/usr/lib/ocaml/apron/scalar.idl is in libapron-ocaml-dev 0.9.10-9+b1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 | /* -*- mode: c -*- */
/* This file is part of the APRON Library, released under LGPL license.
Please read the COPYING file packaged in the distribution */
quote(C, "\n\
#define HAS_MPFR 1\n\
#include <limits.h>\n\
#include \"ap_coeff.h\"\n\
#include \"gmp_caml.h\"\n\
#include \"apron_caml.h\"\n\
")
/* For ap_scalar_t,
- the conversion from ML to C reuse the ML allocated memory
- the conversion from C to ML duplicate the C allocated memory.
Hence, the C type should be explicitly deallocated
(if allocated from the underlying C function)
*/
quote(C,"\n\
void camlidl_apron_scalar_ml2c(value v, struct ap_scalar_t* scalar)\n\
{\n\
value v2 = Field(v,0);\n\
scalar->discr = Tag_val(v);\n\
switch (scalar->discr) {\n\
case 0: /* DOUBLE */\n\
scalar->val.dbl = Double_val(v2);\n\
break;\n\
case 1: /* MPQ */\n\
scalar->val.mpq = (mpq_ptr)(Data_custom_val(v2));\n\
break;\n\
case 2: /* MPFR */\n\
scalar->val.mpfr = (mpfr_ptr)(Data_custom_val(v2));\n\
break;\n\
default:\n\
caml_failwith(\"unknown scalar discriminant in camlidl_apron_scalar_ml2c\");\n\
}\n\
return;\n\
}\n\
value camlidl_apron_scalar_c2ml(struct ap_scalar_t* scalar)\n\
{\n\
value v,v2;\n\
v2 = Val_unit;\n\
Begin_root(v2);\n\
switch(scalar->discr){\n\
case AP_SCALAR_DOUBLE:\n\
v2 = caml_copy_double(scalar->val.dbl);\n\
break;\n\
case AP_SCALAR_MPQ:\n\
{\n\
mpq_t mpq;\n\
mpq_ptr mpq_ptr = mpq;\n\
mpq_init(mpq);\n\
mpq_set(mpq,scalar->val.mpq);\n\
v2 = camlidl_mpq_ptr_c2ml(&mpq_ptr);\n\
}\n\
break;\n\
case AP_SCALAR_MPFR:\n\
{\n\
mpfr_t mpfr;\n\
mpfr_ptr mpfr_ptr = mpfr;\n\
mpfr_init2(mpfr,mpfr_get_prec(scalar->val.mpfr));\n\
mpfr_set(mpfr,scalar->val.mpfr,GMP_RNDU /* exact */);\n\
v2 = camlidl_mpfr_ptr_c2ml(&mpfr_ptr);\n\
}\n\
break;\n\
default:\n\
caml_failwith(\"unknown scalar discriminant in camlidl_apron_scalar_c2ml\");\n\
}\n\
v = alloc_small(1,scalar->discr);\n\
Field(v,0) = v2;\n\
End_roots();\n\
return v;\n\
}\n\
")
typedef [mltype("Float of float | Mpqf of Mpqf.t | Mpfrf of Mpfrf.t"),
abstract,
ml2c(camlidl_apron_scalar_ml2c),
c2ml(camlidl_apron_scalar_c2ml)]
struct ap_scalar_t ap_scalar_t;
typedef [ref]ap_scalar_t* ap_scalar_ptr;
struct ap_scalar_array_t {
[size_is(size)]ap_scalar_ptr* p;
int size;
};
quote(MLMLI,"(** APRON Scalar numbers. See {!Mpqf} for operations on GMP multiprecision rational numbers and {!Mpfr} for operations on MPFR multi-precision floating-point numbers. *)\n\n")
quote(MLI,"\n\
val of_mpq : Mpq.t -> t\n\
val of_mpqf : Mpqf.t -> t\n\
val of_int : int -> t\n\
val of_frac : int -> int -> t\n\
(** Create a scalar of type [Mpqf] from resp.\n\
- A multi-precision rational [Mpq.t] \n\
- A multi-precision rational [Mpqf.t] \n\
- an integer \n\
- a fraction [x/y]\n\
*)\n\
\n\
val of_mpfr : Mpfr.t -> t\n\
val of_mpfrf : Mpfrf.t -> t\n\
(** Create a scalar of type [Mpfrf] with the given value *)\n\
val of_float : float -> t\n\
(** Create a scalar of type [Float] with the given value *)\n\
val of_infty : int -> t \n\
(** Create a scalar of type [Float] with the value multiplied by\n\
infinity (resulting in minus infinity, zero, or infinity \n\
*)\n\
val is_infty : t -> int\n\
(** Infinity test.\n\
[is_infty x] returns [-1] if x is [-oo], [1] if x is [+oo], and [0] if [x] is\n\
finite. *)\n\
\n\
val sgn : t -> int\n\
(** Return the sign of the coefficient, which may be a negative value, zero\n\
or a positive value. *)\n\
\n\
val cmp : t -> t -> int\n\
(** Compare two coefficients, possibly converting to [Mpqf.t].\n\
[compare x y] returns a negative number if [x] is less than [y], \n\
[0] if they ar equal, and a positive number if [x] is greater than [y].\n\
*)\n\
\n\
val cmp_int : t -> int -> int\n\
(** Compare a coefficient with an integer *)\n\
\n\
val equal : t -> t -> bool\n\
(** Equality test, possibly using a conversion to [Mpqf.t].\n\
Return [true] if the 2 values are equal. Two infinite values of the same\n\
signs are considered as equal. *)\n\
\n\
val equal_int : t -> int -> bool\n\
(** Equality test with an integer *)\n\
\n\
val neg : t -> t\n\
(** Negation *)\n\
val to_string : t -> string\n\
(** Conversion to string, using [string_of_double], [Mpqf.to_string] or [Mpfr.to_string]\n\
*)\n\
\n\
val print : Format.formatter -> t -> unit\n\
(** Print a coefficient *)\n\
")
quote(ML,"\
let of_mpq x = Mpqf (Mpqf.of_mpq x)\n\
let of_mpqf x = Mpqf x\n\
let of_mpfr x = Mpfrf (Mpfrf.of_mpfr x)\n\
let of_mpfrf x = Mpfrf x\n\
let of_int x = Mpqf(Mpqf.of_int x)\n\
let of_frac x y = Mpqf(Mpqf.of_frac x y)\n\
let of_float x = Float(x)\n\
let of_infty s = \n\
if s>0 then Float(Pervasives.infinity)\n\
else if s<0 then Float(Pervasives.neg_infinity)\n\
else Float(0.0)\n\
let is_infty scalar =\n\
match scalar with\n\
| Mpqf x ->\n\
let z = Mpqf.get_den x in\n\
if Mpzf.sgn z <> 0 then 0\n\
else begin\n\
let z = Mpqf.get_num x in\n\
let sgn = Mpzf.sgn z in\n\
if sgn > 0 then 1 else if sgn < 0 then -1 else 0\n\
end\n\
| Mpfrf x ->\n\
if Mpfrf.inf_p x then\n\
if Mpfrf.sgn x > 0 then 1 else -1\n\
else 0\n\
| Float x ->\n\
if x = Pervasives.infinity then 1\n\
else if x = Pervasives.neg_infinity then -1\n\
else 0\n\
let sgn scalar =\n\
match scalar with\n\
| Mpqf x -> Mpqf.sgn x\n\
| Mpfrf x -> Mpfrf.sgn x\n\
| Float x -> if x > 0.0+.0.0 then 1 else if x < -.0.0 then -1 else 0\n\
let to_mpqf = function\n\
| Mpqf x -> x\n\
| Mpfrf x -> Mpfrf.to_mpqf x\n\
| Float x -> Mpqf.of_float x\n\
let cmp c1 c2 =\n\
let s1 = is_infty c1 in\n\
let s2 = is_infty c2 in\n\
if s1>s2 then 1\n\
else if s1<s2 then -1\n\
else if s1 != 0 then 0\n\
else begin\n\
match (c1,c2) with\n\
| (Mpqf x1, Mpqf x2) -> Mpqf.cmp x1 x2\n\
| (Mpfrf x1, Mpfrf x2) -> Mpfrf.cmp x1 x2\n\
| (Float x1, Float x2) -> if x1>x2 then 1 else if x1<x2 then -1 else 0\n\
| x1, x2 -> Mpqf.cmp (to_mpqf x1) (to_mpqf x2)\n\
end\n\
let equal c1 c2 =\n\
let s1 = is_infty c1 in\n\
let s2 = is_infty c2 in\n\
if s1!=s2 then false\n\
else if s1!=0 then true\n\
else begin\n\
match (c1,c2) with\n\
| (Mpqf x1, Mpqf x2) -> Mpqf.equal x1 x2\n\
| (Mpfrf x1, Mpfrf x2) -> Mpfrf.cmp x1 x2 = 0\n\
| (Float x1, Float x2) -> x1 = x2\n\
| x1, x2 -> Mpqf.equal (to_mpqf x1) (to_mpqf x2)\n\
end\n\
let cmp_int scalar n =\n\
match scalar with\n\
| Mpqf x -> Mpqf.cmp_int x n\n\
| Mpfrf x -> Mpfrf.cmp_int x n\n\
| Float x -> Pervasives.compare x (float_of_int n)\n\
let equal_int scalar n =\n\
match scalar with\n\
| Mpqf x -> (Mpqf.cmp_int x n)=0\n\
| Mpfrf x -> (Mpfrf.cmp_int x n)=0\n\
| Float x -> x=(float_of_int n)\n\
let neg scalar =\n\
match scalar with\n\
| Mpqf x -> Mpqf(Mpqf.neg x)\n\
| Mpfrf x ->\n\
let y = Mpfr.init2 (Mpfr.get_prec x) in\n\
ignore (Mpfr.neg y x Mpfr.Up);\n\
Mpfrf(Mpfrf.mpfrf y)\n \
| Float x -> Float(-. x)\n\
let to_string scalar =\n\
match scalar with\n\
| Mpqf x -> Mpqf.to_string x\n\
| Mpfrf x -> Mpfrf.to_string x\n\
| Float x -> string_of_float x\n\
let print fmt scalar =\n\
Format.pp_print_string fmt (to_string scalar)\n\
")
|