This file is indexed.

/usr/include/pbseq/alignment/bwt/Occ.hpp is in libblasr-dev 0~20161219-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#ifndef _BLASR_OCC_HPP_
#define _BLASR_OCC_HPP_

#include <fstream>
#include <vector>
#include <algorithm>
#include "../../pbdata/DNASequence.hpp"
#include "../../pbdata/NucConversion.hpp"
#include "../../pbdata/utils.hpp"
#include "../../pbdata/matrix/Matrix.hpp"
#include "../../pbdata/matrix/FlatMatrix.hpp"

template<typename T_BWTSequence, typename T_Major, typename T_Minor>
class Occ {
public:
    int majorBinSize;
    int minorBinSize;
    int hasDebugInformation;
    FlatMatrix2D<T_Major> major;
    FlatMatrix2D<T_Minor> minor;
    FlatMatrix2D<T_Major> full;
    static const unsigned int AlphabetSize = 5;
    T_BWTSequence *bwtSeqRef;
    DNALength numMajorBins, numMinorBins;
    void PrintBins(std::ostream &out) {
        out << "numMajor: " << numMajorBins << " numMinor: " << numMinorBins << std::endl;
        DNALength ma, mi, mii;
        mi = 0;
        int i;
        for (ma = 0; ma < numMajorBins; ma++) {
            out << "MAJOR: ";
            for (i = 0; i < 5; i++ ){ out << major[ma][i] << " "; } out << std::endl;
            for (mii = 0; mii < majorBinSize / minorBinSize  && mi < numMinorBins; mii++, mi++) {
                out << "       ";
                for (i = 0;i <5; i++ ){
                    out << minor[mi][i] << " ";
                }
                out << std::endl;
            }
        }
    }

    void  InitializeBWT(T_BWTSequence &bwtSeq) {
        bwtSeqRef    = &bwtSeq;
    }

    void Initialize(T_BWTSequence &bwtSeq,
            int _majorBinSize=4096,
            int _minorBinSize=64,
            int _hasDebugInformation=0) {
        //
        // This reference is used when counting nucleotides. It assumes
        // the sequence does not change between initialization and
        // subsequent calls to count.
        //
        bwtSeqRef    = &bwtSeq;

        majorBinSize = _majorBinSize;
        minorBinSize = _minorBinSize;
        hasDebugInformation = _hasDebugInformation;
        InitializeMajorBins(bwtSeq);
        InitializeMinorBins(bwtSeq);
        if (hasDebugInformation) {
            InitializeTestBins(bwtSeq);
        }
    }

    void InitializeMajorBins(T_BWTSequence &bwtSeq) {
        numMajorBins = CeilOfFraction(bwtSeq.length, (DNALength) majorBinSize);
        major.Allocate(numMajorBins, AlphabetSize);
        std::vector<DNALength> runningTotal;
        runningTotal.resize(AlphabetSize);
        fill(runningTotal.begin(), runningTotal.end(), 0);
        fill(&major.matrix[0], &major.matrix[numMajorBins*AlphabetSize], 0);
        DNALength p;
        DNALength binIndex = 0;
        for (p = 0; p < bwtSeq.length; p++) {
            Nucleotide nuc = ThreeBit[bwtSeq[p]];
            // only handle ACTGN, $==6, so skip counting that.
            if (nuc > AlphabetSize) continue;
            if (p % majorBinSize == 0) { //majorBinSize-1) {
                //				cout << "storing at " << p<< " " << binIndex << std::endl;
                int n;
                for (n = 0; n < AlphabetSize; n++ ) {
                    major[binIndex][n] = runningTotal[n];
                }
                binIndex++;
            }
            runningTotal[nuc]++;
        }
    }

    void InitializeTestBins(T_BWTSequence &bwtSeq) {
        full.Allocate(bwtSeq.length, AlphabetSize);
        fill(full.matrix, &full.matrix[bwtSeq.length * AlphabetSize],0);
        DNALength p;
        int n;
        for (p = 0; p < bwtSeq.length; p++) {
            Nucleotide nuc = ThreeBit[bwtSeq[p]];
            if (nuc > AlphabetSize) {
                for (n = 0; n < AlphabetSize; n++ ) {
                    full[p][n] = full[p-1][n];
                }
            }
            else {
                full[p][nuc]++;
                if (p > 0) {
                    for (n = 0; n < AlphabetSize; n++ ) {
                        full[p][n] = full[p-1][n] + full[p][n];
                    }
                }
            }
        }
    }

    void InitializeMinorBins(T_BWTSequence &bwtSeq) {
        numMinorBins = CeilOfFraction(bwtSeq.length, (DNALength) minorBinSize);
        minor.Allocate(numMinorBins, AlphabetSize);

        std::vector<DNALength> majorRunningTotal;
        majorRunningTotal.resize(AlphabetSize);		
        std::fill(majorRunningTotal.begin(), majorRunningTotal.end(), 0);
        std::fill(&minor.matrix[0], &minor.matrix[numMinorBins*AlphabetSize], 0);

        DNALength p;
        DNALength minorBinIndex = 0;
        for (p = 0; p < bwtSeq.length; p++ ){
            Nucleotide nuc = ThreeBit[bwtSeq[p]];
            if (nuc > AlphabetSize) continue;
            //
            //  The minor bins are running totals inside each major
            //  bin. When the count hits a bin offset, reset the bin
            //  counter. 
            //  
            if (p % majorBinSize == 0) {
                fill(majorRunningTotal.begin(), majorRunningTotal.end(), 0);				
            }
            if (p % minorBinSize == 0) {
                int n;
                for (n = 0; n < AlphabetSize; n++ ) {
                    minor[minorBinIndex][n] = majorRunningTotal[n];
                }
                minorBinIndex++;
            }
            majorRunningTotal[nuc]++;
        }
    }

    int Count(Nucleotide nuc, DNALength p ) {
        DNALength majorIndex = p / majorBinSize;
        DNALength minorIndex = p / minorBinSize;
        DNALength lastBinnedIndex = minorBinSize * (p / minorBinSize);
        //
        // This should be sort of O(1), since the last expression should
        // be made of bit operations that are fast.
        //
        Nucleotide smallNuc = ThreeBit[nuc];
        //assert(smallNuc < 5);
        DNALength nocc = major[majorIndex][smallNuc] + minor[minorIndex][smallNuc] + bwtSeqRef->CountNuc(lastBinnedIndex, p+1, nuc);
        //		assert(full.matrix == NULL or full[p][smallNuc] == nocc);
        return nocc;
    }

    void Write(std::ostream &out) {
        out.write((char*) &majorBinSize, sizeof(majorBinSize));
        out.write((char*) &minorBinSize, sizeof(minorBinSize));

        out.write((char*) &numMajorBins, sizeof(numMajorBins));
        if (numMajorBins > 0) {
            out.write((char*) major[0], sizeof(T_Major) * numMajorBins*AlphabetSize);
        }

        out.write((char*) &numMinorBins, sizeof(numMinorBins));
        if (numMinorBins > 0) {
            out.write((char*) minor[0], sizeof(T_Minor) * numMinorBins*AlphabetSize);
        }
        if (hasDebugInformation) {
            DNALength bwtSeqLength = bwtSeqRef->length;
            out.write((char*)&bwtSeqLength, sizeof(bwtSeqLength));
            out.write((char*)&full.matrix[0], sizeof(DNALength)* bwtSeqLength * AlphabetSize);
        }
    }

    int Read(std::istream &in, int _hasDebugInformation) {
        hasDebugInformation = _hasDebugInformation;
        in.read((char*) &majorBinSize, sizeof(majorBinSize));
        in.read((char*) &minorBinSize, sizeof(minorBinSize));
        in.read((char*) &numMajorBins, sizeof(numMajorBins));
        if (numMajorBins > 0) {
            major.Resize(numMajorBins * AlphabetSize);
            in.read((char*) major[0], sizeof(T_Major) * numMajorBins * AlphabetSize);
            major.nRows = numMajorBins;
            major.nCols = AlphabetSize;
        }
        in.read((char*) &numMinorBins, sizeof(numMinorBins));
        if (numMinorBins > 0) {
            minor.Resize(numMinorBins * AlphabetSize);
            in.read((char*) minor[0], sizeof(T_Minor) * numMinorBins*AlphabetSize);
            minor.nRows = numMinorBins;
            minor.nCols = AlphabetSize;
        }
        if (hasDebugInformation) {
            DNALength bwtSeqLength;
            in.read((char*)&bwtSeqLength, sizeof(bwtSeqLength));
            if (full.matrix) {delete [] full.matrix;}
            full.matrix = ProtectedNew<DNALength>(bwtSeqLength *AlphabetSize);
            full.nRows = bwtSeqLength;
            full.nCols = AlphabetSize;
            in.read((char*)&full.matrix[0], sizeof(DNALength)* bwtSeqLength * AlphabetSize);
        }
        return 1;
    }

};


#endif // _BLASR_OCC_HPP_