructor.
* @param arg2 Second arg to T constructor.
* @param arg3 Third arg to T constructor.
* @param arg4 Fourth arg to T constructor.
* @param arg5 Fifth arg to T constructor.
* @param arg6 Sixth arg to T constructor.
*/
template <typename A1, typename A2, typename A3, typename A4, typename A5, typename A6> ManagedObj<T>(A1 & arg1, A2 & arg2, A3 & arg3, A4 & arg4, A5 & arg5, A6 & arg6)
{
const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
context = reinterpret_cast<ManagedCtx*>(malloc(offset + sizeof(T)));
if (NULL == context) {
abort();
}
context = new (context) ManagedCtx(1);
object = new ((char*)context + offset)T(arg1, arg2, arg3, arg4, arg5, arg6);
}
/**
* Allocate T(arg1, arg2, arg3, arg4, arg5, arg6, arg7) on the heap and set it's reference count to 1.
* @param arg1 First arg to T constructor.
* @param arg2 Second arg to T constructor.
* @param arg3 Third arg to T constructor.
* @param arg4 Fourth arg to T constructor.
* @param arg5 Fifth arg to T constructor.
* @param arg6 Sixth arg to T constructor.
* @param arg7 Seventh arg to T constructor.
*/
template <typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7> ManagedObj<T>(A1 & arg1, A2 & arg2, A3 & arg3, A4 & arg4, A5 & arg5, A6 & arg6, A7 & arg7)
{
const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
context = reinterpret_cast<ManagedCtx*>(malloc(offset + sizeof(T)));
if (NULL == context) {
abort();
}
context = new (context) ManagedCtx(1);
object = new ((char*)context + offset)T(arg1, arg2, arg3, arg4, arg5, arg6, arg7);
}
/**
* Allocate T(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8) on the heap and set it's reference count to 1.
* @param arg1 First arg to T constructor.
* @param arg2 Second arg to T constructor.
* @param arg3 Third arg to T constructor.
* @param arg4 Fourth arg to T constructor.
* @param arg5 Fifth arg to T constructor.
* @param arg6 Sixth arg to T constructor.
* @param arg7 Seventh arg to T constructor.
* @param arg8 Eight arg to T constructor.
*/
template <typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8> ManagedObj<T>(A1 & arg1, A2 & arg2, A3 & arg3, A4 & arg4, A5 & arg5, A6 & arg6, A7 & arg7, A8 & arg8)
{
const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
context = reinterpret_cast<ManagedCtx*>(malloc(offset + sizeof(T)));
if (NULL == context) {
abort();
}
context = new (context) ManagedCtx(1);
object = new ((char*)context + offset)T(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8);
}
/**
* Allocate T(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9) on the heap and set it's reference count to 1.
* @param arg1 First arg to T constructor.
* @param arg2 Second arg to T constructor.
* @param arg3 Third arg to T constructor.
* @param arg4 Fourth arg to T constructor.
* @param arg5 Fifth arg to T constructor.
* @param arg6 Sixth arg to T constructor.
* @param arg7 Seventh arg to T constructor.
* @param arg8 Eight arg to T constructor.
* @param arg9 Ninth arg to T constructor.
*/
template <typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9> ManagedObj<T>(A1 & arg1, A2 & arg2, A3 & arg3, A4 & arg4, A5 & arg5, A6 & arg6, A7 & arg7, A8 & arg8, A9 & arg9)
{
const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
context = reinterpret_cast<ManagedCtx*>(malloc(offset + sizeof(T)));
if (NULL == context) {
abort();
}
context = new (context) ManagedCtx(1);
object = new ((char*)context + offset)T(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9);
}
/**
* Allocate T(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9, arg10) on the heap and set it's reference count to 1.
* @param arg1 First arg to T constructor.
* @param arg2 Second arg to T constructor.
* @param arg3 Third arg to T constructor.
* @param arg4 Fourth arg to T constructor.
* @param arg5 Fifth arg to T constructor.
* @param arg6 Sixth arg to T constructor.
* @param arg7 Seventh arg to T constructor.
* @param arg8 Eight arg to T constructor.
* @param arg9 Ninth arg to T constructor.
* @param arg10 Tenth arg to T constructor.
*/
template <typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9, typename A10> ManagedObj<T>(A1 & arg1, A2 & arg2, A3 & arg3, A4 & arg4, A5 & arg5, A6 & arg6, A7 & arg7, A8 & arg8, A9 & arg9, A10 & arg10)
{
const size_t offset = (sizeof(ManagedCtx) + 7) & ~0x07;
context = reinterpret_cast<ManagedCtx*>(malloc(offset + sizeof(T)));
if (NULL == context) {
abort();
}
context = new (context) ManagedCtx(1);
object = new ((char*)context + offset)T(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9, arg10);
}
/**
* ManagedObj destructor.
* Decrement T's reference count and deallocate if zero.
*/
~ManagedObj<T>()
{
DecRef();
}
/**
* Assign a ManagedObj<T> to an existing ManagedObj<T>
* @param assignFromMe ManagedObj<T> to copy from.
* @return reference to this MangedObj<T>.
*/
ManagedObj<T>& operator=(const ManagedObj<T>& assignFromMe)
{
if (object != assignFromMe.object) {
/* Decrement ref of current context */
DecRef();
/* Reassign this Managed Obj */
context = assignFromMe.context;
object = assignFromMe.object;
/* Increment the ref */
IncRef();
}
return *this;
}
/**
* Equality for managed objects is whatever equality means for @<T@>
* @param other The other managed object to compare.
* @return true if the managed objects are equal.
*/
bool operator==(const ManagedObj<T>& other) const { return (object == other.object) || (*object == *other.object); }
/**
* Returns true if the two managed objects managed the same object. This is a more strict
* comparison thant the equality operator.
*
* @param other The other managed object to compare.
* @return true if the managed objects refer to the same underlying object.
*/
template <class T2> bool iden(const ManagedObj<T2>& other) const { return ((ptrdiff_t)object == (ptrdiff_t)other.unwrap()); }
/**
* Inequality for managed objects is whatever inequality means for @<T@>
* @param other The other managed object to compare.
* @return true if the managed objects are equal.
*/
bool operator!=(const ManagedObj<T>& other) const { return !(*this == other); }
/**
* Less-than for managed objects is whatever less-than means for @<T@>
* @param other The other managed object to compare.
* @return true if the managed objects are equal.
*/
bool operator<(const ManagedObj<T>& other) const { return (object != other.object) && (*object < *other.object); }
/**
* Get a reference to T.
* @return A reference to the managed object T.
*/
T& operator*() { return *object; }
/**
* Get a pointer to the managed object T.
*/
T* unwrap() { return object; }
/**
* Get a pointer to the managed object T.
*/
const T* unwrap() const { return object; }
/**
* Get a pointer to T using the dereference operator
* @return A reference to the managed object T.
*/
T* operator->() { return object; }
/**
* Get a const reference to T.
* @return A const reference to the managed object T.
*/
const T& operator*() const { return *object; }
/**
* Get a const pointer to T.
* @return A const pointer to the managed object T.
*/
const T* operator->() const { return object; }
/** Increment the ref count */
void IncRef()
{
#ifndef NDEBUG
uint32_t refs =
#endif
IncrementAndFetch(&context->refCount);
#ifndef NDEBUG
assert(refs != 1 && "IncRef(): Incrementing from zero reference count!");
#endif
}
/** Decrement the ref count and deallocate if necessary. */
void DecRef()
{
uint32_t refs = DecrementAndFetch(&context->refCount);
if (0 == refs) {
/* Call the overriden destructor */
object->~T();
context->ManagedCtx::~ManagedCtx();
free(context);
context = NULL;
}
}
/**
* Get the reference count
*/
int32_t GetRefCount() const { return context ? context->refCount : 0; }
private:
ManagedObj<T>(ManagedCtx* context, T* object) : context(context), object(object)
{
assert(context->magic == ManagedCtxMagic);
IncRef();
}
};
#if defined(QCC_OS_GROUP_WINDOWS)
#pragma warning(pop)
#endif
}
#endif
|