This file is indexed.

/usr/include/BALL/MATHS/vector2.h is in libball1.4-dev 1.4.3~beta1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//

#ifndef BALL_MATHS_VECTOR2_H
#define BALL_MATHS_VECTOR2_H

#ifndef BALL_CONCEPT_PERSISTENCEMANAGER_H
#	include <BALL/CONCEPT/persistenceManager.h>
#endif

#ifndef BALL_COMMON_EXCEPTION_H
#	include <BALL/COMMON/exception.h>
#endif

#ifndef BALL_MATHS_COMMON_H
#	include <BALL/MATHS/common.h>
#endif


namespace BALL 
{

	/**	\defgroup Vector2 Two-dimensional vectors.
			Representation of points and vectors in two-dimensional space:
			class  \link TVector2 TVector2 \endlink  and class  \link Vector2 Vector2 \endlink .

	\ingroup Primitives
	*/
	//@{

	template <typename T>
	class TVector2;

	/**	@name	Global binary operator functions for two dimensional vectors.
	*/
	//@{

	/** Multiply a vector with a scalar. The symmetric case is a member of the
			vector class.
	*/
	template <typename T>
	BALL_INLINE 
	TVector2<T> operator * (const T& scalar, const TVector2<T>& vector);

	/** Input stream.
	*/
	template <typename T>
	std::istream& operator >> (std::istream& s, TVector2<T>& vector);

	/* Output stream.
	*/
	template <typename T>
	std::ostream& operator << (std::ostream& s, const TVector2<T>& vector);
	
	//@}

	/** Generic Two-Dimensional Vector.
	*/
	template <typename T>
	class TVector2
		: public PersistentObject
	{
		public:

		BALL_CREATE(TVector2<T>)

		/**	@name	Constructors and Destructors
		*/
		//@{

		/**	Default constructor.
				This method creates a new TVector2 object. The two components
				are initialized to <tt>(T)0</tt>.
		*/
		TVector2();

		/**	Scalar constructor.
				Create a new vector with all components set
				to the same <tt>value</tt>.
				@param	value the value of all components
		*/
		explicit TVector2(const T& value);

		/**	Detailed constructor.
				Create a new TVector2 object from two variables of type <tt>T</tt>.
				@param	vx assigned to <tt>x</tt>
				@param	vy assigned to <tt>y</tt>
		*/
		TVector2(const T& vx, const T& vy);

		/**	Copy constructor.
				Create a new TVector2 object from another.
				@param vector the TVector2 object to be copied
		*/	
		TVector2(const TVector2& vector);

		/**	Array constructor.
				This constructor creates a TVector3 object from the first
				two elements pointed to by <tt>ptr</tt>.
				@param ptr the array to construct from
				@exception NullPointer if <tt>ptr == 0</tt>
		*/
		TVector2(const T* ptr);


		/**	Destructor.	
				Destructs the TVector2 object. As there are no dynamic
				data structures, nothing happens.
		*/	
		virtual ~TVector2();

		/** Clear method
				The values are set to 0.
		*/
		virtual void clear();

		//@}

		/**	@name Persistence 
		*/
		//@{

		/**	Persistent writing.
				Writes a TVector2 object to a persistent stream.
				@param pm the persistence manager
		*/
		virtual void persistentWrite(PersistenceManager& pm,
				const char* name = 0) const;

		/**	Persistent reading.
				Reads a TVector2 object from a persistent stream.
				@param pm the persistence manager
				@exception Exception::GeneralException
		*/
		virtual void persistentRead(PersistenceManager& pm);

		//@}

		/**	@name	Assignment 
		*/
		//@{

		/**	Assign from a scalar.
				Assign <tt>value</tt> to the two vector components.
				@param	value the new value of the components
		*/
		void set(const T& value);

		/**	Assign the vector components.
				@param vx the new x component
				@param vy the new y component
		*/
		void set(const T& vx, const T& vy);

		/**	Assign from another TVector2.
				@param vector	the TVector2 object to assign from
		*/
		void set(const TVector2& vector);

		/**	Assignment operator.
				Assign the vector components from another vector.
				@param v the vector to assign from
		**/
		TVector2& operator = (const TVector2& v);

		/** Assignment operator.
				Assign a constant value to the two vector components.
				@param value the constant to assign to x, y
		**/
		TVector2& operator = (const T& value);

		/**	Array assignment operator.
				Assigns the first two elements of an array to the vector components.
				@param	ptr the array
				@exception	NullPointer if <tt>ptr == 0</tt>
		*/
		TVector2& operator = (const T* ptr);

		/**	Return the length of the vector.
				The length of the vector is calculated as
				\f$\sqrt{x^2 + y^2}\f$.
				@return T, the vector length
		*/	
		T getLength() const;

		/**	Return the squared length of the vector.
				This method avoids the square root needed in getLength,
				so this method is preferred if possible.
				@return T, \f$x^2 + y^2\f$
		*/
		T getSquareLength() const;

		/**	Normalize the vector.
				The vector is scaled with its length:
				\f$\{x|y|z\} *= \sqrt{x^2 + y^2}\f$.
				@return T, a reference to the normalized vector
				@exception DivisionByZero if the length of the vector is 0
		*/
		TVector2& normalize();

		/**	Negate the vector.
				Negate the two components of the vector
				@return T, a reference to {\em *this} vector
		*/
		TVector2& negate();

		/**	Return a vector with all components 0.
		*/
		static const TVector2& getZero();

		/**	Return a vector with all components 1.
				@return: TVector4(1, 1, 1, 1)
		*/
		static const TVector2& getUnit();

		/**	Mutable array-like access to the components.
				@exception Exception::IndexOverflow if <tt>index > 1</tt>
		*/
		T& operator [] (Position position);

		/**	Constant array-like access to the components.
				@exception Exception::IndexOverflow if <tt>index > 1</tt>
		*/
		const T& operator [] (Position position) const;

		//@}
		/**	@name	Arithmetic operators
		*/
		//@{

		/**	Positive sign.
		*/
		const TVector2& operator + () const;

		/**	Negative sign.
		*/
		TVector2 operator - () const;

		/** Addition.
		*/
		TVector2 operator + (const TVector2& b) const;

		/** Subtraction.
		*/
		TVector2 operator - (const TVector2& b) const;

		/**	Add a vector to this vector.
				Add the components of <tt>vector</tt> to this vector.
				@param vector the vector to add
				@return TVector2&, {\em *this}
		*/
		TVector2& operator += (const TVector2& vector);

		/**	Subtract a vector from this vector.
				@param vector the vector to subtract
				@return TVector2&, {\em *this}
		*/
		TVector2& operator -= (const TVector2& vector);

		/**	Scalar product.
				Return <tt>TVector2(x * scalar, y * scalar)</tt>.
				The symmetric case is a global function.
				@param scalar, the scalar to multiply by
				@return TVector2, the scalar product of this vector and <tt>scalar</tt>
		*/
		TVector2 operator * (const T& scalar) const;

		/**	Multiply by a scalar.
				Multiply all components of the vector by a <tt>scalar</tt> value.
				@param scalar the to multiply by
				@return TVector2&, {\em *this}
		*/
		TVector2& operator *= (const T& scalar);

		/**	Fraction of a vector.
				Return <tt>TVector2(x / lambda, y / lambda)</tt>.
				@param lambda the scalar value to divide by
				@return TVector2& 
				@exception Exception::DivisionByZero if <tt>lambda == (T)0</tt>
		*/
		TVector2 operator / (const T& lambda) const;

		/**	Divide a vector by a scalar.
				@param lambda the scalar value to divide by
				@return TVector2&, {\em *this}
				@exception Exception::DivisionByZero if <tt>lambda == (T)0</tt>
		*/
		TVector2& operator /= (const T& lambda);

		/** Dot product.
				Return the dot product of this vector and <tt>vector</tt>.
		*/
		T operator * (const TVector2& vector) const;

		//@}

		/**	@name	Geometric properties
		*/
		//@{

		/**	Return the distance to another vector.
		*/
		T getDistance(const TVector2& vector) const;

		/**	Return the squared distance to another vector.
		*/
		T getSquareDistance(const TVector2& vector) const;

		//@}
	
		/**	@name	Predicates
		*/
		//@{

		/**	Equality operator.
				The function Maths::isEqual is used to compare the values. 
				 \link Maths::isEqual Maths::isEqual \endlink 
				@return bool, <b>true</b> if all two vector components are equal, <b>false</b> otherwise
		*/
		bool operator == (const TVector2& vector) const;
	
		/**	Inequality operator.
				The function Maths::isEqual is used to compare the values. 
				 \link Maths::isEqual Maths::isEqual \endlink 
				@return bool, <b>true</b> if the two vectors differ in at least one component, <b>false</b> otherwise
		*/
		bool operator != (const TVector2& vector) const;

		/**	Zero predicate.
				The function Maths::isZero is used to compare the values with zero. 
				 \link Maths::isZero Maths::isZero \endlink 
		*/
		bool isZero() const;

		/**	Orthogonality predicate.
		*/
		bool isOrthogonalTo(TVector2& vector) const;

		//@}


		/**	@name	Debugging and Diagnostics
		*/
		//@{

		/** Internal state dump.
				Dump the current internal state of {\em *this} to 
				the output ostream <b>  s </b> with dumping depth <b>  depth </b>.
				@param   s - output stream where to output the internal state of {\em *this}
				@param   depth - the dumping depth
		*/
		void dump(std::ostream& s = std::cout, Size depth = 0) const;

		/**	Test if instance is valid.
				Always returns true.
				@return bool <b>true</b>
		*/
		bool isValid() const;

		//@}


		/**	@name	Vector components
				For easier access, the two components of the vector
				are public members.
		*/
		//@{
	
		/**	x component of the vector
		*/
		T x;

		/**	y component of the vector
		*/
		T y;

		//@}

		private:

	};
	//@}
	
	template <typename T>
	TVector2<T>::TVector2()
		:	PersistentObject(),
			x(0),
			y(0)
	{
	}

	template <typename T>
	TVector2<T>::TVector2(const T& value)
		:	PersistentObject(),	
			x(value),
			y(value)
	{
	}

	template <typename T>
	TVector2<T>::TVector2(const T& vx, const T& vy)
		:	PersistentObject(),
			x(vx),
			y(vy)
	{
	}

	template <typename T>
	TVector2<T>::TVector2(const TVector2& vector)
		:	PersistentObject(),
			x(vector.x),
			y(vector.y)
	{
	}

	template <typename T>
	TVector2<T>::~TVector2()
	{
	}

	template <typename T>
	BALL_INLINE
	TVector2<T>::TVector2(const T* ptr)
	{
		if (ptr == 0) 
		{
			throw Exception::NullPointer(__FILE__, __LINE__);
		}

		x = *ptr++;
		y = *ptr;
	}

	template <typename T>
	void TVector2<T>::clear()
	{
		x = y = (T)0;
	}

	template <typename T>
  void TVector2<T>::persistentWrite(PersistenceManager& pm, const char* name) const
	{
		pm.writeObjectHeader(this, name);
			pm.writePrimitive(x, "x");
			pm.writePrimitive(y, "y");
		pm.writeObjectTrailer(name);
	}

	template <typename T>
	void TVector2<T>::persistentRead(PersistenceManager& pm)
	{
		pm.readPrimitive(x, "x");
		pm.readPrimitive(y, "y");
	}
 
	template <typename T>
	BALL_INLINE 
	void TVector2<T>::set(const T& value)
	{
		x = value;
		y = value;
	}

	template <typename T>
	BALL_INLINE 
	void TVector2<T>::set(const T& vx, const T& vy)
	{
		x = vx;
		y = vy;
	}

	template <typename T>
	BALL_INLINE 
	void TVector2<T>::set(const TVector2<T>& vector)
	{
		x = vector.x;
		y = vector.y;
	}

	template <typename T>
	BALL_INLINE 
	TVector2<T>& TVector2<T>::operator = (const TVector2<T>& vector)
	{
		x = vector.x;
		y = vector.y;

		return *this;
	}

	template <typename T>
	BALL_INLINE 
	TVector2<T>& TVector2<T>::operator = (const T* ptr)
	{
		if (ptr == 0)
		{
			throw Exception::NullPointer(__FILE__, __LINE__);
		}
		x = *ptr++;;
		y = *ptr;;

		return *this;
	}

	template <typename T>
	BALL_INLINE
	TVector2<T>& TVector2<T>::operator = (const T& value)
	{
		x = value;
		y = value;

		return *this;
	}

	template <typename T>
	BALL_INLINE 
	T TVector2<T>::getLength() const
	{
		return (T)sqrt(x * x + y * y);
	}

	template <typename T>
	BALL_INLINE 
	T TVector2<T>::getSquareLength() const
	{
		return (T)(x * x + y * y);
	}

	template <typename T>
	TVector2<T>& TVector2<T>::normalize()
	{
		T len = (T)sqrt(x * x + y * y);

		if (Maths::isZero(len)) 
		{
			throw Exception::DivisionByZero(__FILE__, __LINE__);
		}
		
		x /= len;
		y /= len;

		return *this;
	}

	template <typename T>
	TVector2<T>& TVector2<T>::negate()
	{
		x *= -1;
		y *= -1;
		return *this;
	}

	template <typename T>
	BALL_INLINE 
	const TVector2<T>& TVector2<T>::getZero()
	{
		static TVector2<T> null_vector(0, 0);
		return null_vector;
	}

	template <typename T>
	BALL_INLINE 
	const TVector2<T>& TVector2<T>::getUnit()
	{
		static TVector2<T> unit_vector(1, 1);
		return unit_vector;
	}

	template <typename T>
	BALL_INLINE 
	T& TVector2<T>::operator [] (Position position)
	{
		if (position > 1)
		{
			throw Exception::IndexOverflow(__FILE__, __LINE__);
		}
		switch (position) 
		{
			case 0: return x;
			case 1:
			default:
				return y;
		}
	}

	template <typename T>
	BALL_INLINE 
	const T& TVector2<T>::operator [] (Position position) const
	{
		if (position > 1)
		{
			throw Exception::IndexOverflow(__FILE__, __LINE__);
		}
		switch (position) 
		{
			case 0: return x;
			case 1:
			default:
				return y;
		}
	}

	template <typename T>
	BALL_INLINE
	const TVector2<T>& TVector2<T>::operator + () const	
	{
		return *this;
	}

	template <typename T>
	BALL_INLINE
	TVector2<T> TVector2<T>::operator - () const	
	{
		return TVector2<T>(-x, -y);
	}

	template <typename T>
	BALL_INLINE 
	TVector2<T> TVector2<T>::operator + (const TVector2<T>& b) const
	{
		return TVector2<T>(x + b.x, y + b.y);
	}
	
	template <typename T>
	BALL_INLINE
	TVector2<T> TVector2<T>::operator - (const TVector2<T>& b) const
	{
		return TVector2<T>(x - b.x, y - b.y);
	}

	template <typename T>
	BALL_INLINE 
	TVector2<T>& TVector2<T>::operator += (const TVector2<T>& vector)
	{
		x += vector.x;
		y += vector.y;

		return *this;
	}

	template <typename T>
	BALL_INLINE 
	TVector2<T>& TVector2<T>::operator -= (const TVector2<T>& vector)
	{
		x -= vector.x;
		y -= vector.y;

		return *this;
	}

	template <typename T>
	BALL_INLINE 
	TVector2<T> TVector2<T>::operator * (const T& scalar) const 
	{
		return TVector2<T>(x * scalar, y * scalar);
	}

	template <typename T>
	BALL_INLINE 
	TVector2<T>& TVector2<T>::operator *= (const T &scalar)
	{
		x *= scalar;
		y *= scalar;

		return *this;
	}

	template <typename T>
	TVector2<T> TVector2<T>::operator / (const T& lambda) const
	{
		if (lambda == (T)0)
		{
			throw Exception::DivisionByZero(__FILE__, __LINE__);
		}
		return TVector2<T>(x / lambda, y / lambda);
	}

	template <typename T>
	TVector2<T>& TVector2<T>::operator /= (const T& lambda)
	{
		if (lambda == (T)0)
		{
			throw Exception::DivisionByZero(__FILE__, __LINE__);		
		}
		x /= lambda;
		y /= lambda;

		return *this;
	}

	template <typename T>
	BALL_INLINE 
	T TVector2<T>::operator * (const TVector2<T>& vector) const
	{
		return (x * vector.x + y * vector.y);
	}

	template <typename T>
	BALL_INLINE 
	T TVector2<T>::getDistance(const TVector2<T>& v) const
	{
		T dx = x - v.x;
		T dy = y - v.y;
		
		return (T)sqrt(dx * dx + dy * dy); 
	}

	template <typename T>
	BALL_INLINE 
	T TVector2<T>::getSquareDistance(const TVector2<T>& v) const
	{
		T dx = x - v.x;
		T dy = y - v.y;
		
		return (dx * dx + dy * dy); 
	}

	template <typename T>
	BALL_INLINE 
	bool TVector2<T>::operator == (const TVector2<T>& v) const
	{
		return (Maths::isEqual(x, v.x) && Maths::isEqual(y, v.y));
	}

	template <typename T>
	BALL_INLINE 
	bool TVector2<T>::operator != (const TVector2<T>& v) const
	{
		return (Maths::isNotEqual(x, v.x) || Maths::isNotEqual(y, v.y));
	}

	template <typename T>
	BALL_INLINE 
	bool TVector2<T>::isOrthogonalTo(TVector2<T>& v) const
	{
		return Maths::isZero((*this) * v);
	}

	template <typename T>
	BALL_INLINE 
	bool TVector2<T>::isValid() const
	{
		return true;
	}

	template <typename T>
	BALL_INLINE 
	bool TVector2<T>::isZero() const
	{
		return (Maths::isZero(x) && Maths::isZero(y));
	}

	template <typename T>
	void TVector2<T>::dump(std::ostream& s, Size depth) const
	{
		BALL_DUMP_STREAM_PREFIX(s);

		BALL_DUMP_HEADER(s, this, this);

		BALL_DUMP_DEPTH(s, depth);
		s << "  (x =  " << x << ", y = " << y << ")" << std::endl;

		BALL_DUMP_STREAM_SUFFIX(s);
	}

	/**	Default two-dimensional vector class.
			This is the class used in BALL kernel to represent points, coordinates.
	 
			\ingroup Vector2
	*/
	typedef TVector2<float> Vector2;

	template <typename T>
	BALL_INLINE 
	TVector2<T> operator * (const T& scalar, const TVector2<T>& vector)
	{
		return TVector2<T>(scalar * vector.x, scalar * vector.y);
	}

	template <typename T>
	std::istream& operator >> (std::istream& s, TVector2<T>& v)
	{
		char c;
		s >> c >> v.x >> v.y >> c;

		return s;
	}

	template <typename T>
	std::ostream& operator << (std::ostream& s, const TVector2<T>& v)
	{
		s << "(" << v.x << ' ' << v.y << ')';

		return s;
	}

}// namespace BALL

#endif // BALL_MATHS_VECTOR2_H