/usr/include/ceres/covariance.h is in libceres-dev 1.12.0+dfsg0-1+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 | // Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#ifndef CERES_PUBLIC_COVARIANCE_H_
#define CERES_PUBLIC_COVARIANCE_H_
#include <utility>
#include <vector>
#include "ceres/internal/port.h"
#include "ceres/internal/scoped_ptr.h"
#include "ceres/types.h"
#include "ceres/internal/disable_warnings.h"
namespace ceres {
class Problem;
namespace internal {
class CovarianceImpl;
} // namespace internal
// WARNING
// =======
// It is very easy to use this class incorrectly without understanding
// the underlying mathematics. Please read and understand the
// documentation completely before attempting to use this class.
//
//
// This class allows the user to evaluate the covariance for a
// non-linear least squares problem and provides random access to its
// blocks
//
// Background
// ==========
// One way to assess the quality of the solution returned by a
// non-linear least squares solve is to analyze the covariance of the
// solution.
//
// Let us consider the non-linear regression problem
//
// y = f(x) + N(0, I)
//
// i.e., the observation y is a random non-linear function of the
// independent variable x with mean f(x) and identity covariance. Then
// the maximum likelihood estimate of x given observations y is the
// solution to the non-linear least squares problem:
//
// x* = arg min_x |f(x)|^2
//
// And the covariance of x* is given by
//
// C(x*) = inverse[J'(x*)J(x*)]
//
// Here J(x*) is the Jacobian of f at x*. The above formula assumes
// that J(x*) has full column rank.
//
// If J(x*) is rank deficient, then the covariance matrix C(x*) is
// also rank deficient and is given by
//
// C(x*) = pseudoinverse[J'(x*)J(x*)]
//
// Note that in the above, we assumed that the covariance
// matrix for y was identity. This is an important assumption. If this
// is not the case and we have
//
// y = f(x) + N(0, S)
//
// Where S is a positive semi-definite matrix denoting the covariance
// of y, then the maximum likelihood problem to be solved is
//
// x* = arg min_x f'(x) inverse[S] f(x)
//
// and the corresponding covariance estimate of x* is given by
//
// C(x*) = inverse[J'(x*) inverse[S] J(x*)]
//
// So, if it is the case that the observations being fitted to have a
// covariance matrix not equal to identity, then it is the user's
// responsibility that the corresponding cost functions are correctly
// scaled, e.g. in the above case the cost function for this problem
// should evaluate S^{-1/2} f(x) instead of just f(x), where S^{-1/2}
// is the inverse square root of the covariance matrix S.
//
// This class allows the user to evaluate the covariance for a
// non-linear least squares problem and provides random access to its
// blocks. The computation assumes that the CostFunctions compute
// residuals such that their covariance is identity.
//
// Since the computation of the covariance matrix requires computing
// the inverse of a potentially large matrix, this can involve a
// rather large amount of time and memory. However, it is usually the
// case that the user is only interested in a small part of the
// covariance matrix. Quite often just the block diagonal. This class
// allows the user to specify the parts of the covariance matrix that
// she is interested in and then uses this information to only compute
// and store those parts of the covariance matrix.
//
// Rank of the Jacobian
// --------------------
// As we noted above, if the jacobian is rank deficient, then the
// inverse of J'J is not defined and instead a pseudo inverse needs to
// be computed.
//
// The rank deficiency in J can be structural -- columns which are
// always known to be zero or numerical -- depending on the exact
// values in the Jacobian.
//
// Structural rank deficiency occurs when the problem contains
// parameter blocks that are constant. This class correctly handles
// structural rank deficiency like that.
//
// Numerical rank deficiency, where the rank of the matrix cannot be
// predicted by its sparsity structure and requires looking at its
// numerical values is more complicated. Here again there are two
// cases.
//
// a. The rank deficiency arises from overparameterization. e.g., a
// four dimensional quaternion used to parameterize SO(3), which is
// a three dimensional manifold. In cases like this, the user should
// use an appropriate LocalParameterization. Not only will this lead
// to better numerical behaviour of the Solver, it will also expose
// the rank deficiency to the Covariance object so that it can
// handle it correctly.
//
// b. More general numerical rank deficiency in the Jacobian
// requires the computation of the so called Singular Value
// Decomposition (SVD) of J'J. We do not know how to do this for
// large sparse matrices efficiently. For small and moderate sized
// problems this is done using dense linear algebra.
//
// Gauge Invariance
// ----------------
// In structure from motion (3D reconstruction) problems, the
// reconstruction is ambiguous upto a similarity transform. This is
// known as a Gauge Ambiguity. Handling Gauges correctly requires the
// use of SVD or custom inversion algorithms. For small problems the
// user can use the dense algorithm. For more details see
//
// Ken-ichi Kanatani, Daniel D. Morris: Gauges and gauge
// transformations for uncertainty description of geometric structure
// with indeterminacy. IEEE Transactions on Information Theory 47(5):
// 2017-2028 (2001)
//
// Example Usage
// =============
//
// double x[3];
// double y[2];
//
// Problem problem;
// problem.AddParameterBlock(x, 3);
// problem.AddParameterBlock(y, 2);
// <Build Problem>
// <Solve Problem>
//
// Covariance::Options options;
// Covariance covariance(options);
//
// std::vector<std::pair<const double*, const double*> > covariance_blocks;
// covariance_blocks.push_back(make_pair(x, x));
// covariance_blocks.push_back(make_pair(y, y));
// covariance_blocks.push_back(make_pair(x, y));
//
// CHECK(covariance.Compute(covariance_blocks, &problem));
//
// double covariance_xx[3 * 3];
// double covariance_yy[2 * 2];
// double covariance_xy[3 * 2];
// covariance.GetCovarianceBlock(x, x, covariance_xx)
// covariance.GetCovarianceBlock(y, y, covariance_yy)
// covariance.GetCovarianceBlock(x, y, covariance_xy)
//
class CERES_EXPORT Covariance {
public:
struct CERES_EXPORT Options {
Options()
#ifndef CERES_NO_SUITESPARSE
: algorithm_type(SUITE_SPARSE_QR),
#else
: algorithm_type(EIGEN_SPARSE_QR),
#endif
min_reciprocal_condition_number(1e-14),
null_space_rank(0),
num_threads(1),
apply_loss_function(true) {
}
// Ceres supports three different algorithms for covariance
// estimation, which represent different tradeoffs in speed,
// accuracy and reliability.
//
// 1. DENSE_SVD uses Eigen's JacobiSVD to perform the
// computations. It computes the singular value decomposition
//
// U * S * V' = J
//
// and then uses it to compute the pseudo inverse of J'J as
//
// pseudoinverse[J'J]^ = V * pseudoinverse[S] * V'
//
// It is an accurate but slow method and should only be used
// for small to moderate sized problems. It can handle
// full-rank as well as rank deficient Jacobians.
//
// 2. EIGEN_SPARSE_QR uses the sparse QR factorization algorithm
// in Eigen to compute the decomposition
//
// Q * R = J
//
// [J'J]^-1 = [R*R']^-1
//
// It is a moderately fast algorithm for sparse matrices.
//
// 3. SUITE_SPARSE_QR uses the SuiteSparseQR sparse QR
// factorization algorithm. It uses dense linear algebra and is
// multi threaded, so for large sparse sparse matrices it is
// significantly faster than EIGEN_SPARSE_QR.
//
// Neither EIGEN_SPARSE_QR not SUITE_SPARSE_QR are capable of
// computing the covariance if the Jacobian is rank deficient.
CovarianceAlgorithmType algorithm_type;
// If the Jacobian matrix is near singular, then inverting J'J
// will result in unreliable results, e.g, if
//
// J = [1.0 1.0 ]
// [1.0 1.0000001 ]
//
// which is essentially a rank deficient matrix, we have
//
// inv(J'J) = [ 2.0471e+14 -2.0471e+14]
// [-2.0471e+14 2.0471e+14]
//
// This is not a useful result. Therefore, by default
// Covariance::Compute will return false if a rank deficient
// Jacobian is encountered. How rank deficiency is detected
// depends on the algorithm being used.
//
// 1. DENSE_SVD
//
// min_sigma / max_sigma < sqrt(min_reciprocal_condition_number)
//
// where min_sigma and max_sigma are the minimum and maxiumum
// singular values of J respectively.
//
// 2. SUITE_SPARSE_QR and EIGEN_SPARSE_QR
//
// rank(J) < num_col(J)
//
// Here rank(J) is the estimate of the rank of J returned by the
// sparse QR factorization algorithm. It is a fairly reliable
// indication of rank deficiency.
//
double min_reciprocal_condition_number;
// When using DENSE_SVD, the user has more control in dealing with
// singular and near singular covariance matrices.
//
// As mentioned above, when the covariance matrix is near
// singular, instead of computing the inverse of J'J, the
// Moore-Penrose pseudoinverse of J'J should be computed.
//
// If J'J has the eigen decomposition (lambda_i, e_i), where
// lambda_i is the i^th eigenvalue and e_i is the corresponding
// eigenvector, then the inverse of J'J is
//
// inverse[J'J] = sum_i e_i e_i' / lambda_i
//
// and computing the pseudo inverse involves dropping terms from
// this sum that correspond to small eigenvalues.
//
// How terms are dropped is controlled by
// min_reciprocal_condition_number and null_space_rank.
//
// If null_space_rank is non-negative, then the smallest
// null_space_rank eigenvalue/eigenvectors are dropped
// irrespective of the magnitude of lambda_i. If the ratio of the
// smallest non-zero eigenvalue to the largest eigenvalue in the
// truncated matrix is still below
// min_reciprocal_condition_number, then the Covariance::Compute()
// will fail and return false.
//
// Setting null_space_rank = -1 drops all terms for which
//
// lambda_i / lambda_max < min_reciprocal_condition_number.
//
// This option has no effect on the SUITE_SPARSE_QR and
// EIGEN_SPARSE_QR algorithms.
int null_space_rank;
int num_threads;
// Even though the residual blocks in the problem may contain loss
// functions, setting apply_loss_function to false will turn off
// the application of the loss function to the output of the cost
// function and in turn its effect on the covariance.
//
// TODO(sameergaarwal): Expand this based on Jim's experiments.
bool apply_loss_function;
};
explicit Covariance(const Options& options);
~Covariance();
// Compute a part of the covariance matrix.
//
// The vector covariance_blocks, indexes into the covariance matrix
// block-wise using pairs of parameter blocks. This allows the
// covariance estimation algorithm to only compute and store these
// blocks.
//
// Since the covariance matrix is symmetric, if the user passes
// (block1, block2), then GetCovarianceBlock can be called with
// block1, block2 as well as block2, block1.
//
// covariance_blocks cannot contain duplicates. Bad things will
// happen if they do.
//
// Note that the list of covariance_blocks is only used to determine
// what parts of the covariance matrix are computed. The full
// Jacobian is used to do the computation, i.e. they do not have an
// impact on what part of the Jacobian is used for computation.
//
// The return value indicates the success or failure of the
// covariance computation. Please see the documentation for
// Covariance::Options for more on the conditions under which this
// function returns false.
bool Compute(
const std::vector<std::pair<const double*,
const double*> >& covariance_blocks,
Problem* problem);
// Compute a part of the covariance matrix.
//
// The vector parameter_blocks contains the parameter blocks that
// are used for computing the covariance matrix. From this vector
// all covariance pairs are generated. This allows the covariance
// estimation algorithm to only compute and store these blocks.
//
// parameter_blocks cannot contain duplicates. Bad things will
// happen if they do.
//
// Note that the list of covariance_blocks is only used to determine
// what parts of the covariance matrix are computed. The full
// Jacobian is used to do the computation, i.e. they do not have an
// impact on what part of the Jacobian is used for computation.
//
// The return value indicates the success or failure of the
// covariance computation. Please see the documentation for
// Covariance::Options for more on the conditions under which this
// function returns false.
bool Compute(const std::vector<const double*>& parameter_blocks,
Problem* problem);
// Return the block of the cross-covariance matrix corresponding to
// parameter_block1 and parameter_block2.
//
// Compute must be called before the first call to
// GetCovarianceBlock and the pair <parameter_block1,
// parameter_block2> OR the pair <parameter_block2,
// parameter_block1> must have been present in the vector
// covariance_blocks when Compute was called. Otherwise
// GetCovarianceBlock will return false.
//
// covariance_block must point to a memory location that can store a
// parameter_block1_size x parameter_block2_size matrix. The
// returned covariance will be a row-major matrix.
bool GetCovarianceBlock(const double* parameter_block1,
const double* parameter_block2,
double* covariance_block) const;
// Return the block of the cross-covariance matrix corresponding to
// parameter_block1 and parameter_block2.
// Returns cross-covariance in the tangent space if a local
// parameterization is associated with either parameter block;
// else returns cross-covariance in the ambient space.
//
// Compute must be called before the first call to
// GetCovarianceBlock and the pair <parameter_block1,
// parameter_block2> OR the pair <parameter_block2,
// parameter_block1> must have been present in the vector
// covariance_blocks when Compute was called. Otherwise
// GetCovarianceBlock will return false.
//
// covariance_block must point to a memory location that can store a
// parameter_block1_local_size x parameter_block2_local_size matrix. The
// returned covariance will be a row-major matrix.
bool GetCovarianceBlockInTangentSpace(const double* parameter_block1,
const double* parameter_block2,
double* covariance_block) const;
// Return the covariance matrix corresponding to all parameter_blocks.
//
// Compute must be called before calling GetCovarianceMatrix and all
// parameter_blocks must have been present in the vector
// parameter_blocks when Compute was called. Otherwise
// GetCovarianceMatrix returns false.
//
// covariance_matrix must point to a memory location that can store
// the size of the covariance matrix. The covariance matrix will be
// a square matrix whose row and column count is equal to the sum of
// the sizes of the individual parameter blocks. The covariance
// matrix will be a row-major matrix.
bool GetCovarianceMatrix(const std::vector<const double *> ¶meter_blocks,
double *covariance_matrix);
// Return the covariance matrix corresponding to parameter_blocks
// in the tangent space if a local parameterization is associated
// with one of the parameter blocks else returns the covariance
// matrix in the ambient space.
//
// Compute must be called before calling GetCovarianceMatrix and all
// parameter_blocks must have been present in the vector
// parameters_blocks when Compute was called. Otherwise
// GetCovarianceMatrix returns false.
//
// covariance_matrix must point to a memory location that can store
// the size of the covariance matrix. The covariance matrix will be
// a square matrix whose row and column count is equal to the sum of
// the sizes of the tangent spaces of the individual parameter
// blocks. The covariance matrix will be a row-major matrix.
bool GetCovarianceMatrixInTangentSpace(
const std::vector<const double*>& parameter_blocks,
double* covariance_matrix);
private:
internal::scoped_ptr<internal::CovarianceImpl> impl_;
};
} // namespace ceres
#include "ceres/internal/reenable_warnings.h"
#endif // CERES_PUBLIC_COVARIANCE_H_
|