/usr/include/BALL/SOLVATION/generalizedBornCase.h is in libball1.4-dev 1.4.3~beta1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 | // -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
// $Id: generalizedBornCase.h,v 1.1 2005/11/21 19:38:38 anker Exp $
//
#ifndef BALL_SOLVATION_GENERALIZED_BORN_H
#define BALL_SOLVATION_GENERALIZED_BORN_H
#ifndef BALL_COMMON_H
# include <BALL/common.h>
#endif
#ifndef BALL_KERNEL_PTE_H
# include <BALL/KERNEL/PTE.h>
#endif
#ifndef BALL_KERNEL_ATOMCONTAINER_H
# include <BALL/KERNEL/atomContainer.h>
#endif
#ifndef BALL_DATATYPE_STRINGHASHMAP_H
# include <BALL/DATATYPE/stringHashMap.h>
#endif
#ifndef BALL_FORMAT_INIFILE_H
# include <BALL/FORMAT/INIFile.h>
#endif
#ifndef BALL_FORMAT_PARAMETERSECTION_H
# include <BALL/FORMAT/parameterSection.h>
#endif
#include <map>
#include <set>
namespace BALL
{
/** Compute the electrostatics of a molecule in solution.
This implementation bases on
[1] "Modification of the Generalized Born Model Suitable for
Macromolecules"
Onufriev, Bashford, Case
J. Phys. Chem. B 104:3712-3720, 2000
This paper uses techniques from
[2] "Semianalytical Treatment of Solvation for Molecular
Mechanics and Dynamics"
Still, Tempczyk, Hawley, Hendrickson
J. Am. Chem. Soc. 112(16):6127-6129, 1990
[3] "Application of a pairwise generalized Born model to
proteins and nucleic acids: inclusion of salt eff¤ects "
Srinivasan, Trevathan, Beroza, Case
Theor. Chem. Acc. 101(6):426-434, 1999
*/
class GeneralizedBornModel
{
public:
struct Option
{
///
static const String VERBOSITY;
///
static const String LAMBDA;
///
static const String DELTA;
///
static const String KAPPA;
///
static const String RHO_0;
///
static const String DC_SOLVENT;
///
static const String DC_SOLUTE;
///
static const String FILENAME;
};
struct Default
{
///
static const Size VERBOSITY;
///
static const float LAMBDA;
///
static const float DELTA;
///
static const float KAPPA;
///
static const float RHO_0;
///
static const float DC_SOLVENT;
///
static const float DC_SOLUTE;
///
static const String FILENAME;
};
///
GeneralizedBornModel()
throw(Exception::FileNotFound);
///
~GeneralizedBornModel();
///
void clear();
/// We need an additional optioned version of that piece of code
bool setup(const AtomContainer& ac)
throw(Exception::FileNotFound);
/// ??? This should be done through Options!
void setScalingFactorFile(const String& filename);
///
void setScalingFactors(const StringHashMap<float>& scaling_factors);
///
const StringHashMap<float>& getScalingFactors() const;
/// ??? Should be done by options
void setSolventDC(float solvent_dc);
/// ??? Should be done by options
void setSoluteDC(float solute_dc);
/// Compute the total energy of the system
float calculateEnergy();
/// Compoute only the solvation energy (meaning the transfer energy
/// which is a kind of a reaction field energy)
float calculateSolvationEnergy();
/// Calculate the total potential created by every other atom of the
/// system for every atom and return a hashmap conteining the potential
/// values.
void calculatePotential(HashMap<const Atom*, float>& p_hash) const;
/// Calculate the total potential created by every other atom of the
/// system at the position of atom_i
float calculatePotential(const Atom& atom_i) const;
///
bool readScalingFactors(const String& inifile_name)
throw(Exception::FileNotFound);
private:
/* Parameters for the generalized Born model
*/
class GBParameters : public ParameterSection
{
public:
GBParameters();
~GBParameters();
bool extractSection(Parameters& parameters, const String& section_name);
const StringHashMap<float>& getScalingFactors() const;
float getSoluteDC() const;
float getSolventDC() const;
float getKappa() const;
private:
/*_
*/
StringHashMap<float> scaling_factors_;
/*_
*/
float dc_solute_;
/*_
*/
float dc_solvent_;
/*_
*/
float lambda_;
/*_
*/
float delta_;
/*_
*/
float kappa_;
/*_
*/
float rho_0_;
};
/** The atom container representing the molecule
*/
AtomContainer* ac_;
/** The atom list
*/
std::vector<const Atom*> atoms_;
/** The Born radii of all atoms
*/
std::vector<float> born_radii_;
/** The pairs of atoms we have to look at. This list only inlcudes
*different* atoms. Not suitable for self-energy calculations,
*/
std::vector< std::pair<Size, Size> > pair_list_;
/** Distances between atoms of the pair list.
*/
std::vector< float > pair_distances_;
std::vector< float > pair_charges_;
std::vector< std::vector< float > > squared_distances_;
/** Dielectric constants of the solute and the surrounding solvent
*/
float dc_solute_;
float dc_solvent_;
/** Empirical scaling factor for the estimation of effective Born
radii. See [3] for details.
*/
StringHashMap<float> scaling_factors_;
std::vector<float> scaling_factor_;
/**
*/
String scaling_factor_filename_;
/** Scaling factor of integral part of effective Born radii calculation
rectifying the underestimation of the radii caused by the vdW
approximation (instead of real SAS calculations).
*/
float lambda_;
/** Downshift of the effictve Born radii for rectifying the energy
increase caused by the lambda factor. More or less magic (see
[1] for details) but allows to use the scaling_factors_ without
reparamterizing them.
*/
float delta_;
/** Debye-Hueckel parameter describing salt effects (ionic strength)
in units of 1/Angstrom.
*/
float kappa_;
/** Radius offset (see [2] for details).
*/
float rho_0_;
/**
*/
float to_kJ_mol_;
/** Calculate the Born radii of all atoms
*/
void calculateBornRadii_();
/** Calculate the energetic cost of creating a charge distribution in
a uniform dielectric
*/
float calculateCreationEnergy_() const;
/** Calculate the energetic cost of transfering a solute into a
dielectric medium.
*/
float calculateTransferEnergy_() const;
/** A smooth function describing an approximation of the solute volume
and several Born-dependent effects (including Coulomb integrals).
There are several techniques in usage. We implement the on
described in [1].
*/
float f_GB_(Size i, Size j) const;
/** An approximation of the coulomb integral
*/
float coulombIntegralApproximation_(float distance, float scaled_radius_j,
float radius_i) const;
};
} // namespace BALL
#endif // BALL_SOLVATION_GENERALIZED_BORN_H
|