/usr/include/BALL/MATHS/vector3.h is in libball1.4-dev 1.4.3~beta1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 | // -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
#ifndef BALL_MATHS_VECTOR3_H
#define BALL_MATHS_VECTOR3_H
#ifndef BALL_COMMON_EXCEPTION_H
# include <BALL/COMMON/exception.h>
#endif
#ifndef BALL_CONCEPT_PERSISTENCEMANAGER_H
# include <BALL/CONCEPT/persistenceManager.h>
#endif
#ifndef BALL_MATHS_ANGLE_H
# include <BALL/MATHS/angle.h>
#endif
#ifndef BALL_MATHS_COMMON_H
# include <BALL/MATHS/common.h>
#endif
#ifdef BALL_HAS_IEEEFP_H
# include <ieeefp.h>
#endif
namespace BALL
{
/** \defgroup Vector3 Three-dimensional vector.
Representation of points and vectors in three-dimensional space: class \link TVector3 TVector3 \endlink and class \link Vector3 Vector3 \endlink
\ingroup Primitives
*/
//@{
template <typename T>
class TVector3;
/** @name Global binary operators for three-dimensional vectors.
*/
//@{
/** Multiply a vector with a scalar. The symmetric case is a member of the
vector class.
*/
template <typename T>
BALL_INLINE
TVector3<T> operator * (const T& a, const TVector3<T>& b);
/** Input operator.
Reads the values of <tt>three</tt> vector components of type <b> T </b>
from an istream. The components are read in the order of x, y, z.
*/
template <typename T>
std::istream& operator >> (std::istream& s, TVector3<T>& vector);
/** Output operator.
Writes the values of <tt>three</tt> vector components of type <b> T </b>
to an ostream. The components are writen in the order of x, y, z.
*/
template <typename T>
std::ostream& operator << (std::ostream& s, const TVector3<T>& vector);
//@}
/** Generic Three-Dimensional Vector.
*/
template <typename T>
class TVector3
{
public:
/** @name Constructors and Destructors
*/
//@{
/** Default constructor.
This method creates a new TVector3 object. The three components
are initialized to <tt>(T)0</tt>.
*/
TVector3();
/** Array constructor.
This constructor creates a TVector3 object from the first
three elements pointed to by <tt>ptr</tt>.
@param ptr the array to construct from
@exception NullPointer if <tt>ptr == 0</tt>
*/
explicit TVector3(const T* ptr);
/** Scalar constructor.
Create a new vector with all components set
to the same <tt>value</tt>.
@param value the value of all components
*/
explicit TVector3(const T& value);
/**
* Explicit type conversion constructor between a vector of type T and T2
*/
template<typename T2>
explicit TVector3(const TVector3<T2>& vec);
/** Detailed constructor.
Create a new TVector3 object from three variables of type <tt>T</tt>.
@param vx assigned to <tt>x</tt>
@param vy assigned to <tt>y</tt>
@param vz assigned to <tt>z</tt>
*/
TVector3(const T& vx, const T& vy, const T& vz);
/** Copy constructor.
Create a new TVector3 object from another.
@param vector the TVector3 object to be copied
*/
TVector3(const TVector3& vector);
/** Spherical polar coordinate constructor.
Create a TVector3 object and set its coordinates to
the point described by the three spherical polar coordinates
<tt>r</tt> (radius), <tt>phi</tt> (azimuth), and <tt>theta</tt> (co-latitude).
@see set(const T& r, const TAngle<T>& phi, const TAngle<T>& theta)
@param r the radius
@param phi the azimuth
@param theta the co-latitude
*/
TVector3(const T& r, const TAngle<T>& phi, const TAngle<T>& theta);
/** Destructor.
Destructs the TVector3 object. As there are no dynamic
data structures, nothing happens.
*/
~TVector3();
/** Clear method
The values are set to 0.
*/
void clear();
//@}
/** @name Assignment
*/
//@{
/** Assign from an array.
Assign the three components <tt>x</tt>, <tt>y</tt>, and <tt>z</tt> from
the first three elements of the array pointed to by <tt>ptr</tt>.
@param ptr an array
@exception Nullpointer if <tt>ptr == 0</tt>
*/
void set(const T* ptr);
/** Assign from a scalar.
Assign <tt>value</tt> to the three vector components.
@param value the new value of the components
*/
void set(const T& value);
/** Assign the vector components.
@param vx the new x component
@param vy the new y component
@param vz the new z component
*/
void set(const T& vx, const T& vy, const T& vz);
/** Assign from another TVector3.
@param vector the TVector3 object to assign from
*/
void set(const TVector3& vector);
/** Assign from spherical polar coordinates.
The radius describes the distance of the point from the origin. \par
<tt>phi</tt> ranges from 0 to \f$2 \pi\f$, <tt>theta</tt> ranges from 0 (north pole, positive z-axis)
to \f$\pi\f$ (south pole, negative z-axis). \par
Coordinates are calculated according to the following formulae: \par
\f[ x = r \sin \theta \cos \phi \f] \par
\f[ y = r \sin \theta \sin \phi \f] \par
\f[ z = r \cos \theta \f]
@param r the radius
@param phi the azimuth
@param theta the co-latitude
*/
void set(const T& r, const TAngle<T>& phi, const TAngle<T>& theta);
/** Assignment operator.
Assign the vector components from another vector.
@param v the vector to assign from
**/
TVector3& operator = (const TVector3& v);
/** Assignment operator.
Assign a constant value to all three vector components.
@param value the constant to assign to x, y, z
**/
TVector3& operator = (T value);
/** Array assignment operator.
Assigns the first three elements of an array to the vector components.
@param ptr the array
@exception NullPointer if <tt>ptr == 0</tt>
*/
TVector3& operator = (const T* ptr);
/** Assign to an array.
Sets the first three array elements pointed to by <tt>ptr</tt>
to the values of the three vector components.
@param ptr the array
@exception NullPointer if <tt>ptr == 0</tt>
*/
void get(T* ptr) const;
/** Assign to three variables of type <tt>T</tt>.
@param x the x component
@param y the y component
@param z the z component
*/
void get(T& x, T& y, T& z) const;
/** Assign to another Vector3.
Assigns the vector components to another vector.
@param vector the vector to be assigned to
*/
void get(TVector3& vector) const;
/** Assign to polar coordinates.
Sets <tt>r</tt>, <tt>phi</tt>, and <tt>theta</tt> to the
coordinates of the vector in spherical polar coordinates.
@param r the radius (returned)
@param phi the azimuth (returned)
@param theta the co-latitude (returned)
*/
void get(T& r, TAngle<T>& phi, TAngle<T>& theta) const;
/** Swap the contents of two vectors.
@param vector the vector to swap contents with
*/
void swap(TVector3& vector);
/** Return the length of the vector.
The length of the vector is calculated as
\f$\sqrt{x^2 + y^2 + z^2}\f$.
@return T, the vector length
*/
T getLength() const;
/** Return the squared length of the vector.
This method avoids the square root needed in getLength,
so this method is preferred if possible.
@return T, \f$x^2 + y^2 + z^2\f$
*/
T getSquareLength() const;
/** Normalize the vector.
The vector is scaled with its length:
\f$\{x|y|z\} *= \sqrt{x^2 + y^2 + z^2}\f$.
@return T, a reference to the normalized vector
@exception DivisionByZero if the length of the vector is 0
*/
TVector3& normalize();
/** Negate the vector.
Negate the three components of the vector
@return T, a reference to {\em *this} vector
*/
TVector3& negate();
/** Return a vector with all components 0.
*/
static const TVector3& getZero();
/** Return a vector with all components 1.
@return: TVector4(1, 1, 1, 1)
*/
static const TVector3& getUnit();
/** Mutable array-like access to the components.
@exception Exception::IndexOverflow if <tt>index > 2</tt>
*/
T& operator [] (Position position);
/** Constant array-like access to the components.
@exception Exception::IndexOverflow if <tt>index > 2</tt>
*/
const T& operator [] (Position position) const;
//@}
/** @name Arithmetic operators
*/
//@{
/** Positive sign.
*/
const TVector3& operator + () const;
/** Negative sign.
*/
TVector3 operator - () const;
/** Addition.
*/
TVector3 operator + (const TVector3& b) const;
/** Subtraction.
*/
TVector3 operator - (const TVector3& b) const;
/** Add a vector to this vector.
Add the components of <tt>vector</tt> to this vector.
@param vector the vector to add
@return TVector3&, {\em *this}
*/
TVector3& operator += (const TVector3& vector);
/** Subtract a vector from this vector.
@param vector the vector to subtract
@return TVector3&, {\em *this}
*/
TVector3& operator -= (const TVector3& vector);
/** Scalar product.
Return <tt>TVector3(x * scalar, y * scalar, z * scalar)</tt>.
@param scalar, the scalar to multiply by
@return TVector3 the scalar product of this vector and <tt>scalar</tt>
*/
TVector3 operator * (const T& scalar) const;
/** Multiply by a scalar.
Multiply all components of the vector by a <tt>scalar</tt> value.
@param scalar the to multiply by
@return TVector3&, {\em *this}
*/
TVector3& operator *= (const T& scalar);
/** Fraction of a vector.
Return <tt>TVector3(x / lambda, y / lambda, z / lambda)</tt>.
@param lambda the scalar value to divide by
@return TVector3&
@exception Exception::DivisionByZero if <tt>lambda == (T)0</tt>
*/
TVector3 operator / (const T& lambda) const;
/** Divide a vector by a scalar.
@param lambda the scalar value to divide by
@return TVector3&, {\em *this}
@exception Exception::DivisionByZero if <tt>lambda == (T)0</tt>
*/
TVector3& operator /= (const T& lambda);
/** Dot product.
Return the dot product of this vector and <tt>vector</tt>.
*/
T operator * (const TVector3& vector) const;
/** Cross product.
Return the cross product of this vector and <tt>vector</tt>.
*/
TVector3 operator % (const TVector3& vector) const;
/** Assign to the cross product.
Assign the vector to its cross product with another vector.
*/
TVector3& operator %= (const TVector3& vector);
//@}
/** @name Geometric properties
*/
//@{
/** Return the distance to another vector.
*/
T getDistance(const TVector3& vector) const;
/** Return the squared distance to another vector.
*/
T getSquareDistance(const TVector3& vector) const;
/** Return the enclosed angle of two vectors.
@exception Exception::DivisionByZero if the product of the squared
lengths of the two vectors equals <tt>(T)0</tt>
*/
TAngle<T> getAngle(const TVector3& vector) const;
/** Return the orthogonal projection of this vector onto another.
@param direction the vector to project onto
*/
TVector3 getOrthogonalProjection(const TVector3& direction) const;
/** Return the perpendicular normalization of the vector
@param a 1st vector
@param b 2nd vector
@param c 3rd vector
@return TVector3 the perpendicular normalization
*/
static TVector3 getPerpendicularNormalization
(const TVector3& a, const TVector3& b, const TVector3& c);
/** Triple product of three vectors.
Calculate the parallelepipedal product of three vectors.
@param a first vector
@param b second vector
@param v third vector
@return T the triple product
*/
static T getTripleProduct (const TVector3<T>& a, const TVector3<T>& b, const TVector3<T>& c);
//@}
/** @name Predicates
*/
//@{
/** Equality operator.
The function Maths::isEqual is used to compare the values.
\link Maths::isEqual Maths::isEqual \endlink
@return bool, <b>true</b> if all three vector components are equal, <b>false</b> otherwise
*/
bool operator == (const TVector3& vector) const;
/** Inequality operator.
The function Maths::isEqual is used to compare the values.
\link Maths::isEqual Maths::isEqual \endlink
@return bool, <b>true</b> if the two vectors differ in at least one component, <b>false</b> otherwise
*/
bool operator != (const TVector3& vector) const;
/// Needed for MSVC
bool operator < (const TVector3& vector) const;
/** Zero predicate.
The function Maths::isZero is used to compare the values with zero.
\link Maths::isZero Maths::isZero \endlink
*/
bool isZero() const;
/** Orthogonality predicate.
*/
bool isOrthogonalTo(const TVector3& vector) const;
//@}
/** @name Storable Interface
*/
//@{
/** Persistent stream writing.
*/
void write(PersistenceManager& pm) const;
/** Persistent stream reading.
*/
bool read(PersistenceManager& pm);
//@}
/** @name Debugging and Diagnostics
*/
//@{
/** Internal state dump.
Dump the current internal state of {\em *this} to
the output ostream <b> s </b> with dumping depth <b> depth </b>.
@param s - output stream where to output the internal state of {\em *this}
@param depth - the dumping depth
*/
void dump(std::ostream& s = std::cout, Size depth = 0) const;
/** Test if instance is valid.
Always returns true.
@return bool <b>true</b>
*/
bool isValid() const;
//@}
/** @name Vector components
For easier access, the three components of the vector
are public members.
*/
//@{
/** x component of the vector
*/
T x;
/** y component of the vector
*/
T y;
/** z component of the vector
*/
T z;
//@}
private:
TAngle<T> getAngle_(const T& a, const T& b) const
{
TAngle<T> angle;
if (Maths::isNotZero(a))
{
angle = atan(b / a);
}
else
{
angle = BALL_SGN(b) * Constants::PI / 2;
}
if (Maths::isLess(a, 0))
{
angle += Constants::PI;
}
if (Maths::isLess(angle.value, 0))
{
return (Angle)(angle.value += 2.0 * Constants::PI);
}
else
{
return angle;
}
}
};
//@}
template <typename T>
BALL_INLINE
TVector3<T>::TVector3()
: x(0),
y(0),
z(0)
{
}
template <typename T>
BALL_INLINE
TVector3<T>::TVector3(const T* ptr)
{
if (ptr == 0)
{
throw Exception::NullPointer(__FILE__, __LINE__);
}
x = *ptr++;
y = *ptr++;
z = *ptr;
}
template <typename T>
BALL_INLINE
TVector3<T>::TVector3(const T& value)
: x(value),
y(value),
z(value)
{
}
template <typename T> template <typename T2>
BALL_INLINE
TVector3<T>::TVector3(const TVector3<T2>& vec)
: x((T)vec.x),
y((T)vec.y),
z((T)vec.z)
{
}
template <typename T>
BALL_INLINE
TVector3<T>::TVector3(const T& vx, const T& vy, const T& vz)
: x(vx),
y(vy),
z(vz)
{
}
template <typename T>
BALL_INLINE
TVector3<T>::TVector3(const TVector3& vector)
: x(vector.x),
y(vector.y),
z(vector.z)
{
}
template <typename T>
BALL_INLINE
TVector3<T>::TVector3(const T& r, const TAngle<T>& phi, const TAngle<T>& theta)
: x(r * cos(phi) * sin(theta)),
y(r * sin(phi) * sin(theta)),
z(r * cos(theta))
{
}
template <typename T>
BALL_INLINE
TVector3<T>::~TVector3()
{
}
template <typename T>
BALL_INLINE
void TVector3<T>::clear()
{
x = y = z = (T)0;
}
template <typename T>
BALL_INLINE
void TVector3<T>::set(const T* ptr)
{
if (ptr == 0)
throw Exception::NullPointer(__FILE__, __LINE__);
x = *ptr++;
y = *ptr++;
z = *ptr;
}
template <typename T>
BALL_INLINE
void TVector3<T>::set(const T& value)
{
x = value;
y = value;
z = value;
}
template <typename T>
BALL_INLINE
void TVector3<T>::set(const T& vx, const T& vy, const T& vz)
{
x = vx;
y = vy;
z = vz;
}
template <typename T>
BALL_INLINE
void TVector3<T>::set(const TVector3<T>& vector)
{
x = vector.x;
y = vector.y;
z = vector.z;
}
template <typename T>
BALL_INLINE
void TVector3<T>::set(const T& r, const TAngle<T> &phi, const TAngle<T> &theta)
{
x = r * cos(phi) * sin(theta);
y = r * sin(phi) * sin(theta);
z = r * cos(theta);
}
template <typename T>
BALL_INLINE
TVector3<T>& TVector3<T>::operator = (const T* ptr)
{
if (ptr == 0)
{
throw Exception::NullPointer(__FILE__, __LINE__);
}
x = *ptr++;
y = *ptr++;
z = *ptr;
return *this;
}
template <typename T>
BALL_INLINE
TVector3<T>& TVector3<T>::operator = (const TVector3<T>& vector)
{
x = vector.x;
y = vector.y;
z = vector.z;
return *this;
}
template <typename T>
BALL_INLINE
TVector3<T>& TVector3<T>::operator = (T value)
{
x = y = z = value;
return *this;
}
template <typename T>
BALL_INLINE
void TVector3<T>::get(T* ptr) const
{
if (ptr == 0)
{
throw Exception::NullPointer(__FILE__, __LINE__);
}
*ptr++ = x;
*ptr++ = y;
*ptr = z;
}
template <typename T>
BALL_INLINE
void TVector3<T>::get(T& new_x, T& new_y, T& new_z) const
{
new_x = x;
new_y = y;
new_z = z;
}
template <typename T>
BALL_INLINE
void TVector3<T>::get(TVector3<T>& vector) const
{
vector.x = x;
vector.y = y;
vector.z = z;
}
template <typename T>
BALL_INLINE
void TVector3<T>::get(T& r, TAngle<T>& phi, TAngle<T>& theta) const
{
r = sqrt(x * x + y * y + z * z);
phi = (Angle)getAngle_(x, y);
theta = getAngle_(z, sqrt(x * x + y * y));
}
template <typename T>
BALL_INLINE
void TVector3<T>::swap(TVector3<T>& vector)
{
T temp = x;
x = vector.x;
vector.x = temp;
temp = y;
y = vector.y;
vector.y = temp;
temp = z;
z = vector.z;
vector.z = temp;
}
template <typename T>
BALL_INLINE
T TVector3<T>::getLength() const
{
return (T)sqrt(x * x + y * y + z * z);
}
template <typename T>
BALL_INLINE
T TVector3<T>::getSquareLength() const
{
return (x * x + y * y + z * z);
}
template <typename T>
TVector3<T>& TVector3<T>::normalize()
{
T len = sqrt(x * x + y * y + z * z);
if (Maths::isZero(len))
{
throw Exception::DivisionByZero(__FILE__, __LINE__);
}
x /= len;
y /= len;
z /= len;
return *this;
}
template <typename T>
BALL_INLINE
TVector3<T>& TVector3<T>::negate()
{
x *= -1;
y *= -1;
z *= -1;
return *this;
}
template <typename T>
BALL_INLINE
const TVector3<T>& TVector3<T>::getZero()
{
static TVector3<T> null_vector(0, 0, 0);
return null_vector;
}
template <typename T>
BALL_INLINE
const TVector3<T>& TVector3<T>::getUnit()
{
static TVector3<T> unit_vector(1, 1, 1);
return unit_vector;
}
template <typename T>
BALL_INLINE
T& TVector3<T>::operator [] (Position position)
{
if (position > 2)
{
throw Exception::IndexOverflow(__FILE__, __LINE__, position);
}
switch (position)
{
case 0: return x;
case 1: return y;
case 2:
default:
return z;
}
}
template <typename T>
BALL_INLINE
const T& TVector3<T>::operator [] (Position position) const
{
if (position > 2)
{
throw Exception::IndexOverflow(__FILE__, __LINE__);
}
switch (position)
{
case 0: return x;
case 1: return y;
case 2:
default:
return z;
}
}
template <typename T>
BALL_INLINE
const TVector3<T>& TVector3<T>::operator + () const
{
return *this;
}
template <typename T>
BALL_INLINE
TVector3<T> TVector3<T>::operator - () const
{
return TVector3<T>(-x, -y, -z);
}
template <typename T>
BALL_INLINE
TVector3<T>& TVector3<T>::operator += (const TVector3<T>& vector)
{
x += vector.x;
y += vector.y;
z += vector.z;
return *this;
}
template <typename T>
BALL_INLINE
TVector3<T>& TVector3<T>::operator -= (const TVector3<T>& vector)
{
x -= vector.x;
y -= vector.y;
z -= vector.z;
return *this;
}
template <typename T>
BALL_INLINE
TVector3<T> TVector3<T>::operator * (const T& scalar) const
{
return TVector3<T>(x * scalar, y * scalar, z * scalar);
}
template <typename T>
BALL_INLINE
TVector3<T>& TVector3<T>::operator *= (const T &scalar)
{
x *= scalar;
y *= scalar;
z *= scalar;
return *this;
}
template <typename T>
TVector3<T> TVector3<T>::operator / (const T& lambda) const
{
if (lambda == (T)0)
{
throw Exception::DivisionByZero(__FILE__, __LINE__);
}
return TVector3<T>(x / lambda, y / lambda, z / lambda);
}
template <typename T>
TVector3<T>& TVector3<T>::operator /= (const T& lambda)
{
if (lambda == (T)0)
{
throw Exception::DivisionByZero(__FILE__, __LINE__);
}
x /= lambda;
y /= lambda;
z /= lambda;
return *this;
}
template <typename T>
BALL_INLINE
T TVector3<T>::operator * (const TVector3<T>& vector) const
{
return (x * vector.x + y * vector.y + z * vector.z);
}
template <typename T>
TVector3<T> TVector3<T>::operator % (const TVector3<T>& v) const
{
return TVector3(y * v.z - z * v.y, z * v.x - x * v.z, x * v.y - y * v.x);
}
template <typename T>
BALL_INLINE
TVector3<T>& TVector3<T>::operator %= (const TVector3<T>& v)
{
set(y * v.z - z * v.y, z * v.x - x * v.z, x * v.y - y * v.x);
return *this;
}
template <typename T>
BALL_INLINE
T TVector3<T>::getDistance(const TVector3<T>& v) const
{
T dx = x - v.x;
T dy = y - v.y;
T dz = z - v.z;
return (T)sqrt(dx * dx + dy * dy + dz * dz);
}
template <typename T>
BALL_INLINE T
TVector3<T>::getSquareDistance(const TVector3<T>& v) const
{
T dx = x - v.x;
T dy = y - v.y;
T dz = z - v.z;
return (dx * dx + dy * dy + dz * dz);
}
template <typename T>
BALL_INLINE
TAngle<T> TVector3<T>::getAngle(const TVector3<T>& vector) const
{
T length_product = getSquareLength() * vector.getSquareLength();
if (length_product == (T)0)
{
throw Exception::DivisionByZero(__FILE__, __LINE__);
}
T acos_arg = ((*this) * vector) / sqrt(length_product);
// ensure that the argument of acos is in the correct range
// (might happen if the angle between the two vectors is
// very close to zero)
if (fabs(acos_arg) > 1.0)
{
return (TAngle<T>)0.0;
}
return (TAngle<T>)acos(acos_arg);
}
template <typename T>
BALL_INLINE
TVector3<T> TVector3<T>::getOrthogonalProjection(const TVector3<T>& direction) const
{
return ((direction * (*this)) / (direction * direction) * direction);
}
template <typename T>
TVector3<T> TVector3<T>::getPerpendicularNormalization
(const TVector3<T> &a, const TVector3<T> &b, const TVector3<T> &c)
{
TVector3 diff1(b.x - a.x, b.y - a.y, b.z - a.z);
TVector3 diff2(b.x - c.x, b.y - c.y, b.z - c.z);
return TVector3
(diff1.y * diff2.z - diff1.z * diff2.y,
diff1.z * diff2.x - diff1.x * diff2.z,
diff1.x * diff2.y - diff1.y * diff2.x);
}
template <typename T>
BALL_INLINE
T TVector3<T>::getTripleProduct
(const TVector3<T>& a,
const TVector3<T>& b,
const TVector3<T>& c)
{
return ( a.x * (b.y * c.z - b.z * c.y)
+ a.y * (b.z * c.x - b.x * c.z)
+ a.z * (b.x * c.y - b.y * c.x));
}
template <typename T>
BALL_INLINE
bool TVector3<T>::operator == (const TVector3<T>& v) const
{
return (Maths::isEqual(x, v.x) && Maths::isEqual(y, v.y) && Maths::isEqual(z, v.z));
}
template <typename T>
BALL_INLINE
bool TVector3<T>::operator < (const TVector3<T>& v) const
{
return (x < v.x || y < v.y || z < v.z);
}
template <typename T>
BALL_INLINE
bool TVector3<T>::operator != (const TVector3<T>& v) const
{
return (Maths::isNotEqual(x, v.x) || Maths::isNotEqual(y, v.y) || Maths::isNotEqual(z, v.z));
}
template <typename T>
BALL_INLINE
bool TVector3<T>::isOrthogonalTo(const TVector3<T>& v) const
{
return Maths::isZero((*this) * v);
}
template <typename T>
BALL_INLINE
bool TVector3<T>::isValid() const
{
return true;
}
template <typename T>
BALL_INLINE
bool TVector3<T>::isZero() const
{
return (Maths::isZero(x) && Maths::isZero(y) && Maths::isZero(z));
}
template <typename T>
void TVector3<T>::dump(std::ostream& s, Size depth) const
{
BALL_DUMP_STREAM_PREFIX(s);
BALL_DUMP_HEADER(s, this, this);
BALL_DUMP_DEPTH(s, depth);
s << " (x = " << x << ", y = " << y << ", z = " << z << ")" << std::endl;
BALL_DUMP_STREAM_SUFFIX(s);
}
/** Default three-dimensional vector class.
This is the class used in BALL kernel to represent points, coordinates.
*/
typedef TVector3<float> Vector3;
template <typename T>
BALL_INLINE
TVector3<T> TVector3<T>::operator + (const TVector3<T>& b) const
{
return TVector3<T>(x + b.x, y + b.y, z + b.z);
}
template <typename T>
BALL_INLINE
TVector3<T> TVector3<T>::operator - (const TVector3<T>& b) const
{
return TVector3<T>(x - b.x, y - b.y, z - b.z);
}
template <typename T>
void TVector3<T>::write(PersistenceManager& pm) const
{
pm.writePrimitive(x, "x");
pm.writePrimitive(y, "y");
pm.writePrimitive(z, "z");
}
template <typename T>
bool TVector3<T>::read(PersistenceManager& pm)
{
pm.readPrimitive(x, "x");
pm.readPrimitive(y, "y");
pm.readPrimitive(z, "z");
return true;
}
template <typename T>
BALL_INLINE
TVector3<T> operator * (const T& scalar, const TVector3<T>& vector)
{
return TVector3<T>(scalar * vector.x, scalar * vector.y, scalar * vector.z);
}
template <typename T>
std::istream& operator >> (std::istream& s, TVector3<T>& v)
{
char c;
s >> c >> v.x >> v.y >> v.z >> c;
return s;
}
template <typename T>
std::ostream& operator << (std::ostream& s, const TVector3<T>& v)
{
s << "(" << v.x << ' ' << v.y << ' ' << v.z << ')';
return s;
}
// required for visual studio
#ifdef BALL_COMPILER_MSVC
#include <vector>
#ifdef BALL_HAS_EXTERN_TEMPLATES
extern template class BALL_EXPORT std::vector<Vector3>;
#elif
template class BALL_EXPORT std::vector<Vector3>;
#endif
#endif
#ifdef BALL_HAS_EXTERN_TEMPLATES
extern template class BALL_EXPORT TVector3<float>;
#endif
}// namespace BALL
#endif // BALL_MATHS_VECTOR3_H
|