/usr/include/BALL/MATHS/angle.h is in libball1.4-dev 1.4.3~beta1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 | // -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
#ifndef BALL_MATHS_ANGLE_H
#define BALL_MATHS_ANGLE_H
#ifndef BALL_COMMON_EXCEPTION_H
# include <BALL/COMMON/exception.h>
#endif
#ifndef BALL_COMMON_DEBUG_H
# include <BALL/COMMON/debug.h>
#endif
#ifndef BALL_COMMON_CREATE_H
# include <BALL/COMMON/create.h>
#endif
#ifndef BALL_MATHS_COMMON_H
# include <BALL/MATHS/common.h>
#endif
namespace BALL
{
/** \defgroup Angle Representation of angles.
class \link BALL::TAngle TAngle \endlink and class \link Angle Angle \endlink
\ingroup Primitives
*/
//@{
template <typename T>
class TAngle;
template <typename T>
BALL_INLINE
TAngle<T> operator * (const T& val, const TAngle<T>& angle);
template <typename T>
BALL_INLINE
TAngle<T> operator + (const T& val, const TAngle<T>& angle);
template <typename T>
BALL_INLINE
TAngle<T> operator - (const T& val, const TAngle<T>& angle);
/** Generic Angle Class.
Use this class to describe angles. The TAngle class permits the conversion
from degree to radians and is the return type of all functions used to calculate
angles.
*/
template <typename T>
class TAngle
{
public:
BALL_CREATE(TAngle<T>)
/** @name Enums
*/
//@{
/** form of the angle range:
<tt>RANGE__UNLIMITED = 0</tt> no limitations
<tt>RANGE__UNSIGNED = 1</tt> 0 <= angle <= 360, 0 <= angle <= PI * 2
<tt>RANGE__SIGNED = 2</tt> -180 <= angle <= 180, -PI <= angle <= PI
*/
enum Range
{
// no limitations
RANGE__UNLIMITED = 0,
// 0 <= angle <= 360, 0 <= angle <= (Constants::PI * 2)
RANGE__UNSIGNED = 1,
// -180 <= angle <= 180, -Constants::PI <= angle <= Constants::PI
RANGE__SIGNED = 2
};
//@}
/** @name Constructors and Destructors
*/
//@{
/** Default constructor.
Creates a new angle object. Its value is set to 0.
*/
TAngle();
/** Copy constructor.
Create a copy of a TAngle object. Copies are always
shallow.
@param angle the object to be copied
*/
TAngle(const TAngle& angle);
/** Detailed constructor.
Create a new angle object and set its value to
<tt>new_value</tt>. <tt>radian</tt> determines whether <tt>new_value</tt>
is in radians or in degrees.
@param new_value the value of the angle object
@param radian <b>true</b> if <tt>new_value</tt> is in radians, <tt>false</tt> otherwise
*/
explicit TAngle(const T& new_value, bool radian = true);
/** Destructor.
*/
virtual ~TAngle()
{
}
/** Clear method
The value is set to 0.
*/
virtual void clear()
{
value = (T)0;
}
//@}
/** @name Assignment
*/
//@{
/** Swap the contents of two angles.
*/
void swap(TAngle& angle);
/** Assign a new value to the angle.
<tt>radian</tt> determines whether <tt>new_value</tt>
is in radians or in degrees.
@param new_value the value of the angle object
@param radian <b>true</b> if <tt>new_value</tt> is in radians, <tt>false</tt> otherwise
*/
void set(const T& new_value, bool radian = true);
/** Assign an Angle object from another.
@param angle the angle object to be assigned from
*/
void set(const TAngle& angle);
/** Assignment operator
*/
TAngle& operator = (const TAngle& angle);
/** Assignment operator for floats.
Assign a float value to the angle.
The assigned value has to be in radians!
@param new_value the new value
*/
TAngle& operator = (const T& new_value);
/** Assign the value to another angle.
@param angle the angle to assign the value to
*/
void get(TAngle& angle) const;
/** Assign the value to a variable of type <tt>T</tt>.
@param val the variable to assign the value to
@param radian if set to <tt>true</tt> assigns the value in radians (default).
*/
void get(T& val, bool radian = true) const;
//@}
/** @name Accessors
*/
//@{
/** Cast operator
@return value in radians
*/
operator T () const;
/** Return the value of the angle
@return value in radians
*/
T toRadian() const
;
/** Calculate radians from degrees
@param degree the value in degrees
@return T the value in radians
*/
static T toRadian(const T& degree);
/** Return the value of the angle
@return value in degrees
*/
T toDegree() const;
/** Calculate degrees from radians
@param radian the value in radians
@return T the value in degrees
*/
static T toDegree(const T& radian);
/** Normalize the angle over a given range.
<tt>RANGE__UNLIMITED = 0</tt> no limitations.
<tt>RANGE__UNSIGNED = 1</tt> \f$0 \le \mathtt{angle} \le 360, 0 \le angle \le 2 \pi\f$.
<tt>RANGE__SIGNED = 2</tt> \f$-180 \le \mathtt{angle} \le 180, -\pi \le \mathtt{angle} \le \pi\f$.
@param range the range of the angle
*/
void normalize(Range range);
/** Negate the angle
*/
void negate();
/** Positive sign.
*/
TAngle operator + () const;
/** Negative sign.
*/
TAngle operator - () const;
/** Addition operator.
@param angle the angle to add
@return TAngle, {\em *this}
*/
TAngle& operator += (const TAngle& angle);
/** Add a value to this angle.
@param val the value to add
@return TAngle, {\em *this}
*/
TAngle& operator += (const T& val);
/** Addition operator.
@param angle the angle to add
@return TAngle, the new angle
*/
TAngle operator + (const TAngle& angle);
/** Substraction operator.
@param angle the angle to substract
@return TAngle, {\em *this}
*/
TAngle& operator -= (const TAngle& angle);
/** Substract a value from this angle.
@param val the value to substract
@return TAngle, {\em *this}
*/
TAngle& operator -= (const T& val);
/** Subtraction an angle from this angle.
@param angle the angle to substract
@return TAngle, the new angle
*/
TAngle operator - (const TAngle& angle);
/** Multiply an angle with this angle.
@param angle the angle to multiply by
@return TAngle, {\em *this}
*/
TAngle& operator *= (const TAngle& angle);
/** Multiply a value with this angle.
@param val the value to multiply by
@return TAngle, {\em *this}
*/
TAngle& operator *= (const T& val);
/** Division operator.
@param angle the angle to divide by
@return TAngle, {\em *this}
@throw Exception::DivisionByZero if angle is zero
*/
TAngle& operator /= (const TAngle& angle);
/** Divide this angle by a value.
@param val the angle to divide by
@return TAngle, {\em *this}
@throw Exception::DivisionByZero if val is zero
*/
TAngle& operator /= (const T& val);
/** Divide this angle by a value.
@param val the angle to divide by
@return TAngle, the new angle
@throw Exception::DivisionByZero if val is zero
*/
TAngle operator / (const TAngle& val);
//@}
/** @name Predicates
*/
//@{
/** Equality operator.
This test uses Maths::isEqual instead of comparing the
values directly.
@param angle the angle to compare with
@return bool, <b>true</b> if the two angles are equal
*/
bool operator == (const TAngle& angle) const;
/** Inequality operator
This test uses Maths::isNotEqual instead of comparing the
values directly.
@param angle the angle to compare with
@return bool, <b>true</b> if the two angles are not equal
*/
bool operator != (const TAngle& angle) const;
/** Is less operator.
This test uses Maths::isLess instead of comparing the
values directly.
@param angle the angle to compare with
@return bool, <b>true</b> if {\em *this} angle is smaller than <tt>value</tt>
*/
bool operator < (const TAngle& angle) const;
/** Is less operator.
This test uses Maths::isLess instead of comparing the
values directly.
@param val the value to compare with
@return bool, <b>true</b> if {\em *this} angle is smaller than <tt>value</tt>
*/
bool operator < (const T& val) const;
/** Is less or equal operator.
This test uses Maths::isLessOrEqual instead of comparing the
values directly.
@param angle the angle to compare with
@return bool, <b>true</b> if {\em *this} angle is smaller or equal than <tt>value</tt>
*/
bool operator <= (const TAngle& angle) const;
/** Is greater or equal operator.
This test uses Maths::isGreaterOrEqual instead of comparing the
values directly.
@param angle the angle to compare with
@return bool, <b>true</b> if {\em *this} angle is greater or equal than <tt>value</tt>
*/
bool operator >= (const TAngle& angle) const;
/** Is greater operator.
This test uses Maths::isGreater instead of comparing the
values directly.
@param angle the angle to compare with
@return bool, <b>true</b> if {\em *this} angle is greater than <tt>value</tt>
*/
bool operator > (const TAngle& angle) const;
/** Test whether two angles are equivalent.
Both angles are normalized and afterwards compared with Maths::isEqual
instead of comparing the values directly.
@param angle the angle to compare with
@return bool, <b>true</b> if {\em *this} angle is equal to <tt>value</tt>
*/
bool isEquivalent(TAngle angle) const;
//@}
/** @name Debugging and Diagnostics
*/
//@{
/** Test whether instance is valid.
Always returns true
@return bool <b>true</b>
*/
bool isValid () const;
/** Internal state dump.
Dump the current internal state of {\em *this} to
the output ostream <b> s </b> with dumping depth <b> depth </b>.
@param s - output stream where to output the internal state of {\em *this}
@param depth - the dumping depth
*/
void dump(std::ostream& s = std::cout, Size depth = 0) const;
//@}
/** @name Attributes
*/
//@{
/** The value
*/
T value;
//@}
};
//@}
template <typename T>
TAngle<T>::TAngle()
: value((T)0)
{
}
template <typename T>
TAngle<T>::TAngle(const TAngle& angle)
: value((T)angle.value)
{
}
template <typename T>
TAngle<T>::TAngle(const T& new_value, bool radian)
: value((radian == true)
? (T)new_value
: (T)BALL_ANGLE_DEGREE_TO_RADIAN((double)new_value))
{
}
template <typename T>
void TAngle<T>::swap(TAngle& angle)
{
T temp = value;
value = angle.value;
angle.value = temp;
}
template <typename T>
void TAngle<T>::set(const TAngle& angle)
{
value = angle.value;
}
template <typename T>
void TAngle<T>::set(const T& new_value, bool radian)
{
value = (radian == true)
? new_value
: BALL_ANGLE_DEGREE_TO_RADIAN(new_value);
}
template <typename T>
TAngle<T>& TAngle<T>::operator = (const TAngle& angle)
{
value = angle.value;
return *this;
}
template <typename T>
TAngle<T>& TAngle<T>::operator = (const T& new_value)
{
value = new_value;
return *this;
}
template <typename T>
void TAngle<T>::get(TAngle& angle) const
{
angle.value = value;
}
template <typename T>
void TAngle<T>::get(T& val, bool radian) const
{
val = (radian == true)
? value
: BALL_ANGLE_RADIAN_TO_DEGREE(value);
}
template <typename T>
TAngle<T>::operator T () const
{
return value;
}
template <typename T>
T TAngle<T>::toRadian() const
{
return value;
}
template <typename T>
T TAngle<T>::toRadian(const T& degree)
{
return BALL_ANGLE_DEGREE_TO_RADIAN(degree);
}
template <typename T>
T TAngle<T>::toDegree() const
{
if (value == (T) 0.0) return (T) 0.0;
return BALL_ANGLE_RADIAN_TO_DEGREE(value);
}
template <typename T>
T TAngle<T>::toDegree(const T& radian)
{
if (radian == (T) 0.0) return (T) 0.0;
return BALL_ANGLE_RADIAN_TO_DEGREE(radian);
}
template <typename T>
void TAngle<T>::normalize(Range range)
{
if (range == RANGE__UNLIMITED)
{
return;
}
long mod_factor = (long)(value / (2 * Constants::PI));
value -= mod_factor * (Constants::PI * 2);
while (Maths::isGreater(value, (Constants::PI * 2)))
{
value -= (Constants::PI * 2);
}
while (Maths::isLess(value, -(Constants::PI * 2)))
{
value += (Constants::PI * 2);
}
if (range == RANGE__SIGNED) // invariant: -180 to 180:
{
if (Maths::isGreater(value, Constants::PI))
{
value -= (Constants::PI * 2);
}
}
else
{ // invariant: 0 to 360:
if (Maths::isLess(value, 0))
{
value += (Constants::PI * 2);
}
}
}
template <typename T>
void TAngle<T>::negate()
{
value = -value;
}
template <typename T>
TAngle<T> TAngle<T>::operator + () const
{
return *this;
}
template <typename T>
TAngle<T> TAngle<T>::operator - () const
{
return TAngle(-value);
}
template <typename T>
TAngle<T>& TAngle<T>::operator += (const TAngle& angle)
{
value += angle.value;
return *this;
}
template <typename T>
TAngle<T>& TAngle<T>::operator += (const T& val)
{
value += val;
return *this;
}
template <typename T>
TAngle<T> TAngle<T>::operator + (const TAngle& angle)
{
return TAngle(value + angle.value);
}
template <typename T>
TAngle<T>& TAngle<T>::operator -= (const TAngle& angle)
{
value -= angle.value;
return *this;
}
template <typename T>
TAngle<T>& TAngle<T>::operator -= (const T& val)
{
value -= val;
return *this;
}
template <typename T>
TAngle<T> TAngle<T>::operator - (const TAngle& angle)
{
return TAngle(value - angle.value);
}
template <typename T>
TAngle<T>& TAngle<T>::operator *= (const TAngle& angle)
{
value *= angle.value;
return *this;
}
template <typename T>
TAngle<T>& TAngle<T>::operator *= (const T& val)
{
value *= val;
return *this;
}
template <typename T>
TAngle<T>& TAngle<T>::operator /= (const TAngle& angle)
{
if (angle.value == 0)
{
throw Exception::DivisionByZero(__FILE__, __LINE__);
}
value /= angle.value;
return *this;
}
template <typename T>
TAngle<T>& TAngle<T>::operator /= (const T& val)
{
if (val == 0)
{
throw Exception::DivisionByZero(__FILE__, __LINE__);
}
value /= val;
return *this;
}
template <typename T>
TAngle<T> TAngle<T>::operator / (const TAngle<T>& val)
{
if (val.value == 0)
{
throw Exception::DivisionByZero(__FILE__, __LINE__);
}
return TAngle(value / val.value);
}
template <typename T>
bool TAngle<T>::operator == (const TAngle& angle) const
{
return Maths::isEqual(value, angle.value);
}
template <typename T>
bool TAngle<T>::operator != (const TAngle& angle) const
{
return Maths::isNotEqual(value, angle.value);
}
template <typename T>
bool TAngle<T>::operator < (const TAngle& angle) const
{
return Maths::isLess(value, angle.value);
}
template <typename T>
bool TAngle<T>::operator < (const T& val) const
{
return Maths::isLess(value, val);
}
template <typename T>
bool TAngle<T>::operator <= (const TAngle& angle) const
{
return Maths::isLessOrEqual(value, angle.value);
}
template <typename T>
bool TAngle<T>::operator >= (const TAngle& angle) const
{
return Maths::isGreaterOrEqual(value, angle.value);
}
template <typename T>
bool TAngle<T>::operator > (const TAngle& angle) const
{
return Maths::isGreater(value, angle.value);
}
template <typename T>
bool TAngle<T>::isEquivalent(TAngle angle) const
{
TAngle this_angle(*this);
this_angle.normalize(RANGE__UNSIGNED);
angle.normalize(RANGE__UNSIGNED);
return (this_angle == angle);
}
template <typename T>
bool TAngle<T>::isValid() const
{
return true;
}
template <typename T>
void TAngle<T>::dump(std::ostream& s, Size depth) const
{
BALL_DUMP_STREAM_PREFIX(s);
BALL_DUMP_HEADER(s, this, this);
BALL_DUMP_DEPTH(s, depth);
s << " value: " << value << std::endl;
BALL_DUMP_STREAM_SUFFIX(s);
}
/** The Default Angle Type.
If double precision is not needed, <tt>TAngle<float></tt> should
be used. It is predefined as <tt>Angle</tt> for convenience.
*/
typedef TAngle<float> Angle;
/** Multiplication operator.
Multiplies a number with an angle.
*/
template <typename T>
BALL_INLINE
TAngle<T> operator * (const T& val, const TAngle<T>& angle)
{
return TAngle<T>(val * angle.value);
}
/** Plus operator.
Adds a number with an angle (in rad!)
*/
template <typename T>
BALL_INLINE
TAngle<T> operator + (const T& val, const TAngle<T>& angle)
{
return TAngle<T>(val + angle.value);
}
/** Minus operator.
Subtracts the value of an angle (in rad!) from a number.
*/
template <typename T>
BALL_INLINE
TAngle<T> operator - (const T& val, const TAngle<T>& angle)
{
return TAngle<T>(val - angle.value);
}
/** Input Operator.
Reads the value (in radians) of an angle from an instream using T::operator >>
*/
template <typename T>
std::istream& operator >> (std::istream& s, TAngle<T>& angle)
{
char c;
s >> c >> angle.value >> c;
return s;
}
/** Output Operator.
Writes the value of the angle to an output stream.
The stream operator <tt>operator <<</tt> has to be defined
for the template parameter <tt>T</tt>.
*/
template <typename T>
std::ostream& operator << (std::ostream& s, const TAngle<T>& angle)
{
s << '(' << angle.value << ')';
return s;
}
} // namespace BALL
#endif // BALL_MATHS_ANGLE_H
|