This file is indexed.

/usr/include/BALL/MATHS/vector3.h is in libball1.4-dev 1.4.3~beta1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//

#ifndef BALL_MATHS_VECTOR3_H
#define BALL_MATHS_VECTOR3_H

#ifndef BALL_COMMON_EXCEPTION_H
#	include <BALL/COMMON/exception.h>
#endif

#ifndef BALL_CONCEPT_PERSISTENCEMANAGER_H
#	include <BALL/CONCEPT/persistenceManager.h>
#endif

#ifndef BALL_MATHS_ANGLE_H
#	include <BALL/MATHS/angle.h>
#endif

#ifndef BALL_MATHS_COMMON_H
#	include <BALL/MATHS/common.h>
#endif

#ifdef BALL_HAS_IEEEFP_H
#	include <ieeefp.h>
#endif 


namespace BALL 
{
	/**	\defgroup Vector3 Three-dimensional vector.
			Representation of points and vectors in three-dimensional space: class  \link TVector3 TVector3 \endlink  and class  \link Vector3 Vector3 \endlink 
	\ingroup Primitives
	*/
	//@{

	template <typename T>
	class TVector3;

	/**	@name	Global binary operators for three-dimensional vectors.
	*/
	//@{

	/** Multiply a vector with a scalar. The symmetric case is a member of the
			vector class.
	*/
	template <typename T>
	BALL_INLINE 
	TVector3<T> operator * (const T& a, const TVector3<T>& b);

	/**	Input operator.
			Reads the values of <tt>three</tt> vector components of type <b>  T </b>
			from an istream. The components are read in the order of x, y, z.
	*/
	template <typename T>
	std::istream& operator >> (std::istream& s, TVector3<T>& vector);

	/**	Output operator.
			Writes the values of <tt>three</tt> vector components of type <b>  T </b>
			to an ostream. The components are writen in the order of x, y, z.
	*/
	template <typename T>
	std::ostream& operator << (std::ostream& s, const TVector3<T>& vector);

	//@}

	/** Generic Three-Dimensional Vector.
	*/
	template <typename T>
	class TVector3
	{
		public:

		/**	@name	Constructors and Destructors
		*/
		//@{

		/**	Default constructor.
				This method creates a new TVector3 object. The three components
				are initialized to <tt>(T)0</tt>.
		*/
		TVector3();

		/**	Array constructor.
				This constructor creates a TVector3 object from the first
				three elements pointed to by <tt>ptr</tt>.
				@param ptr the array to construct from
				@exception NullPointer if <tt>ptr == 0</tt>
		*/
		explicit TVector3(const T* ptr);

		/**	Scalar constructor.
				Create a new vector with all components set
				to the same <tt>value</tt>.
				@param	value the value of all components
		*/
		explicit TVector3(const T& value);

		/**
		 * Explicit type conversion constructor between a vector of type T and T2
		 */
		template<typename T2>
		explicit TVector3(const TVector3<T2>& vec);

		/**	Detailed constructor.
				Create a new TVector3 object from three variables of type <tt>T</tt>.
				@param	vx assigned to <tt>x</tt>
				@param	vy assigned to <tt>y</tt>
				@param	vz assigned to <tt>z</tt>
		*/
		TVector3(const T& vx, const T& vy, const T& vz);

		/**	Copy constructor.
				Create a new TVector3 object from another.
				@param vector the TVector3 object to be copied
		*/	
		TVector3(const TVector3& vector);
		
		/**	Spherical polar coordinate constructor.
				Create a TVector3 object and set its coordinates to 
				the point described by the three spherical polar coordinates
				<tt>r</tt> (radius), <tt>phi</tt> (azimuth), and <tt>theta</tt> (co-latitude).
				@see set(const T& r, const TAngle<T>& phi, const TAngle<T>& theta)
				@param r the radius
				@param phi the azimuth 
				@param theta the co-latitude
		*/
		TVector3(const T& r, const TAngle<T>& phi, const TAngle<T>& theta);

		/**	Destructor.	
				Destructs the TVector3 object. As there are no dynamic
				data structures, nothing happens.
		*/	
		~TVector3();

		/** Clear method
				The values are set to 0.
		*/
		void clear();

		//@}

		/**	@name	Assignment 
		*/
		//@{

		/**	Assign from an array.
				Assign the three components <tt>x</tt>, <tt>y</tt>, and <tt>z</tt> from
				the first three elements of the array pointed to by <tt>ptr</tt>.
				@param ptr an array
				@exception Nullpointer if <tt>ptr == 0</tt>
		*/
		void set(const T* ptr);

		/**	Assign from a scalar.
				Assign <tt>value</tt> to the three vector components.
				@param	value the new value of the components
		*/
		void set(const T& value);

		/**	Assign the vector components.
				@param vx the new x component
				@param vy the new y component
				@param vz the new z component
		*/
		void set(const T& vx, const T& vy, const T& vz);

		/**	Assign from another TVector3.
				@param vector	the TVector3 object to assign from
		*/
		void set(const TVector3& vector);

		/**	Assign from spherical polar coordinates.
				The radius describes the distance of the point from the origin. \par
				<tt>phi</tt>	ranges from 0 to \f$2 \pi\f$, <tt>theta</tt> ranges from 0 (north pole, positive z-axis)
				to \f$\pi\f$ (south pole, negative z-axis). \par
				Coordinates are calculated according to the following formulae: \par
				\f[ x  =  r \sin \theta \cos \phi \f] \par
				\f[ y  =  r \sin \theta \sin \phi \f] \par
				\f[ z  =  r \cos \theta \f] 
				@param	r the radius
				@param	phi the azimuth
				@param	theta	the co-latitude
		*/
		void set(const T& r, const TAngle<T>& phi, const TAngle<T>& theta);

		/**	Assignment operator.
				Assign the vector components from another vector.
				@param v the vector to assign from
		**/
		TVector3& operator = (const TVector3& v);

		/**	Assignment operator.
				Assign a constant value to all three vector components.
				@param value the constant to assign to x, y, z
		**/
		TVector3& operator = (T value);

		/**	Array assignment operator.
				Assigns the first three elements of an array to the vector components.
				@param	ptr the array
				@exception	NullPointer if <tt>ptr == 0</tt>
		*/
		TVector3& operator = (const T* ptr);

		/**	Assign to an array.
				Sets the first three array elements pointed to by <tt>ptr</tt> 
				to the values of the three vector components.
				@param ptr the array
				@exception	NullPointer if <tt>ptr == 0</tt>
		*/
		void get(T* ptr) const;

		/**	Assign to three variables of type <tt>T</tt>.
				@param	x the x component
				@param	y the y component
				@param	z the z component
		*/
		void get(T& x, T& y, T& z) const;

		/**	Assign to another Vector3.
				Assigns the vector components to another vector.
				@param vector	the vector to be assigned to
		*/
		void get(TVector3& vector) const;

		/**	Assign to polar coordinates.
				Sets <tt>r</tt>, <tt>phi</tt>, and <tt>theta</tt> to the
				coordinates of the vector in spherical polar coordinates.
				@param	r the radius (returned)
				@param  phi the azimuth (returned)
				@param	theta the co-latitude (returned)
		*/
		void get(T& r, TAngle<T>& phi, TAngle<T>& theta) const;

		/**	Swap the contents of two vectors.
				@param	vector the vector to swap contents with
		*/
		void swap(TVector3& vector);

		/**	Return the length of the vector.
				The length of the vector is calculated as
				\f$\sqrt{x^2 + y^2 + z^2}\f$.
				@return T, the vector length
		*/	
		T getLength() const;

		/**	Return the squared length of the vector.
				This method avoids the square root needed in getLength,
				so this method is preferred if possible.
				@return T, \f$x^2 + y^2 + z^2\f$
		*/
		T getSquareLength() const;

		/**	Normalize the vector.
				The vector is scaled with its length:
				\f$\{x|y|z\} *= \sqrt{x^2 + y^2 + z^2}\f$.
				@return T, a reference to the normalized vector
				@exception DivisionByZero if the length of the vector is 0
		*/
		TVector3& normalize();

		/**	Negate the vector.
				Negate the three components of the vector
				@return T, a reference to {\em *this} vector
		*/
		TVector3& negate();

		/**	Return a vector with all components 0.
		*/
		static const TVector3& getZero();

		/**	Return a vector with all components 1.
				@return: TVector4(1, 1, 1, 1)
		*/
		static const TVector3& getUnit();

		/**	Mutable array-like access to the components.
				@exception Exception::IndexOverflow if <tt>index > 2</tt>
		*/
		T& operator [] (Position position);

		/**	Constant array-like access to the components.
				@exception Exception::IndexOverflow if <tt>index > 2</tt>
		*/
		const T& operator [] (Position position) const;
		//@}
		
		/**	@name	Arithmetic operators
		*/
		//@{

		/**	Positive sign.
		*/
		const TVector3& operator + () const;

		/**	Negative sign.
		*/
		TVector3 operator - () const;

		/** Addition.
		*/
		TVector3 operator + (const TVector3& b) const;

		/** Subtraction.
		*/
		TVector3 operator - (const TVector3& b) const;

		/**	Add a vector to this vector.
				Add the components of <tt>vector</tt> to this vector.
				@param vector the vector to add
				@return TVector3&, {\em *this}
		*/
		TVector3& operator += (const TVector3& vector);

		/**	Subtract a vector from this vector.
				@param vector the vector to subtract
				@return TVector3&, {\em *this}
		*/
		TVector3& operator -= (const TVector3& vector);

		/**	Scalar product.
				Return <tt>TVector3(x * scalar, y * scalar, z * scalar)</tt>.
				@param scalar, the scalar to multiply by
				@return TVector3 the scalar product of this vector and <tt>scalar</tt>
		*/
		TVector3 operator * (const T& scalar) const;

		/**	Multiply by a scalar.
				Multiply all components of the vector by a <tt>scalar</tt> value.
				@param scalar the to multiply by
				@return TVector3&, {\em *this}
		*/
		TVector3& operator *= (const T& scalar);

		/**	Fraction of a vector.
				Return <tt>TVector3(x / lambda, y / lambda, z / lambda)</tt>.
				@param lambda the scalar value to divide by
				@return TVector3& 
				@exception Exception::DivisionByZero if <tt>lambda == (T)0</tt>
		*/
		TVector3 operator / (const T& lambda) const;

		/**	Divide a vector by a scalar.
				@param lambda the scalar value to divide by
				@return TVector3&, {\em *this}
				@exception Exception::DivisionByZero if <tt>lambda == (T)0</tt>
		*/
		TVector3& operator /= (const T& lambda);

		/** Dot product.
				Return the dot product of this vector and <tt>vector</tt>.
		*/
		T operator * (const TVector3& vector) const;

		/** Cross product.
				Return the cross product of this vector and <tt>vector</tt>.
		*/
		TVector3 operator % (const TVector3& vector) const;

		/**	Assign to the cross product.
				Assign the vector to its cross product with another vector.
		*/
		TVector3& operator %= (const TVector3& vector);

		//@}

		/**	@name	Geometric properties
		*/
		//@{

		/**	Return the distance to another vector.
		*/
		T getDistance(const TVector3& vector) const;

		/**	Return the squared distance to another vector.
		*/
		T getSquareDistance(const TVector3& vector) const;

		/**	Return the enclosed angle of two vectors.
				@exception Exception::DivisionByZero if the product of the squared
								lengths of the two vectors equals <tt>(T)0</tt>
		*/
		TAngle<T> getAngle(const TVector3& vector) const;

		/**	Return the orthogonal projection of this vector onto another.
				@param direction the vector to project onto
		*/
		TVector3 getOrthogonalProjection(const TVector3& direction) const;

		/**	Return the perpendicular normalization of the vector
				@param a 1st vector
				@param b 2nd vector
				@param c 3rd vector
				@return TVector3 the perpendicular normalization
		*/
		static TVector3 getPerpendicularNormalization
			(const TVector3& a, const TVector3& b, const TVector3& c);

		/**	Triple product of three vectors.
				Calculate the parallelepipedal product of three vectors.
				@param a first vector
				@param b second vector
				@param v third vector
				@return T the triple product
		*/
		static T getTripleProduct (const TVector3<T>& a, const TVector3<T>& b, const TVector3<T>& c);

		//@}
	
		/**	@name	Predicates
		*/
		//@{

		/**	Equality operator.
				The function Maths::isEqual is used to compare the values. 
				 \link Maths::isEqual Maths::isEqual \endlink 
				@return bool, <b>true</b> if all three vector components are equal, <b>false</b> otherwise
		*/
		bool operator == (const TVector3& vector) const;
	
		/**	Inequality operator.
				The function Maths::isEqual is used to compare the values. 
				 \link Maths::isEqual Maths::isEqual \endlink 
				@return bool, <b>true</b> if the two vectors differ in at least one component, <b>false</b> otherwise
		*/
		bool operator != (const TVector3& vector) const;

		/// Needed for MSVC
		bool operator < (const TVector3& vector) const;


		/**	Zero predicate.
				The function Maths::isZero is used to compare the values with zero. 
				 \link Maths::isZero Maths::isZero \endlink 
		*/
		bool isZero() const;

		/**	Orthogonality predicate.
		*/
		bool isOrthogonalTo(const TVector3& vector) const;

		//@}


    /** @name Storable Interface
    */
    //@{

    /** Persistent stream writing.
    */
    void write(PersistenceManager& pm) const;

    /** Persistent stream reading.
    */
		bool read(PersistenceManager& pm);

    //@}

		/**	@name	Debugging and Diagnostics
		*/
		//@{

		/** Internal state dump.
				Dump the current internal state of {\em *this} to 
				the output ostream <b>  s </b> with dumping depth <b>  depth </b>.
				@param   s - output stream where to output the internal state of {\em *this}
				@param   depth - the dumping depth
		*/
		void dump(std::ostream& s = std::cout, Size depth = 0) const;

		/**	Test if instance is valid.
				Always returns true.
				@return bool <b>true</b>
		*/
		bool isValid() const;

		//@}


		/**	@name	Vector components
				For easier access, the three components of the vector
				are public members.
		*/
		//@{
	
		/**	x component of the vector
		*/
		T x;

		/**	y component of the vector
		*/
		T y;

		/**	z component of the vector
		*/
		T z;
		//@}

		private:

		TAngle<T> getAngle_(const T& a, const T& b) const
		{
			TAngle<T> angle;
	
			if (Maths::isNotZero(a))
			{
				angle = atan(b / a);
			} 
			else	
			{
				angle = BALL_SGN(b) * Constants::PI / 2;
			}

			if (Maths::isLess(a, 0)) 
			{
				angle += Constants::PI;
			}

			if (Maths::isLess(angle.value, 0)) 
			{
				return (Angle)(angle.value += 2.0 * Constants::PI);
			} 
			else 
			{
				return angle;
			}
		}
	};
	//@}

	template <typename T>
	BALL_INLINE
	TVector3<T>::TVector3()
		:	x(0),
			y(0),
			z(0)
	{
	}

	template <typename T>
	BALL_INLINE
	TVector3<T>::TVector3(const T* ptr)
	{
		if (ptr == 0) 
		{
			throw Exception::NullPointer(__FILE__, __LINE__);
		}

		x = *ptr++;
		y = *ptr++;
		z = *ptr;
	}

	template <typename T>
	BALL_INLINE
	TVector3<T>::TVector3(const T& value)
		:	x(value),
			y(value),
			z(value)
	{
	}

	template <typename T> template <typename T2>
	BALL_INLINE
	TVector3<T>::TVector3(const TVector3<T2>& vec)
		: x((T)vec.x),
		  y((T)vec.y),
			z((T)vec.z)
	{
	}

	template <typename T>
	BALL_INLINE
	TVector3<T>::TVector3(const T& vx, const T& vy, const T& vz)
		:	x(vx),
			y(vy),
			z(vz)
	{
	}

	template <typename T>
	BALL_INLINE
	TVector3<T>::TVector3(const TVector3& vector)
		:	x(vector.x),
			y(vector.y),
			z(vector.z)
	{
	}

	template <typename T>
	BALL_INLINE
	TVector3<T>::TVector3(const T& r, const TAngle<T>& phi, const TAngle<T>& theta)
		:	x(r * cos(phi) * sin(theta)),
			y(r * sin(phi) * sin(theta)),
			z(r * cos(theta))
	{
	}

	template <typename T>
	BALL_INLINE
	TVector3<T>::~TVector3()
	{
	}

	template <typename T>
	BALL_INLINE
	void TVector3<T>::clear()
	{
		x = y = z = (T)0;
	}

	template <typename T>
	BALL_INLINE 
	void TVector3<T>::set(const T* ptr)
	{
		if (ptr == 0)	
			throw Exception::NullPointer(__FILE__, __LINE__);
		
		x = *ptr++;
		y = *ptr++;
		z = *ptr;
	}

	template <typename T>
	BALL_INLINE 
	void TVector3<T>::set(const T& value)
	{
		x = value;
		y = value;
		z = value;
	}

	template <typename T>
	BALL_INLINE 
	void TVector3<T>::set(const T& vx, const T& vy, const T& vz)
	{
		x = vx;
		y = vy;
		z = vz;
	}

	template <typename T>
	BALL_INLINE 
	void TVector3<T>::set(const TVector3<T>& vector)
	{
		x = vector.x;
		y = vector.y;
		z = vector.z;
	}

	template <typename T>
	BALL_INLINE
	void TVector3<T>::set(const T& r, const TAngle<T> &phi, const TAngle<T> &theta)
	{
		x = r * cos(phi) * sin(theta);
		y = r * sin(phi) * sin(theta);
		z = r * cos(theta);
	}

	template <typename T>
	BALL_INLINE
	TVector3<T>& TVector3<T>::operator = (const T* ptr)
	{
		if (ptr == 0)
		{
			throw Exception::NullPointer(__FILE__, __LINE__);
		}

		x = *ptr++;
		y = *ptr++;
		z = *ptr;

		return *this;
	}

	template <typename T>
	BALL_INLINE 
	TVector3<T>& TVector3<T>::operator = (const TVector3<T>& vector)
	{
		x = vector.x;
		y = vector.y;
		z = vector.z;

		return *this;
	}

	template <typename T>
	BALL_INLINE 
	TVector3<T>& TVector3<T>::operator = (T value)
	{
		x = y = z = value;

		return *this;
	}

	template <typename T>
	BALL_INLINE 
	void TVector3<T>::get(T* ptr) const
	{
		if (ptr == 0)
		{
			throw Exception::NullPointer(__FILE__, __LINE__);
		}

		*ptr++ = x;
		*ptr++ = y;
		*ptr   = z;
	}

	template <typename T>
	BALL_INLINE 
	void TVector3<T>::get(T& new_x, T& new_y, T& new_z) const
	{
		new_x = x;
		new_y = y;
		new_z = z;
	}

	template <typename T>
	BALL_INLINE 
	void TVector3<T>::get(TVector3<T>& vector) const
	{
		vector.x = x;
		vector.y = y;
		vector.z = z;
	}

	template <typename T>
	BALL_INLINE 
	void TVector3<T>::get(T& r, TAngle<T>& phi, TAngle<T>& theta) const
	{
		r 		= sqrt(x * x + y * y + z * z);
		phi 	= (Angle)getAngle_(x, y);
		theta = getAngle_(z, sqrt(x * x + y * y));
	}

	template <typename T>
	BALL_INLINE
	void TVector3<T>::swap(TVector3<T>& vector)
	{
		T temp = x;
		x = vector.x;
		vector.x = temp;

		temp = y;
		y = vector.y;
		vector.y = temp;

		temp = z;
		z = vector.z;
		vector.z = temp;
	}

	template <typename T>
	BALL_INLINE 
	T TVector3<T>::getLength() const
	{
		return (T)sqrt(x * x + y * y + z * z);
	}

	template <typename T>
	BALL_INLINE 
	T TVector3<T>::getSquareLength() const
	{
		return (x * x + y * y + z * z);
	}

	template <typename T>
	TVector3<T>& TVector3<T>::normalize()
	{
		T len = sqrt(x * x + y * y + z * z);

		if (Maths::isZero(len)) 
		{
			throw Exception::DivisionByZero(__FILE__, __LINE__);
		}
		
		x /= len;
		y /= len;
		z /= len;

		return *this;
	}

	template <typename T>
	BALL_INLINE
	TVector3<T>& TVector3<T>::negate()
	{
		x *= -1;
		y *= -1;
		z *= -1;
		return *this;
	}

	template <typename T>
	BALL_INLINE 
	const TVector3<T>& TVector3<T>::getZero()
	{
		static TVector3<T> null_vector(0, 0, 0);
		return null_vector;
	}

	template <typename T>
	BALL_INLINE 
	const TVector3<T>& TVector3<T>::getUnit()
	{
		static TVector3<T> unit_vector(1, 1, 1);
		return unit_vector;
	}

	template <typename T>
	BALL_INLINE 
	T& TVector3<T>::operator [] (Position position)
	{
		if (position > 2)
		{
			throw Exception::IndexOverflow(__FILE__, __LINE__, position);
		}
		switch (position) 
		{
			case 0: return x;
			case 1: return y;
			case 2:
			default:
				return z;
		}
	}

	template <typename T>
	BALL_INLINE 
	const T& TVector3<T>::operator [] (Position position) const
	{
		if (position > 2)
		{
			throw Exception::IndexOverflow(__FILE__, __LINE__);
		}
		switch (position) 
		{
			case 0: return x;
			case 1: return y;
			case 2:
			default:
				return z;
		}
	}

	template <typename T>
	BALL_INLINE
	const TVector3<T>& TVector3<T>::operator + () const	
	{
		return *this;
	}

	template <typename T>
	BALL_INLINE
	TVector3<T> TVector3<T>::operator - () const	
	{
		return TVector3<T>(-x, -y, -z);
	}

	template <typename T>
	BALL_INLINE 
	TVector3<T>& TVector3<T>::operator += (const TVector3<T>& vector)
	{
		x += vector.x;
		y += vector.y;
		z += vector.z;

		return *this;
	}

	template <typename T>
	BALL_INLINE 
	TVector3<T>& TVector3<T>::operator -= (const TVector3<T>& vector)
	{
		x -= vector.x;
		y -= vector.y;
		z -= vector.z;

		return *this;
	}

	template <typename T>
	BALL_INLINE 
	TVector3<T> TVector3<T>::operator * (const T& scalar) const 
	{
		return TVector3<T>(x * scalar, y * scalar, z * scalar);
	}

	template <typename T>
	BALL_INLINE 
	TVector3<T>& TVector3<T>::operator *= (const T &scalar)
	{
		x *= scalar;
		y *= scalar;
		z *= scalar;

		return *this;
	}

	template <typename T>
	TVector3<T> TVector3<T>::operator / (const T& lambda) const
	{
		if (lambda == (T)0)
		{
			throw Exception::DivisionByZero(__FILE__, __LINE__);
		}
		return TVector3<T>(x / lambda, y / lambda, z / lambda);
	}

	template <typename T>
	TVector3<T>& TVector3<T>::operator /= (const T& lambda)
	{
		if (lambda == (T)0)
		{
			throw Exception::DivisionByZero(__FILE__, __LINE__);		
		}
		x /= lambda;
		y /= lambda;
		z /= lambda;

		return *this;
	}

	template <typename T>
	BALL_INLINE 
	T TVector3<T>::operator * (const TVector3<T>& vector) const
	{
		return (x * vector.x + y * vector.y + z * vector.z);
	}

	template <typename T>
	TVector3<T> TVector3<T>::operator % (const TVector3<T>& v) const
	{
		return TVector3(y * v.z - z * v.y, z * v.x - x * v.z, x * v.y - y * v.x);
	}

	template <typename T>
	BALL_INLINE 
	TVector3<T>& TVector3<T>::operator %= (const TVector3<T>& v)
	{
		set(y * v.z - z * v.y, z * v.x - x * v.z, x * v.y - y * v.x);
		return *this;
	}

	template <typename T>
	BALL_INLINE 
	T TVector3<T>::getDistance(const TVector3<T>& v) const
	{
		T dx = x - v.x;
		T dy = y - v.y;
		T dz = z - v.z;
		
		return (T)sqrt(dx * dx + dy * dy + dz * dz); 
	}

	template <typename T>
	BALL_INLINE T
	TVector3<T>::getSquareDistance(const TVector3<T>& v) const
	{
		T dx = x - v.x;
		T dy = y - v.y;
		T dz = z - v.z;
		
		return (dx * dx + dy * dy + dz * dz); 
	}

	template <typename T>
	BALL_INLINE 
	TAngle<T> TVector3<T>::getAngle(const TVector3<T>& vector) const
	{
		T length_product = getSquareLength() * vector.getSquareLength();

		if (length_product == (T)0)	
		{
			throw Exception::DivisionByZero(__FILE__, __LINE__);
		}
		
		T acos_arg = ((*this) * vector) / sqrt(length_product);

		// ensure that the argument of acos is in the correct range
		// (might happen if the angle between the two vectors is
		// very close to zero)
		if (fabs(acos_arg) > 1.0)
		{	
			return (TAngle<T>)0.0;
		}
		
		return (TAngle<T>)acos(acos_arg);
	}

	template <typename T>
	BALL_INLINE 
	TVector3<T> TVector3<T>::getOrthogonalProjection(const TVector3<T>& direction) const
	{
		return ((direction * (*this)) / (direction * direction) * direction);
	}

	template <typename T>
	TVector3<T> TVector3<T>::getPerpendicularNormalization
		(const TVector3<T> &a, const TVector3<T> &b, const TVector3<T> &c)
	{
		TVector3 diff1(b.x - a.x, b.y - a.y, b.z - a.z);
		TVector3 diff2(b.x - c.x, b.y - c.y, b.z - c.z);

		return TVector3
			(diff1.y * diff2.z - diff1.z * diff2.y,
			 diff1.z * diff2.x - diff1.x * diff2.z,
			 diff1.x * diff2.y - diff1.y * diff2.x);
	}

	template <typename T>
	BALL_INLINE
	T TVector3<T>::getTripleProduct
		(const TVector3<T>& a,
		 const TVector3<T>& b,
		 const TVector3<T>& c)
	{
		return (  a.x * (b.y * c.z - b.z * c.y)
						+ a.y * (b.z * c.x - b.x * c.z)
						+ a.z * (b.x * c.y - b.y * c.x));
	}

	template <typename T>
	BALL_INLINE 
	bool TVector3<T>::operator == (const TVector3<T>& v) const
	{
		return (Maths::isEqual(x, v.x) && Maths::isEqual(y, v.y) && Maths::isEqual(z, v.z));
	}

	template <typename T>
	BALL_INLINE 
	bool TVector3<T>::operator < (const TVector3<T>& v) const
	{
		return (x < v.x || y < v.y || z < v.z);
	}


	template <typename T>
	BALL_INLINE 
	bool TVector3<T>::operator != (const TVector3<T>& v) const
	{
		return (Maths::isNotEqual(x, v.x) || Maths::isNotEqual(y, v.y) || Maths::isNotEqual(z, v.z));
	}

	template <typename T>
	BALL_INLINE 
	bool TVector3<T>::isOrthogonalTo(const TVector3<T>& v) const
	{
		return Maths::isZero((*this) * v);
	}

	template <typename T>
	BALL_INLINE 
	bool TVector3<T>::isValid() const
	{
		return true;
	}

	template <typename T>
	BALL_INLINE 
	bool TVector3<T>::isZero() const
	{
		return (Maths::isZero(x) && Maths::isZero(y) && Maths::isZero(z));
	}

	template <typename T>
	void TVector3<T>::dump(std::ostream& s, Size depth) const
	{
		BALL_DUMP_STREAM_PREFIX(s);

		BALL_DUMP_HEADER(s, this, this);

		BALL_DUMP_DEPTH(s, depth);
		s << "  (x =  " << x << ", y = " << y << ", z = " << z << ")" << std::endl;

		BALL_DUMP_STREAM_SUFFIX(s);
	}

	/**	Default three-dimensional vector class.
			This is the class used in BALL kernel to represent points, coordinates.
	*/
	typedef TVector3<float> Vector3;

	template <typename T>
	BALL_INLINE 
	TVector3<T> TVector3<T>::operator + (const TVector3<T>& b) const
	{
		return TVector3<T>(x + b.x, y + b.y, z + b.z);
	}
	
	template <typename T>
	BALL_INLINE
	TVector3<T> TVector3<T>::operator - (const TVector3<T>& b) const
	{
		return TVector3<T>(x - b.x, y - b.y, z - b.z);
	}

	template <typename T>
  void TVector3<T>::write(PersistenceManager& pm) const
  {
    pm.writePrimitive(x, "x");
    pm.writePrimitive(y, "y");
    pm.writePrimitive(z, "z");
	}

	template <typename T>			
  bool TVector3<T>::read(PersistenceManager& pm)
  {
    pm.readPrimitive(x, "x");
    pm.readPrimitive(y, "y");
    pm.readPrimitive(z, "z");

    return true;
	}


	template <typename T>
	BALL_INLINE 
	TVector3<T> operator * (const T& scalar, const TVector3<T>& vector)
	{
		return TVector3<T>(scalar * vector.x, scalar * vector.y, scalar * vector.z);
	}

	template <typename T>
	std::istream& operator >> (std::istream& s, TVector3<T>& v)
	{
		char c;
		s >> c >> v.x >> v.y >> v.z >> c;

		return s;
	}

	template <typename T>
	std::ostream& operator << (std::ostream& s, const TVector3<T>& v)
	{
		s << "(" << v.x << ' ' << v.y << ' ' << v.z << ')';

		return s;
	}
// required for visual studio
#ifdef BALL_COMPILER_MSVC
#include <vector>
#ifdef BALL_HAS_EXTERN_TEMPLATES
extern template class BALL_EXPORT std::vector<Vector3>;
#elif
template class BALL_EXPORT std::vector<Vector3>;
#endif
#endif

#ifdef BALL_HAS_EXTERN_TEMPLATES
extern template class BALL_EXPORT TVector3<float>;
#endif

}// namespace BALL

#endif // BALL_MATHS_VECTOR3_H