This file is indexed.

/usr/include/polybori/BooleSet.h is in libbrial-dev 0.8.5-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
// -*- c++ -*-
//*****************************************************************************
/** @file BooleSet.h
 *
 * @author Alexander Dreyer
 * @date 2006-04-20
 *
 * This file defines the class BooleSet, which is currently just a typedef.
 *
 * @par Copyright:
 *   (c) 2006-2010 by The PolyBoRi Team
 *
**/
//*****************************************************************************

#ifndef polybori_BooleSet_h_
#define polybori_BooleSet_h_

// include basic definitions
#include <polybori/pbori_defs.h>

// include polybori functionals
#include <polybori/routines/pbori_func.h>

#include <polybori/diagram/CCuddDDFacade.h>

#include "BoolePolyRing.h"

BEGIN_NAMESPACE_PBORI

/// Forward declaration of monomial type
class BooleMonomial;
class BooleExponent;

template<class OrderType, class NavigatorType, class MonomType>
class CGenericIter;
// temporarily
class LexOrder;

template<class OrderType, class NavigatorType, class MonomType>
class CReverseIter;


#define PBORI_CONST_DDFUNCS(func)   \
  self func(const self& rhs) const { return self(base::func(rhs.diagram())); }

#define PBORI_DDFUNCS(func) \
  self& func(const self& rhs) { base::func(rhs.diagram()); return *this; }

#define PBORI_CONST_DDFUNCS_IDX(func) \
  self func(idx_type idx) const { return self(base::func(idx)); }

#define PBORI_DDFUNCS_IDX(func) \
  self& func(idx_type idx) { base::func(idx); return *this; }


class BooleSet:
  public CCuddDDFacade<BoolePolyRing, BooleSet> {
  /// Generic access to type of *this
  typedef BooleSet self;

public:
  /// Generic access to type of *this
  typedef self dd_type;

  /// Generic access to base type
  typedef CCuddDDFacade<BoolePolyRing, BooleSet> base;

  /// Type of terms
  typedef BooleMonomial term_type;

  /// Fix type for treatment of exponent vectors
  typedef BooleExponent exp_type; 

  /// Type for Boolean polynomial rings (without ordering)
  typedef BoolePolyRing ring_type;

  /// Iterator type for iterating all monomials
  typedef CGenericIter<LexOrder, navigator, term_type> const_iterator;

  /// Iterator type for iterating all exponent vectors 
  typedef CGenericIter<LexOrder, navigator, exp_type> exp_iterator;

  /// Iterator type for iterating all exponent vectors 
  typedef CReverseIter<LexOrder, navigator, exp_type> reverse_exp_iterator;

  /// Iterator type for iterating all monomials
  typedef CReverseIter<LexOrder, navigator, term_type> const_reverse_iterator;

public:
  /// Copy constructor
  BooleSet(const self& rhs): base(rhs) {}

  /// Copy constructor
  BooleSet(const base& rhs): base(rhs) {}

  /// Construct new node
  BooleSet(idx_type idx, const self& first, const self& second):
    base(idx, first, second) { }

  /// Construct new node (using navigator nodes)
  BooleSet(idx_type idx, navigator first, navigator second, 
           const ring_type& ring): 
    base(ring, idx, first, second) { }
 
  /// Construct new node (using nodes)
  BooleSet(const ring_type& ring, node_ptr node): 
    base(ring, node) { }

  /// Construct new node (using navigator nodes)
  BooleSet(const ring_type& ring, navigator navi): 
    base(ring, navi.getNode()) { }

  /// Construct empty set in ring
  BooleSet(const ring_type& ring): 
    base(ring.zero()) { };

  /// Construct new node (using navigator for then and else-branches)
  BooleSet(idx_type idx, const self& rhs):
    base(idx, rhs, rhs) { }

  /// Construct from navigator node
  BooleSet(navigator navi, const ring_type& ring):
    base(ring, navi) { }

  /// Destructor
  ~BooleSet() {}

  /// Start of iteration over terms
  const_iterator begin() const;

  /// Finish of iteration over terms
  const_iterator end() const;

  /// Start of backward iteration over terms
  const_reverse_iterator rbegin() const;

  /// Finish of backward iteration over terms
  const_reverse_iterator rend() const;

  /// Start of backward exponent iteration over terms
  reverse_exp_iterator rExpBegin() const;

  /// Finish of backward iteration over terms
  reverse_exp_iterator rExpEnd() const;

  /// Start of iteration over exponent vectors
  exp_iterator expBegin() const;

  /// Finish of iteration over exponent vectors
  exp_iterator expEnd() const;

  /// Get unique hash value (valid only per runtime)
  hash_type hash() const { 
    return static_cast<hash_type>(reinterpret_cast<std::ptrdiff_t>(getNode()));
  }

  /// Get stable hash value, which is reproducible
  hash_type stableHash() const { 
    return stable_hash_range(navigation());
  }

  /// Set of variables of the whole set
  term_type usedVariables() const;

  /// Exponent vector of variables of the whole set
  exp_type usedVariablesExp() const;

  self change(idx_type idx) const {
    if PBORI_UNLIKELY(size_type(idx) >= ring().nVariables())
      throw PBoRiError(CTypes::out_of_bounds);
    return base::change(idx);
  }


  /// Add given monomial to sets
  self add(const term_type& rhs) const;

  // Check whether rhs is included in *this
  bool_type owns(const term_type& rhs) const;

  /// Check whether rhs is included in *this
  bool_type owns(const exp_type&) const;

  /// Get last term (wrt. lexicographical order)
  term_type lastLexicographicalTerm() const; 

  /// Compute intersection with divisors of rhs
  self divisorsOf(const term_type& rhs) const;
  
   /// Compute intersection with divisors of rhs
  self divisorsOf(const exp_type& rhs) const;

   /// Intersection with divisors of first (lexicographical) term of rhs
  self firstDivisorsOf(const self& rhs) const;

 /// Compute intersection with multiples of rhs
  self multiplesOf(const term_type& rhs) const;
  
  /// Division by given term
  self divide(const term_type& rhs) const;

  /// Check for empty intersection with divisors of rhs, i.e. test whether there
  /// are terms made of the given variables.
  bool_type hasTermOfVariables(const term_type& rhs) const;

  /// Get minimal elements wrt. inclusion
  self minimalElements() const;

  /// Test whether the empty set is included
  bool_type ownsOne() const { return owns_one(navigation()); }

  /// Test, whether we have one term only
  bool_type isSingleton() const { return dd_is_singleton(navigation()); }

  /// Test, whether we have one or two terms only
  bool_type isSingletonOrPair() const { 
    return dd_is_singleton_or_pair(navigation()); 
  }

  /// Test, whether we have two terms only
  bool_type isPair() const { return dd_is_pair(navigation()); }

  /// Compute existential abstraction:
  /// Given a diagram @c F, and a set of variables @c S, remove all occurrences
  /// of each @c s in @c S from any subset in @c F. This can be implemented by 
  /// cofactoring @c F w.r.t. @c s = 1 and @c s = 0, then forming their union
  self existAbstract(const term_type& rhs) const;

  /// Access internal decision diagram
  const self& diagram() const { return *this; }  //  to be removed

  /// Cartesean product
  self cartesianProduct(const self& rhs) const {
    return unateProduct(rhs);
  };

  /// Test containment
  bool_type contains(const self& rhs) const { return rhs.implies(*this); }

  /// Returns number of terms
  size_type size() const { return count(); }

  /// Returns number of terms (deprecated)
  size_type length() const { return size(); }

  /// Returns number of variables in manager
  size_type nVariables() const { return ring().nVariables(); }

  /// Approximation of number of terms
  double sizeDouble() const { return countDouble(); }

  /// Print current set to output stream
  ostream_type& print(ostream_type&) const;

  /// Get corresponding zero element (may be removed in the future)
  self emptyElement() const { return ring().zero(); }

  /// Count terms containing BooleVariable(idx)
  size_type countIndex(idx_type idx) const;

  /// Count many terms containing BooleVariable(idx)
  double countIndexDouble(idx_type idx) const ;

  /// Test whether, all divisors of degree -1 of term rhs are contained in this
  bool_type containsDivisorsOfDecDeg(const term_type& rhs) const;

  /// Test for term corresponding to exponent rhs
  bool_type containsDivisorsOfDecDeg(const exp_type& rhs) const;
};

/// Stream output operator
inline BooleSet::ostream_type& 
operator<<( BooleSet::ostream_type& os, const BooleSet& bset ) {
  return bset.print(os);
}


END_NAMESPACE_PBORI

#endif