/usr/include/Box2D/Collision/b2DynamicTree.h is in libbox2d-dev 2.3.1+ds-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 | /*
* Copyright (c) 2009 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_DYNAMIC_TREE_H
#define B2_DYNAMIC_TREE_H
#include <Box2D/Collision/b2Collision.h>
#include <Box2D/Common/b2GrowableStack.h>
#define b2_nullNode (-1)
/// A node in the dynamic tree. The client does not interact with this directly.
struct b2TreeNode
{
bool IsLeaf() const
{
return child1 == b2_nullNode;
}
/// Enlarged AABB
b2AABB aabb;
void* userData;
union
{
int32 parent;
int32 next;
};
int32 child1;
int32 child2;
// leaf = 0, free node = -1
int32 height;
};
/// A dynamic AABB tree broad-phase, inspired by Nathanael Presson's btDbvt.
/// A dynamic tree arranges data in a binary tree to accelerate
/// queries such as volume queries and ray casts. Leafs are proxies
/// with an AABB. In the tree we expand the proxy AABB by b2_fatAABBFactor
/// so that the proxy AABB is bigger than the client object. This allows the client
/// object to move by small amounts without triggering a tree update.
///
/// Nodes are pooled and relocatable, so we use node indices rather than pointers.
class b2DynamicTree
{
public:
/// Constructing the tree initializes the node pool.
b2DynamicTree();
/// Destroy the tree, freeing the node pool.
~b2DynamicTree();
/// Create a proxy. Provide a tight fitting AABB and a userData pointer.
int32 CreateProxy(const b2AABB& aabb, void* userData);
/// Destroy a proxy. This asserts if the id is invalid.
void DestroyProxy(int32 proxyId);
/// Move a proxy with a swepted AABB. If the proxy has moved outside of its fattened AABB,
/// then the proxy is removed from the tree and re-inserted. Otherwise
/// the function returns immediately.
/// @return true if the proxy was re-inserted.
bool MoveProxy(int32 proxyId, const b2AABB& aabb1, const b2Vec2& displacement);
/// Get proxy user data.
/// @return the proxy user data or 0 if the id is invalid.
void* GetUserData(int32 proxyId) const;
/// Get the fat AABB for a proxy.
const b2AABB& GetFatAABB(int32 proxyId) const;
/// Query an AABB for overlapping proxies. The callback class
/// is called for each proxy that overlaps the supplied AABB.
template <typename T>
void Query(T* callback, const b2AABB& aabb) const;
/// Ray-cast against the proxies in the tree. This relies on the callback
/// to perform a exact ray-cast in the case were the proxy contains a shape.
/// The callback also performs the any collision filtering. This has performance
/// roughly equal to k * log(n), where k is the number of collisions and n is the
/// number of proxies in the tree.
/// @param input the ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1).
/// @param callback a callback class that is called for each proxy that is hit by the ray.
template <typename T>
void RayCast(T* callback, const b2RayCastInput& input) const;
/// Validate this tree. For testing.
void Validate() const;
/// Compute the height of the binary tree in O(N) time. Should not be
/// called often.
int32 GetHeight() const;
/// Get the maximum balance of an node in the tree. The balance is the difference
/// in height of the two children of a node.
int32 GetMaxBalance() const;
/// Get the ratio of the sum of the node areas to the root area.
float32 GetAreaRatio() const;
/// Build an optimal tree. Very expensive. For testing.
void RebuildBottomUp();
/// Shift the world origin. Useful for large worlds.
/// The shift formula is: position -= newOrigin
/// @param newOrigin the new origin with respect to the old origin
void ShiftOrigin(const b2Vec2& newOrigin);
private:
int32 AllocateNode();
void FreeNode(int32 node);
void InsertLeaf(int32 node);
void RemoveLeaf(int32 node);
int32 Balance(int32 index);
int32 ComputeHeight() const;
int32 ComputeHeight(int32 nodeId) const;
void ValidateStructure(int32 index) const;
void ValidateMetrics(int32 index) const;
int32 m_root;
b2TreeNode* m_nodes;
int32 m_nodeCount;
int32 m_nodeCapacity;
int32 m_freeList;
/// This is used to incrementally traverse the tree for re-balancing.
uint32 m_path;
int32 m_insertionCount;
};
inline void* b2DynamicTree::GetUserData(int32 proxyId) const
{
b2Assert(0 <= proxyId && proxyId < m_nodeCapacity);
return m_nodes[proxyId].userData;
}
inline const b2AABB& b2DynamicTree::GetFatAABB(int32 proxyId) const
{
b2Assert(0 <= proxyId && proxyId < m_nodeCapacity);
return m_nodes[proxyId].aabb;
}
template <typename T>
inline void b2DynamicTree::Query(T* callback, const b2AABB& aabb) const
{
b2GrowableStack<int32, 256> stack;
stack.Push(m_root);
while (stack.GetCount() > 0)
{
int32 nodeId = stack.Pop();
if (nodeId == b2_nullNode)
{
continue;
}
const b2TreeNode* node = m_nodes + nodeId;
if (b2TestOverlap(node->aabb, aabb))
{
if (node->IsLeaf())
{
bool proceed = callback->QueryCallback(nodeId);
if (proceed == false)
{
return;
}
}
else
{
stack.Push(node->child1);
stack.Push(node->child2);
}
}
}
}
template <typename T>
inline void b2DynamicTree::RayCast(T* callback, const b2RayCastInput& input) const
{
b2Vec2 p1 = input.p1;
b2Vec2 p2 = input.p2;
b2Vec2 r = p2 - p1;
b2Assert(r.LengthSquared() > 0.0f);
r.Normalize();
// v is perpendicular to the segment.
b2Vec2 v = b2Cross(1.0f, r);
b2Vec2 abs_v = b2Abs(v);
// Separating axis for segment (Gino, p80).
// |dot(v, p1 - c)| > dot(|v|, h)
float32 maxFraction = input.maxFraction;
// Build a bounding box for the segment.
b2AABB segmentAABB;
{
b2Vec2 t = p1 + maxFraction * (p2 - p1);
segmentAABB.lowerBound = b2Min(p1, t);
segmentAABB.upperBound = b2Max(p1, t);
}
b2GrowableStack<int32, 256> stack;
stack.Push(m_root);
while (stack.GetCount() > 0)
{
int32 nodeId = stack.Pop();
if (nodeId == b2_nullNode)
{
continue;
}
const b2TreeNode* node = m_nodes + nodeId;
if (b2TestOverlap(node->aabb, segmentAABB) == false)
{
continue;
}
// Separating axis for segment (Gino, p80).
// |dot(v, p1 - c)| > dot(|v|, h)
b2Vec2 c = node->aabb.GetCenter();
b2Vec2 h = node->aabb.GetExtents();
float32 separation = b2Abs(b2Dot(v, p1 - c)) - b2Dot(abs_v, h);
if (separation > 0.0f)
{
continue;
}
if (node->IsLeaf())
{
b2RayCastInput subInput;
subInput.p1 = input.p1;
subInput.p2 = input.p2;
subInput.maxFraction = maxFraction;
float32 value = callback->RayCastCallback(subInput, nodeId);
if (value == 0.0f)
{
// The client has terminated the ray cast.
return;
}
if (value > 0.0f)
{
// Update segment bounding box.
maxFraction = value;
b2Vec2 t = p1 + maxFraction * (p2 - p1);
segmentAABB.lowerBound = b2Min(p1, t);
segmentAABB.upperBound = b2Max(p1, t);
}
}
else
{
stack.Push(node->child1);
stack.Push(node->child2);
}
}
}
#endif
|