/usr/include/BALL/MATHS/rombergIntegrator.h is in libball1.4-dev 1.4.3~beta1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 | // -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
// $Id: rombergIntegrator.h,v 1.12 2003/08/26 08:04:22 oliver Exp $
//
#ifndef BALL_MATHS_ROMBERGINTEGRATOR_H
#define BALL_MATHS_ROMBERGINTEGRATOR_H
#ifndef BALL_MATHS_NUMERICALINTERGRATOR_H
# include <BALL/MATHS/numericalIntegrator.h>
#endif
namespace BALL
{
/** A numerical integration of a BALL-Function using a Romberg integration scheme.
\ingroup FunctionClasses
*/
template <typename Function, typename DataType>
class RombergIntegrator: public NumericalIntegrator<Function, DataType>
{
public:
BALL_CREATE(RombergIntegrator)
/// @name Constructors and destructor.
//@{
/// Default constructor
RombergIntegrator(float epsilon=1E-5, Size nsteps=1000);
/// Copy constructor
RombergIntegrator(const RombergIntegrator& romint);
/// Destructor
~RombergIntegrator();
//@}
/// @name Assignment
//@{
/// Assignment operator
const RombergIntegrator& operator = (const RombergIntegrator& romint);
/// Clear method
virtual void clear();
/// Set the upper bound for the error we want to allow
void setEpsilon(float eps);
/// Set the maximum number of steps we want to use in computation
void setMaxNumSteps(Size mns);
//@}
/// @name Predicates
//@{
/// Equality operator
bool operator == (const RombergIntegrator& romint) const;
//@}
/// @name Accessors
//@{
/** Integrate the function numerically.
@param from lower limit of the integration
@param to upper limit of the integration
@return the value of the integral
*/
DataType integrate(DataType from, DataType to);
/** Integrate the function numerically using a simple trapezoid integration.
This function is intended as a helper function for the computation of
the romberg integration, but it can be used as a regular integrator as
well, if speed is more important than reliability.
@param h gives the width of each step
@param from lower limit of the integration
@param to upper limit of the integration
@return the value of the integral
*/
DataType trapezoid(DataType h, DataType from, DataType to);
//@}
protected:
float epsilon_;
Size maxNumSteps_;
vector<DataType> result_;
};
template<typename Function, typename DataType>
BALL_INLINE
RombergIntegrator<Function, DataType>::RombergIntegrator(float eps, Size nsteps): NumericalIntegrator<Function, DataType>(), epsilon_(eps), maxNumSteps_(nsteps)
{
result_.reserve(maxNumSteps_ / 10);
}
template<typename Function, typename DataType>
BALL_INLINE
RombergIntegrator<Function, DataType>::RombergIntegrator(const RombergIntegrator<Function, DataType>& romint):NumericalIntegrator<Function, DataType>(romint)
{
}
template<typename Function, typename DataType>
BALL_INLINE
RombergIntegrator<Function, DataType>::~RombergIntegrator()
{
}
template<typename Function, typename DataType>
BALL_INLINE
const RombergIntegrator<Function, DataType>&
RombergIntegrator<Function, DataType>::operator =
(const RombergIntegrator<Function, DataType>& romint)
{
function_ = romint.function_;
maxNumSteps_ = romint.maxNumSteps_;
epsilon_ = romint.epsilon_;
result_ = romint.result_;
return *this;
}
template<typename Function, typename DataType>
BALL_INLINE
void RombergIntegrator<Function, DataType>::clear()
{
// Problem: function_.clear() might not exist... function_.clear();
}
template<typename Function, typename DataType>
BALL_INLINE
void RombergIntegrator<Function, DataType>::setEpsilon(float eps)
{
epsilon_ = eps;
}
template<typename Function, typename DataType>
BALL_INLINE
void RombergIntegrator<Function, DataType>::setMaxNumSteps(Size nsteps)
{
maxNumSteps_ = nsteps;
result_.reserve(maxNumSteps_ / 10); // we hope that we do not need more than 1/10 - th of the allowed operations
}
template<typename Function, typename DataType>
BALL_INLINE
bool RombergIntegrator<Function, DataType>::operator ==
(const RombergIntegrator<Function, DataType> &romint) const
{
return ((function_ == romint.function_)
&& (epsilon_ == romint.epsilon_ )
&& (maxNumSteps_ == romint.maxNumSteps_)
&& (result_ == romint.result_ ));
}
template<typename Function, typename DataType>
BALL_INLINE
DataType RombergIntegrator<Function, DataType>::trapezoid(DataType h, DataType from, DataType to)
{
DataType sum=0;
DataType helper = (to - from);
int count;
Size nsteps = (Size) (sqrt((helper*helper)/(h*h)));
for (count=1; count<nsteps-1; count++)
{
sum +=function_(from+(count*h));
}
sum+=function_(from)+function_(to);
sum*=h;
return sum;
}
template<typename Function, typename DataType>
BALL_INLINE
DataType RombergIntegrator<Function, DataType>::integrate
(DataType from, DataType to)
{
float h = 1.;
result_.push_back(trapezoid(h, from, to)); // this is the zeroth approximation
int i=1;
int j=0;
int count = 0;
DataType dev;
do
{
result_.push_back(trapezoid(h/((float) i+1), from, to));
for (j=1; j <= i; j++)
{
result_.push_back(result_[(i*(i+1))/2 + (j-1)] + 1. / (pow(4, j) - 1) * (result_[(i*(i+1))/2 + j-1 - result_[((i-1)*i)/2+j-1]));
count++;
};
i++;
dev = result_[((i-2)*(i-1))/2+(i-2)] - result_[((i-1)*(i))/2+(i-1)];
} while ( (sqrt(dev*dev) > epsilon_) && (count < maxNumSteps_));
return (result_[((i-1)*(i))/2 + (i-1)]);
}
} // namespace BALL
#endif // BALL_MATHS_ROMBERGINTEGRATOR_H
|