This file is indexed.

/usr/include/BALL/MOLMEC/MINIMIZATION/energyMinimizer.h is in libball1.4-dev 1.4.3~beta1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
// $Id: energyMinimizer.h,v 1.44.20.3 2007/08/07 09:12:33 aleru Exp $
//

// Energy Minimizer: A class for minimizing the energy of molecular systems

#ifndef BALL_MOLMEC_MINIMIZATION_ENERGYMINIMIZER_H
#define BALL_MOLMEC_MINIMIZATION_ENERGYMINIMIZER_H

#ifndef BALL_DATATYPE_OPTIONS_H
#	include <BALL/DATATYPE/options.h>
#endif

#ifndef BALL_MOLMEC_COMMON_GRADIENT_H
#	include <BALL/MOLMEC/COMMON/gradient.h>
#endif

namespace BALL 
{
	class ForceField;
	class SnapShotManager;
	
	/** EnergyMinimizer. 
	 *  Base class for all minimizer for geometry optimization.
	 *  \ingroup  MolmecEnergyMinimizer
	 */
	class BALL_EXPORT EnergyMinimizer
	{
		public:
		
			/** @name Option definitions
			*/
			//@{
			
			/** Option names
			*/
			struct BALL_EXPORT Option
			{
				/** Max number of iterations
				*/
				static const char* MAXIMAL_NUMBER_OF_ITERATIONS;
				
				/** Energy output frequency
				*/
				static const char* ENERGY_OUTPUT_FREQUENCY;
				
				/** Trajectory ouput frequency 
				*/
				static const char* SNAPSHOT_FREQUENCY;
				
				/** Number of iteration 
				*/
				static const char* NUMBER_OF_ITERATION;
				
				/**	Energy difference bound
				*/
				static const char* ENERGY_DIFFERENCE_BOUND;
				
				/** The number of iterations without any change in energy. This
				 *  is used to detect convergence.
				 */
				static const char* MAX_SAME_ENERGY;
				
				/** The maximum RMS gradient allowed for convergence.
				 *  If the current rms gradient is below this one, we are converged.
				 */
				static const char* MAX_GRADIENT;
				
				/** Max shift of an atom per iteration 
				*/
				static const char* MAXIMUM_DISPLACEMENT;
			};
			
			struct BALL_EXPORT Default
			{
				/** Max number of iterations
				*/
				static Size MAXIMAL_NUMBER_OF_ITERATIONS;
				
				/** Energy output frequency
				*/
				static Size ENERGY_OUTPUT_FREQUENCY;
				
				/** Snapshot frequency 
				*/
				static Size SNAPSHOT_FREQUENCY;
				
				/** Number of iteration 
				*/
				static Size NUMBER_OF_ITERATION;
				
				/** Energy difference bound.
				 *  The energy difference needed for assuming 'equal energy' 
				 */
				static float ENERGY_DIFFERENCE_BOUND;
				
				/** The number of iterations without any change in energy. This
				 *  is used to detect convergence.
				 *  If this number is reached, we assume convergence.
				 */
				static Size MAX_SAME_ENERGY; 
				
				/** Default value for the maximum RMS gradient. This value is used for
				 *  deciding when to stop the minimisation.
				 */
				static float MAX_GRADIENT;
				
				/** Max shift
				*/
				static float MAXIMUM_DISPLACEMENT;
			};
			
			//@}
			/** @name Constructors and Destructors
			*/
			//@{
			
			BALL_CREATE(EnergyMinimizer)
			
			/** Default constructor.
			*/
			EnergyMinimizer();
			
			/** Constructor.
			*/
			EnergyMinimizer(ForceField& force_field);
			
			/** Constructor.
			*/
			EnergyMinimizer(ForceField& force_field, const Options& options);
			
			/** Copy constructor
			*/
			EnergyMinimizer(const EnergyMinimizer& energy_minimizer);
			
			/** Destructor.
			*/
			virtual ~EnergyMinimizer();
			
			//@}
			/** @name Assignments
			*/
			//@{
			
			/** Assignment operator
			*/
			const EnergyMinimizer&	operator=(const EnergyMinimizer& energy_minimizer);
			
			//@}
			
			/** Equality operator
			 */
			bool operator == (const EnergyMinimizer& energy_minimizer) ;
			
			/** @name Debugging and Diagnostics
			*/
			//@{
			
			/** Is the energy minimizer valid : did the setup work?
			*/
			bool isValid() const;
			
			//@}
			/** @name Setup methods
			*/
			//@{
			
			/** Sets up the energy minimizer.
			*/
			bool setup(ForceField& force_field);
			
			/** Sets up the energy minimizer.
			*/
			bool setup(ForceField& force_field, SnapShotManager *ssm);
			
			/** Sets up the energy minimizer.
			*/
			bool setup(ForceField& force_field, 
								 SnapShotManager *ssm, const Options& options);
			
			/** Sets up the energy minimizer.
			*/
			bool setup(ForceField& force_field, const Options& options);
			
			/** Specific setup
			*/
			virtual bool specificSetup();
			
			//@}
			/** @name Accessors
			*/
			//@{
			
			/** Implements the convergence criterion.
			 *  If the convergence criterion is fulfilled, this method
			 *  returns <b>true</b>. The convergence criterion is implemented as one
			 *  of two conditions:
			 *
			 *  (1) {RMS gradient} is below max_rms_gradient_
			 *  (2) \link same_energy_counter_ same_energy_counter_ \endlink  is above  \link max_same_energy_ max_same_energy_ \endlink
			 *
			 *  If any of these conditions hold  \link isConverged isConverged \endlink  returns <b>true</b>.
			 *  This method should be reimplemented in derived classes for a different
			 *  convergence criterion.
			 */
			virtual bool isConverged() const;
			
			/** Calculate the next step.
			 *  This method is implemented in each minimizer class and
			 *  tries to determine the next step to be taken.
			 *  It typically performs a line search.
			 *  The value returned is usually the step length with respect to the
			 *  current direction.
			 *  @return -1 to indicate failure
			 */
			virtual double findStep();
			
			/** Update the search direction.
			 *  This method is implemented by the derived classes to implement a
			 *  method to determine a new search direction.
			 */
			virtual void updateDirection();
			
			/** Update energy.
			 *  This method calls <tt>force_field_->updateEnergy()</tt> and stores
			 *  the result in <tt>current_energy_</tt>.
			 */
			virtual double updateEnergy();
			
			/** Update forces and store them in current_grad_.
			 *  This method calls <tt>force_field_->updateForces()</tt> and stores them in
			 *  \link current_grad_ current_grad_ \endlink .
			 */
			virtual void updateForces();
			
			/** Store the current energy and gradient.
			 *  The current gradient and current energy is copied into
			 *  initial energy and initial gradient. This is usually done at
			 *  the start of an iteration.
			 */
			void storeGradientEnergy();
			
			/** Print the energy.
			 *  This method is called by  \link finishIteration finishIteration \endlink  after every
			 *  \link energy_output_frequency_ energy_output_frequency_ \endlink  steps.
			 *  It prints the current RMS gradient and the current energy to  \link Log Log \endlink <tt>.info()</tt>.
			 *  @see setEnergyOutputFrequency
			 *  @see getEnergyOutputFrequency
			 */
			virtual void printEnergy() const;
			
			/** Take a snapshot of the system.
			 *  This method is called by  \link finishIteration finishIteration \endlink  after every
			 *  \link snapshot_frequency_ snapshot_frequency_ \endlink  steps.
			 *  It saves a <tt>SnapShot</tt> of the current atom coordinates to a  \link SnapShotManager SnapShotManager \endlink 
			 *  (if enabled).
			 *  @see setSnapShotFrequency
			 *  @see getSnapShotFrequency
			 */
			virtual void takeSnapShot() const;
			
			/** Finishing step for this iteration.
			 *  This method should be called at the end of the main iteration
			 *  loop implemented in  \link minimize minimize \endlink . It takes over some administrative stuff:
			 *
			 *  - increment the iteration counter  \link number_of_iterations_ number_of_iterations_ \endlink
			 *  - call  \link takeSnapShot takeSnapShot \endlink  if necessary
			 *  - call  \link printEnergy printEnergy \endlink  if necessary
			 *  - call  \link ForceField::update ForceField::update \endlink  if necessary (to rebuild the pair lists!)
			 *  - update the \link same_energy_counter_ same_energy_counter_ \endlink tested in \link isConverged isConverged \endlink
			 *
			 *  This method should be overwritten only in rare cases. Even then, the programmer
			 *  should make sure to call <tt>EnergyMinimizer::finishIteration</tt> or
			 *  has to take care of the above items himself.
			 *
			 *  All derived classes should call this method at the end of the minimize main loop.
			 *  Otherwise strange things might happen.
			 *  @see minimize
			 */
			virtual void finishIteration();
			
			/** Return the number of iterations performed.
			 */
			Size getNumberOfIterations() const;
			
			/** Return a reference to the current search direction
			 */
			Gradient& getDirection();
			
			/** Return a reference to the current gradient
			 */
			Gradient& getGradient();
			
			/** Return a reference to the initial gradient
			 */
			Gradient& getInitialGradient();
			
			/** Return the current energy
			 */
			double getEnergy() const;
			
			/** Return a reference to the current energy
			 */
			double& getEnergy();
			
			/** Return the initial energy
			 */
			double getInitialEnergy() const;
			
			/** Return a mutable reference to the initial energy
			 */
			double& getInitialEnergy();
			
			/** Set the number of iterations performed so far.
			 */
			void setNumberOfIterations(Size number_of_iterations);
			
			/** Get the maximum number of iterations
			 */
			Size getMaxNumberOfIterations() const;
			
			/** Set the maximum number of iterations
			 */
			void setMaxNumberOfIterations(Size number_of_iterations);
			
			/** Set the maximum number of iterations allowed with equal energy
			 *  (second convergence criterion)
			 */
			void  setMaxSameEnergy(Size number);
			
			/** Get the maximum number of iterations allowed with equal energy
			 *  (second convergence criterion)
			 */
			Size getMaxSameEnergy() const;
			
			/** Set the energy output frequency
			 */
			void setEnergyOutputFrequency(Size	energy_output_frequency);
			
			/** Get the energy ouput frequency
			 */
			Size getEnergyOutputFrequency() const;
			
			/** Set the energy difference bound for convergence
			*/
			void setEnergyDifferenceBound(float energy_difference_bound);
			
			/** Get the energy difference bound
			 */
			float getEnergyDifferenceBound() const;
			
			/** Set the maximum RMS gradient (first convergence criterion).
			 *  The gradient unit of the gradient is <b>kJ/(mol \AA)</b>.
			 */
			void setMaxGradient(float max_gradient);
			
			/** Get the maximum RMS gradient (first convergence criterion).
			 *  The gradient unit of the gradient is <b>kJ/(mol \AA)</b>.
			 */
			float getMaxGradient() const;
			
			/** Set the maximum displacement value.
			 *  This is the maximum distance an atom may be moved by the minimizer in one iteration.
			 */
			void  setMaximumDisplacement(float maximum_displacement);
			
			/** Get the maximum displacement value
			*/
			float getMaximumDisplacement() const;
			
			/** Set the snapshot frequency
			*/
			void setSnapShotFrequency(Size snapshot_frequency);
			
			/** Get the snapshot output frequency
			*/
			Size getSnapShotFrequency() const;
			
			/** Return the force field of the energy minimizer
			*/
			ForceField* getForceField();
			
			/** Return the number of force updates since the start of the minimization.
			*/
			Size getForceUpdateCounter() const ;
			
			/** Return the number of energy updates since the start of the minimization.
			*/
			Size getEnergyUpdateCounter() const ;
			
			/** Minimize the energy of the system bound to the force field.
			 *  If a number of steps is given, the minimization is aborted after
			 *  that number of steps, regardless of the number of steps given in
			 *  the options (<tt>MAX_STEPS</tt>). Together with the <tt>resume</tt> option
			 *  this feature is used to extract properties or visualize the results
			 *  in the course of the minimization. If <tt>resume</tt> is set to <b>true</b>,
			 *  the minimization continues with the former step width and settings.
			 *  @param steps maximum number of steps to be taken
			 *  @param resume <b>true</b> if the minimization is to be resumed with the previous settings
			 *  @return bool - <b>true</b> if the minimization has converged
			 */
			virtual bool	minimize(Size steps = 0, bool resume = false);
			
			/** Specify if the MDSimulation aborts if the Energy is greater than abort_energy_
			*/
			void enableEnergyAbortCondition(bool state);
			
			/// Query if the MDSimulation aborts if the Energy is greater than abort_energy_
			bool energyAbortConditionEnabled() const;
			
			/** Set the value for the energy, that will result in aborting the minization,
			 * if it will be surpassed.
			 * Default value: 10^9.
			 */
			void setEnergyToAbort(float value);
			
			///
			float getEnergyToAbort() const;
			
			/** Return true, if the minimization was aborted, e.g. because of strange
			 *  energies or gradient.
			 */
			bool wasAborted() const ;
			
			//@}
			/**	@name	Public Attributes
			*/
			//@{
			
			/**	Options
			*/
			Options	options;
			//@}
			
		protected:
			
			/** @name Protected Attributes
			*/
			//@{
			
			/** The gradient at the beginning of the current minimization step.
			*/
			Gradient initial_grad_;
			
			/** The current gradient.
			*/
			Gradient current_grad_;
			
			/** The energy at the beginning of the current minimization step.
			*/
			double initial_energy_;
			
			/** The current energy.
			*/
			double current_energy_;
			
			/** The gradient from the last step
			*/
			Gradient old_grad_;
			
			/** The energy from the last step
			*/
			double old_energy_;
			
			/** The current search direction
			*/
			Gradient direction_;
		 
			/** The boolean variable indicates if the setup of the energy minimizer was successful
			*/
			bool valid_;
			
			/** Pointer to a SnapShotManager for storing snapshots of the system
			*/
			SnapShotManager* snapshot_; 
			
			/** The force field bound to the energy minimizer.
			 *  Among other data the force field contains the molecular system
			 *  whose energy will be minimized by the energy minimizer.
			 */
			ForceField* force_field_;
			
			/** The current iteration number
			*/
			Size number_of_iterations_;
			
			/** Maximum number of iterations 
			*/
			Size maximal_number_of_iterations_;
			
			/** Frequency of energy output
			*/
			Size energy_output_frequency_;
			
			/** Frequency of atom coordinate ouput
			*/
			Size snapshot_frequency_;
			
			/** If the energy difference (before and after an iteration)
			 * is smaller than this bound, the minimization procedure stops.
			 */
			double energy_difference_bound_;
			
			/** The maximum RMS gradient tolerated (first convergence criterion)
			*/
			double max_gradient_;
			
			/** The maximum number of iterations with same energy.
			 *  When this number is reached, we assume the system to have converged
			 *  (second convergence criterion)
			 */
			Size max_same_energy_;
			
			/** A counter for the number of steps with a similar energy.
			*/
			Size same_energy_counter_;
			
			/** The maximal shift of an atom per iteration step (in Angstrom).
			*/
			float maximum_displacement_;
			
			/** Internal counter: how often is a force update done.
			 *  Measure for the speed of minimization.
			 */
			Size force_update_counter_;
			
			/** Internal counter: how often is an energy update done.
			 *  Measure for the speed of minimization.
			 */
			Size energy_update_counter_;
			
			/** Numerical lower bound: we don't want to compute the reciprocal 
			 *  of a number which is lower than 'cutlo_'.
			 */
			float cutlo_;
			
			/** The last step size (in respect of the length of the computed direction vector),
			 *  so the length of the last step was \f$step\cdot|direction|\f$.
			 */
			double step_;
			
			//_ 
			bool abort_by_energy_enabled_;
			
			//_ 
			float abort_energy_;
			
			//_
			bool aborted_;
			
		//_@}
	};
	
} // namespace Ball

#endif // BALL_MOLMEC_MINIMIZATION_ENERGYMINIMIZER_H