This file is indexed.

/usr/include/BALL/QSAR/classificationValidation.h is in libball1.4-dev 1.4.3~beta1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
//

#ifndef CLASVALIDATION
#define CLASVALIDATION

#ifndef QSARDATA
#include <BALL/QSAR/QSARData.h>
#endif

#ifndef VALIDATION
#include <BALL/QSAR/validation.h>
#endif

#include <iterator>


namespace BALL
{	
	namespace QSAR
	{
		class ClassificationModel;
		/** class for validation of QSAR regression models */
		class BALL_EXPORT ClassificationValidation : public Validation
		{
			public:
				/** @name Constructors and Destructors
				 */
				//@{
				/** constructor
				@param m pointer to the regression model, which the object of this class should test */
				ClassificationValidation(ClassificationModel* m);

				EIGEN_MAKE_ALIGNED_OPERATOR_NEW
				//@}
				
				
				/** @name Accessors
				 */
				//@{
				void crossValidation(int k, bool restore=1);
				
				double getCVRes();
				
				double getFitRes();
				
				void setCVRes(double d);
				
				void testInputData(bool transform=0);
				
				/** return pointer to the matrix containing the number of TP, FP, TN, FN in one column for each class  */
				const Eigen::MatrixXd* getConfusionMatrix();
				
				/** returns a RowVector holding the one value contituting the validation result for each class if "average accuracy" or "average MCC" is chosen (see selectStat()). */
				const Eigen::VectorXd* getClassResults();
				
				/** starts bootstrapping with k samples \n
				@param k no of bootstrap samples */
				void bootstrap(int k, bool restore=1);
				
				/** Y randomization test \n
				Randomizes all columns of model.Y, trains the model, runs crossValidation and testInputData and saves the resulting accuracy_input_test and accuracy_cv value to a vector, where Eigen::MatrixXd(i,0)=accuracy_input_test, Eigen::MatrixXd(i,1)=accuracy_cv \n
				@param runs this is repeated as often as specified by 'runs' */
				const Eigen::MatrixXd& yRandomizationTest(int runs, int k);
				
				/** get average accuracy value as determined after cross validation */
				double getAccuracyCV();
				
				/** get average accuracy value as determined after testing of input data(); */
				double getAccuracyInputTest();
				
				void selectStat(int s);
				
				void saveToFile(string filename) const;
				
				void saveToFile(string filename, const double& quality_input_test, const double& predictive_quality) const;
				
				void readFromFile(string filename);
				
				//@}
				
				
			private:
				/** @name Accessors
				 */
				//@{
				/** Tests the current model with all substances in the (unchanged) test data set */
				void testAllSubstances(bool transform);
				
				/** calculate average accuracy with the current values of TP, FP, FN, TN in matrix ClassificationValidation.predictions. */
				void calculateAverageSensitivity();
				
				/** calculate weighted average accuracy of all classes. Weighted by the number of training compounds within each class */
				void calculateWeightedSensitivity();
				
				/** calculate accuracy for all classes at once */
				void calculateOverallAccuracy();
				
				/** calculate one MCC for each class and use the average */
				void calculateAverageMCC();
				
				/** calculate MCC for all classes at once */
				void calculateOverallMCC();
				
				/** calculate the True Discovery Rate (only applicable to binary classification validation results). */
				void calculateTDR();
				//@}
				
				
				/** @name Attributes
				 */
				//@{
				/** matrix containing the number of TP, FP, FN, TN in one column for each class  */
				Eigen::MatrixXd confusion_matrix_;
				
				/** RowVector holding the one value contituting the validation result for each class if "average sensitivity" or "average MCC" is chosen (see selectStat()). */
				Eigen::VectorXd class_results_;
			
				double quality_;
				
				double quality_input_test_;
				
				double quality_cv_;

				/** pointer to the regression model, which the object of this class should test */
				ClassificationModel* clas_model;
				
				void (ClassificationValidation::* qualCalculation)();
				
				
				//@}
	
		};
	}
}



#endif // REGVALIDATION