/usr/include/ceres/jet.h is in libceres-dev 1.12.0+dfsg0-1+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 | // Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
//
// A simple implementation of N-dimensional dual numbers, for automatically
// computing exact derivatives of functions.
//
// While a complete treatment of the mechanics of automatic differentation is
// beyond the scope of this header (see
// http://en.wikipedia.org/wiki/Automatic_differentiation for details), the
// basic idea is to extend normal arithmetic with an extra element, "e," often
// denoted with the greek symbol epsilon, such that e != 0 but e^2 = 0. Dual
// numbers are extensions of the real numbers analogous to complex numbers:
// whereas complex numbers augment the reals by introducing an imaginary unit i
// such that i^2 = -1, dual numbers introduce an "infinitesimal" unit e such
// that e^2 = 0. Dual numbers have two components: the "real" component and the
// "infinitesimal" component, generally written as x + y*e. Surprisingly, this
// leads to a convenient method for computing exact derivatives without needing
// to manipulate complicated symbolic expressions.
//
// For example, consider the function
//
// f(x) = x^2 ,
//
// evaluated at 10. Using normal arithmetic, f(10) = 100, and df/dx(10) = 20.
// Next, augument 10 with an infinitesimal to get:
//
// f(10 + e) = (10 + e)^2
// = 100 + 2 * 10 * e + e^2
// = 100 + 20 * e -+-
// -- |
// | +--- This is zero, since e^2 = 0
// |
// +----------------- This is df/dx!
//
// Note that the derivative of f with respect to x is simply the infinitesimal
// component of the value of f(x + e). So, in order to take the derivative of
// any function, it is only necessary to replace the numeric "object" used in
// the function with one extended with infinitesimals. The class Jet, defined in
// this header, is one such example of this, where substitution is done with
// templates.
//
// To handle derivatives of functions taking multiple arguments, different
// infinitesimals are used, one for each variable to take the derivative of. For
// example, consider a scalar function of two scalar parameters x and y:
//
// f(x, y) = x^2 + x * y
//
// Following the technique above, to compute the derivatives df/dx and df/dy for
// f(1, 3) involves doing two evaluations of f, the first time replacing x with
// x + e, the second time replacing y with y + e.
//
// For df/dx:
//
// f(1 + e, y) = (1 + e)^2 + (1 + e) * 3
// = 1 + 2 * e + 3 + 3 * e
// = 4 + 5 * e
//
// --> df/dx = 5
//
// For df/dy:
//
// f(1, 3 + e) = 1^2 + 1 * (3 + e)
// = 1 + 3 + e
// = 4 + e
//
// --> df/dy = 1
//
// To take the gradient of f with the implementation of dual numbers ("jets") in
// this file, it is necessary to create a single jet type which has components
// for the derivative in x and y, and passing them to a templated version of f:
//
// template<typename T>
// T f(const T &x, const T &y) {
// return x * x + x * y;
// }
//
// // The "2" means there should be 2 dual number components.
// Jet<double, 2> x(0); // Pick the 0th dual number for x.
// Jet<double, 2> y(1); // Pick the 1st dual number for y.
// Jet<double, 2> z = f(x, y);
//
// LOG(INFO) << "df/dx = " << z.v[0]
// << "df/dy = " << z.v[1];
//
// Most users should not use Jet objects directly; a wrapper around Jet objects,
// which makes computing the derivative, gradient, or jacobian of templated
// functors simple, is in autodiff.h. Even autodiff.h should not be used
// directly; instead autodiff_cost_function.h is typically the file of interest.
//
// For the more mathematically inclined, this file implements first-order
// "jets". A 1st order jet is an element of the ring
//
// T[N] = T[t_1, ..., t_N] / (t_1, ..., t_N)^2
//
// which essentially means that each jet consists of a "scalar" value 'a' from T
// and a 1st order perturbation vector 'v' of length N:
//
// x = a + \sum_i v[i] t_i
//
// A shorthand is to write an element as x = a + u, where u is the pertubation.
// Then, the main point about the arithmetic of jets is that the product of
// perturbations is zero:
//
// (a + u) * (b + v) = ab + av + bu + uv
// = ab + (av + bu) + 0
//
// which is what operator* implements below. Addition is simpler:
//
// (a + u) + (b + v) = (a + b) + (u + v).
//
// The only remaining question is how to evaluate the function of a jet, for
// which we use the chain rule:
//
// f(a + u) = f(a) + f'(a) u
//
// where f'(a) is the (scalar) derivative of f at a.
//
// By pushing these things through sufficiently and suitably templated
// functions, we can do automatic differentiation. Just be sure to turn on
// function inlining and common-subexpression elimination, or it will be very
// slow!
//
// WARNING: Most Ceres users should not directly include this file or know the
// details of how jets work. Instead the suggested method for automatic
// derivatives is to use autodiff_cost_function.h, which is a wrapper around
// both jets.h and autodiff.h to make taking derivatives of cost functions for
// use in Ceres easier.
#ifndef CERES_PUBLIC_JET_H_
#define CERES_PUBLIC_JET_H_
#include <cmath>
#include <iosfwd>
#include <iostream> // NOLINT
#include <limits>
#include <string>
#include "Eigen/Core"
#include "ceres/fpclassify.h"
#include "ceres/internal/port.h"
namespace ceres {
template <typename T, int N>
struct Jet {
enum { DIMENSION = N };
// Default-construct "a" because otherwise this can lead to false errors about
// uninitialized uses when other classes relying on default constructed T
// (where T is a Jet<T, N>). This usually only happens in opt mode. Note that
// the C++ standard mandates that e.g. default constructed doubles are
// initialized to 0.0; see sections 8.5 of the C++03 standard.
Jet() : a() {
v.setZero();
}
// Constructor from scalar: a + 0.
explicit Jet(const T& value) {
a = value;
v.setZero();
}
// Constructor from scalar plus variable: a + t_i.
Jet(const T& value, int k) {
a = value;
v.setZero();
v[k] = T(1.0);
}
// Constructor from scalar and vector part
// The use of Eigen::DenseBase allows Eigen expressions
// to be passed in without being fully evaluated until
// they are assigned to v
template<typename Derived>
EIGEN_STRONG_INLINE Jet(const T& a, const Eigen::DenseBase<Derived> &v)
: a(a), v(v) {
}
// Compound operators
Jet<T, N>& operator+=(const Jet<T, N> &y) {
*this = *this + y;
return *this;
}
Jet<T, N>& operator-=(const Jet<T, N> &y) {
*this = *this - y;
return *this;
}
Jet<T, N>& operator*=(const Jet<T, N> &y) {
*this = *this * y;
return *this;
}
Jet<T, N>& operator/=(const Jet<T, N> &y) {
*this = *this / y;
return *this;
}
// The scalar part.
T a;
// The infinitesimal part.
// We allocate Jets on the stack and other places they might not be aligned
// to 16-byte boundaries, which would prevent the safe use of vectorisation.
// If we have C++11, we can specify the alignment. However, the standard
// gives wide lattitude as to what alignments are valid, and it might be that
// the maximum supported alignment is < 16, in which case even with C++11, we
// cannot specify 16-byte alignment. If using < C++11, we cannot specify
// alignment.
#ifndef CERES_USE_CXX11
// fall back to safe version:
Eigen::Matrix<T, N, 1, Eigen::DontAlign> v;
#else
static constexpr bool kShouldAlignMatrix =
16 <= ::ceres::port_constants::kMaxAlignBytes;
static constexpr int kAlignHint = kShouldAlignMatrix ?
Eigen::AutoAlign : Eigen::DontAlign;
// Default to the native alignment of double if 16-byte alignment is not
// supported. We cannot use alignof(T) as if we do, GCC complains that the
// alignment 'is not an integer constant', although Clang accepts it.
static constexpr size_t kAlignment = kShouldAlignMatrix ? 16 : alignof(double);
alignas(kAlignment) Eigen::Matrix<T, N, 1, kAlignHint> v;
#endif
};
// Unary +
template<typename T, int N> inline
Jet<T, N> const& operator+(const Jet<T, N>& f) {
return f;
}
// TODO(keir): Try adding __attribute__((always_inline)) to these functions to
// see if it causes a performance increase.
// Unary -
template<typename T, int N> inline
Jet<T, N> operator-(const Jet<T, N>&f) {
return Jet<T, N>(-f.a, -f.v);
}
// Binary +
template<typename T, int N> inline
Jet<T, N> operator+(const Jet<T, N>& f,
const Jet<T, N>& g) {
return Jet<T, N>(f.a + g.a, f.v + g.v);
}
// Binary + with a scalar: x + s
template<typename T, int N> inline
Jet<T, N> operator+(const Jet<T, N>& f, T s) {
return Jet<T, N>(f.a + s, f.v);
}
// Binary + with a scalar: s + x
template<typename T, int N> inline
Jet<T, N> operator+(T s, const Jet<T, N>& f) {
return Jet<T, N>(f.a + s, f.v);
}
// Binary -
template<typename T, int N> inline
Jet<T, N> operator-(const Jet<T, N>& f,
const Jet<T, N>& g) {
return Jet<T, N>(f.a - g.a, f.v - g.v);
}
// Binary - with a scalar: x - s
template<typename T, int N> inline
Jet<T, N> operator-(const Jet<T, N>& f, T s) {
return Jet<T, N>(f.a - s, f.v);
}
// Binary - with a scalar: s - x
template<typename T, int N> inline
Jet<T, N> operator-(T s, const Jet<T, N>& f) {
return Jet<T, N>(s - f.a, -f.v);
}
// Binary *
template<typename T, int N> inline
Jet<T, N> operator*(const Jet<T, N>& f,
const Jet<T, N>& g) {
return Jet<T, N>(f.a * g.a, f.a * g.v + f.v * g.a);
}
// Binary * with a scalar: x * s
template<typename T, int N> inline
Jet<T, N> operator*(const Jet<T, N>& f, T s) {
return Jet<T, N>(f.a * s, f.v * s);
}
// Binary * with a scalar: s * x
template<typename T, int N> inline
Jet<T, N> operator*(T s, const Jet<T, N>& f) {
return Jet<T, N>(f.a * s, f.v * s);
}
// Binary /
template<typename T, int N> inline
Jet<T, N> operator/(const Jet<T, N>& f,
const Jet<T, N>& g) {
// This uses:
//
// a + u (a + u)(b - v) (a + u)(b - v)
// ----- = -------------- = --------------
// b + v (b + v)(b - v) b^2
//
// which holds because v*v = 0.
const T g_a_inverse = T(1.0) / g.a;
const T f_a_by_g_a = f.a * g_a_inverse;
return Jet<T, N>(f.a * g_a_inverse, (f.v - f_a_by_g_a * g.v) * g_a_inverse);
}
// Binary / with a scalar: s / x
template<typename T, int N> inline
Jet<T, N> operator/(T s, const Jet<T, N>& g) {
const T minus_s_g_a_inverse2 = -s / (g.a * g.a);
return Jet<T, N>(s / g.a, g.v * minus_s_g_a_inverse2);
}
// Binary / with a scalar: x / s
template<typename T, int N> inline
Jet<T, N> operator/(const Jet<T, N>& f, T s) {
const T s_inverse = T(1.0) / s;
return Jet<T, N>(f.a * s_inverse, f.v * s_inverse);
}
// Binary comparison operators for both scalars and jets.
#define CERES_DEFINE_JET_COMPARISON_OPERATOR(op) \
template<typename T, int N> inline \
bool operator op(const Jet<T, N>& f, const Jet<T, N>& g) { \
return f.a op g.a; \
} \
template<typename T, int N> inline \
bool operator op(const T& s, const Jet<T, N>& g) { \
return s op g.a; \
} \
template<typename T, int N> inline \
bool operator op(const Jet<T, N>& f, const T& s) { \
return f.a op s; \
}
CERES_DEFINE_JET_COMPARISON_OPERATOR( < ) // NOLINT
CERES_DEFINE_JET_COMPARISON_OPERATOR( <= ) // NOLINT
CERES_DEFINE_JET_COMPARISON_OPERATOR( > ) // NOLINT
CERES_DEFINE_JET_COMPARISON_OPERATOR( >= ) // NOLINT
CERES_DEFINE_JET_COMPARISON_OPERATOR( == ) // NOLINT
CERES_DEFINE_JET_COMPARISON_OPERATOR( != ) // NOLINT
#undef CERES_DEFINE_JET_COMPARISON_OPERATOR
// Pull some functions from namespace std.
//
// This is necessary because we want to use the same name (e.g. 'sqrt') for
// double-valued and Jet-valued functions, but we are not allowed to put
// Jet-valued functions inside namespace std.
//
// TODO(keir): Switch to "using".
inline double abs (double x) { return std::abs(x); }
inline double log (double x) { return std::log(x); }
inline double exp (double x) { return std::exp(x); }
inline double sqrt (double x) { return std::sqrt(x); }
inline double cos (double x) { return std::cos(x); }
inline double acos (double x) { return std::acos(x); }
inline double sin (double x) { return std::sin(x); }
inline double asin (double x) { return std::asin(x); }
inline double tan (double x) { return std::tan(x); }
inline double atan (double x) { return std::atan(x); }
inline double sinh (double x) { return std::sinh(x); }
inline double cosh (double x) { return std::cosh(x); }
inline double tanh (double x) { return std::tanh(x); }
inline double floor (double x) { return std::floor(x); }
inline double ceil (double x) { return std::ceil(x); }
inline double pow (double x, double y) { return std::pow(x, y); }
inline double atan2(double y, double x) { return std::atan2(y, x); }
// In general, f(a + h) ~= f(a) + f'(a) h, via the chain rule.
// abs(x + h) ~= x + h or -(x + h)
template <typename T, int N> inline
Jet<T, N> abs(const Jet<T, N>& f) {
return f.a < T(0.0) ? -f : f;
}
// log(a + h) ~= log(a) + h / a
template <typename T, int N> inline
Jet<T, N> log(const Jet<T, N>& f) {
const T a_inverse = T(1.0) / f.a;
return Jet<T, N>(log(f.a), f.v * a_inverse);
}
// exp(a + h) ~= exp(a) + exp(a) h
template <typename T, int N> inline
Jet<T, N> exp(const Jet<T, N>& f) {
const T tmp = exp(f.a);
return Jet<T, N>(tmp, tmp * f.v);
}
// sqrt(a + h) ~= sqrt(a) + h / (2 sqrt(a))
template <typename T, int N> inline
Jet<T, N> sqrt(const Jet<T, N>& f) {
const T tmp = sqrt(f.a);
const T two_a_inverse = T(1.0) / (T(2.0) * tmp);
return Jet<T, N>(tmp, f.v * two_a_inverse);
}
// cos(a + h) ~= cos(a) - sin(a) h
template <typename T, int N> inline
Jet<T, N> cos(const Jet<T, N>& f) {
return Jet<T, N>(cos(f.a), - sin(f.a) * f.v);
}
// acos(a + h) ~= acos(a) - 1 / sqrt(1 - a^2) h
template <typename T, int N> inline
Jet<T, N> acos(const Jet<T, N>& f) {
const T tmp = - T(1.0) / sqrt(T(1.0) - f.a * f.a);
return Jet<T, N>(acos(f.a), tmp * f.v);
}
// sin(a + h) ~= sin(a) + cos(a) h
template <typename T, int N> inline
Jet<T, N> sin(const Jet<T, N>& f) {
return Jet<T, N>(sin(f.a), cos(f.a) * f.v);
}
// asin(a + h) ~= asin(a) + 1 / sqrt(1 - a^2) h
template <typename T, int N> inline
Jet<T, N> asin(const Jet<T, N>& f) {
const T tmp = T(1.0) / sqrt(T(1.0) - f.a * f.a);
return Jet<T, N>(asin(f.a), tmp * f.v);
}
// tan(a + h) ~= tan(a) + (1 + tan(a)^2) h
template <typename T, int N> inline
Jet<T, N> tan(const Jet<T, N>& f) {
const T tan_a = tan(f.a);
const T tmp = T(1.0) + tan_a * tan_a;
return Jet<T, N>(tan_a, tmp * f.v);
}
// atan(a + h) ~= atan(a) + 1 / (1 + a^2) h
template <typename T, int N> inline
Jet<T, N> atan(const Jet<T, N>& f) {
const T tmp = T(1.0) / (T(1.0) + f.a * f.a);
return Jet<T, N>(atan(f.a), tmp * f.v);
}
// sinh(a + h) ~= sinh(a) + cosh(a) h
template <typename T, int N> inline
Jet<T, N> sinh(const Jet<T, N>& f) {
return Jet<T, N>(sinh(f.a), cosh(f.a) * f.v);
}
// cosh(a + h) ~= cosh(a) + sinh(a) h
template <typename T, int N> inline
Jet<T, N> cosh(const Jet<T, N>& f) {
return Jet<T, N>(cosh(f.a), sinh(f.a) * f.v);
}
// tanh(a + h) ~= tanh(a) + (1 - tanh(a)^2) h
template <typename T, int N> inline
Jet<T, N> tanh(const Jet<T, N>& f) {
const T tanh_a = tanh(f.a);
const T tmp = T(1.0) - tanh_a * tanh_a;
return Jet<T, N>(tanh_a, tmp * f.v);
}
// The floor function should be used with extreme care as this operation will
// result in a zero derivative which provides no information to the solver.
//
// floor(a + h) ~= floor(a) + 0
template <typename T, int N> inline
Jet<T, N> floor(const Jet<T, N>& f) {
return Jet<T, N>(floor(f.a));
}
// The ceil function should be used with extreme care as this operation will
// result in a zero derivative which provides no information to the solver.
//
// ceil(a + h) ~= ceil(a) + 0
template <typename T, int N> inline
Jet<T, N> ceil(const Jet<T, N>& f) {
return Jet<T, N>(ceil(f.a));
}
// Bessel functions of the first kind with integer order equal to 0, 1, n.
//
// Microsoft has deprecated the j[0,1,n]() POSIX Bessel functions in favour of
// _j[0,1,n](). Where available on MSVC, use _j[0,1,n]() to avoid deprecated
// function errors in client code (the specific warning is suppressed when
// Ceres itself is built).
inline double BesselJ0(double x) {
#if defined(_MSC_VER) && defined(_j0)
return _j0(x);
#else
return j0(x);
#endif
}
inline double BesselJ1(double x) {
#if defined(_MSC_VER) && defined(_j1)
return _j1(x);
#else
return j1(x);
#endif
}
inline double BesselJn(int n, double x) {
#if defined(_MSC_VER) && defined(_jn)
return _jn(n, x);
#else
return jn(n, x);
#endif
}
// For the formulae of the derivatives of the Bessel functions see the book:
// Olver, Lozier, Boisvert, Clark, NIST Handbook of Mathematical Functions,
// Cambridge University Press 2010.
//
// Formulae are also available at http://dlmf.nist.gov
// See formula http://dlmf.nist.gov/10.6#E3
// j0(a + h) ~= j0(a) - j1(a) h
template <typename T, int N> inline
Jet<T, N> BesselJ0(const Jet<T, N>& f) {
return Jet<T, N>(BesselJ0(f.a),
-BesselJ1(f.a) * f.v);
}
// See formula http://dlmf.nist.gov/10.6#E1
// j1(a + h) ~= j1(a) + 0.5 ( j0(a) - j2(a) ) h
template <typename T, int N> inline
Jet<T, N> BesselJ1(const Jet<T, N>& f) {
return Jet<T, N>(BesselJ1(f.a),
T(0.5) * (BesselJ0(f.a) - BesselJn(2, f.a)) * f.v);
}
// See formula http://dlmf.nist.gov/10.6#E1
// j_n(a + h) ~= j_n(a) + 0.5 ( j_{n-1}(a) - j_{n+1}(a) ) h
template <typename T, int N> inline
Jet<T, N> BesselJn(int n, const Jet<T, N>& f) {
return Jet<T, N>(BesselJn(n, f.a),
T(0.5) * (BesselJn(n - 1, f.a) - BesselJn(n + 1, f.a)) * f.v);
}
// Jet Classification. It is not clear what the appropriate semantics are for
// these classifications. This picks that IsFinite and isnormal are "all"
// operations, i.e. all elements of the jet must be finite for the jet itself
// to be finite (or normal). For IsNaN and IsInfinite, the answer is less
// clear. This takes a "any" approach for IsNaN and IsInfinite such that if any
// part of a jet is nan or inf, then the entire jet is nan or inf. This leads
// to strange situations like a jet can be both IsInfinite and IsNaN, but in
// practice the "any" semantics are the most useful for e.g. checking that
// derivatives are sane.
// The jet is finite if all parts of the jet are finite.
template <typename T, int N> inline
bool IsFinite(const Jet<T, N>& f) {
if (!IsFinite(f.a)) {
return false;
}
for (int i = 0; i < N; ++i) {
if (!IsFinite(f.v[i])) {
return false;
}
}
return true;
}
// The jet is infinite if any part of the jet is infinite.
template <typename T, int N> inline
bool IsInfinite(const Jet<T, N>& f) {
if (IsInfinite(f.a)) {
return true;
}
for (int i = 0; i < N; i++) {
if (IsInfinite(f.v[i])) {
return true;
}
}
return false;
}
// The jet is NaN if any part of the jet is NaN.
template <typename T, int N> inline
bool IsNaN(const Jet<T, N>& f) {
if (IsNaN(f.a)) {
return true;
}
for (int i = 0; i < N; ++i) {
if (IsNaN(f.v[i])) {
return true;
}
}
return false;
}
// The jet is normal if all parts of the jet are normal.
template <typename T, int N> inline
bool IsNormal(const Jet<T, N>& f) {
if (!IsNormal(f.a)) {
return false;
}
for (int i = 0; i < N; ++i) {
if (!IsNormal(f.v[i])) {
return false;
}
}
return true;
}
// atan2(b + db, a + da) ~= atan2(b, a) + (- b da + a db) / (a^2 + b^2)
//
// In words: the rate of change of theta is 1/r times the rate of
// change of (x, y) in the positive angular direction.
template <typename T, int N> inline
Jet<T, N> atan2(const Jet<T, N>& g, const Jet<T, N>& f) {
// Note order of arguments:
//
// f = a + da
// g = b + db
T const tmp = T(1.0) / (f.a * f.a + g.a * g.a);
return Jet<T, N>(atan2(g.a, f.a), tmp * (- g.a * f.v + f.a * g.v));
}
// pow -- base is a differentiable function, exponent is a constant.
// (a+da)^p ~= a^p + p*a^(p-1) da
template <typename T, int N> inline
Jet<T, N> pow(const Jet<T, N>& f, double g) {
T const tmp = g * pow(f.a, g - T(1.0));
return Jet<T, N>(pow(f.a, g), tmp * f.v);
}
// pow -- base is a constant, exponent is a differentiable function.
// We have various special cases, see the comment for pow(Jet, Jet) for
// analysis:
//
// 1. For f > 0 we have: (f)^(g + dg) ~= f^g + f^g log(f) dg
//
// 2. For f == 0 and g > 0 we have: (f)^(g + dg) ~= f^g
//
// 3. For f < 0 and integer g we have: (f)^(g + dg) ~= f^g but if dg
// != 0, the derivatives are not defined and we return NaN.
template <typename T, int N> inline
Jet<T, N> pow(double f, const Jet<T, N>& g) {
if (f == 0 && g.a > 0) {
// Handle case 2.
return Jet<T, N>(T(0.0));
}
if (f < 0 && g.a == floor(g.a)) {
// Handle case 3.
Jet<T, N> ret(pow(f, g.a));
for (int i = 0; i < N; i++) {
if (g.v[i] != T(0.0)) {
// Return a NaN when g.v != 0.
ret.v[i] = std::numeric_limits<T>::quiet_NaN();
}
}
return ret;
}
// Handle case 1.
T const tmp = pow(f, g.a);
return Jet<T, N>(tmp, log(f) * tmp * g.v);
}
// pow -- both base and exponent are differentiable functions. This has a
// variety of special cases that require careful handling.
//
// 1. For f > 0:
// (f + df)^(g + dg) ~= f^g + f^(g - 1) * (g * df + f * log(f) * dg)
// The numerical evaluation of f * log(f) for f > 0 is well behaved, even for
// extremely small values (e.g. 1e-99).
//
// 2. For f == 0 and g > 1: (f + df)^(g + dg) ~= 0
// This cases is needed because log(0) can not be evaluated in the f > 0
// expression. However the function f*log(f) is well behaved around f == 0
// and its limit as f-->0 is zero.
//
// 3. For f == 0 and g == 1: (f + df)^(g + dg) ~= 0 + df
//
// 4. For f == 0 and 0 < g < 1: The value is finite but the derivatives are not.
//
// 5. For f == 0 and g < 0: The value and derivatives of f^g are not finite.
//
// 6. For f == 0 and g == 0: The C standard incorrectly defines 0^0 to be 1
// "because there are applications that can exploit this definition". We
// (arbitrarily) decree that derivatives here will be nonfinite, since that
// is consistent with the behavior for f == 0, g < 0 and 0 < g < 1.
// Practically any definition could have been justified because mathematical
// consistency has been lost at this point.
//
// 7. For f < 0, g integer, dg == 0: (f + df)^(g + dg) ~= f^g + g * f^(g - 1) df
// This is equivalent to the case where f is a differentiable function and g
// is a constant (to first order).
//
// 8. For f < 0, g integer, dg != 0: The value is finite but the derivatives are
// not, because any change in the value of g moves us away from the point
// with a real-valued answer into the region with complex-valued answers.
//
// 9. For f < 0, g noninteger: The value and derivatives of f^g are not finite.
template <typename T, int N> inline
Jet<T, N> pow(const Jet<T, N>& f, const Jet<T, N>& g) {
if (f.a == 0 && g.a >= 1) {
// Handle cases 2 and 3.
if (g.a > 1) {
return Jet<T, N>(T(0.0));
}
return f;
}
if (f.a < 0 && g.a == floor(g.a)) {
// Handle cases 7 and 8.
T const tmp = g.a * pow(f.a, g.a - T(1.0));
Jet<T, N> ret(pow(f.a, g.a), tmp * f.v);
for (int i = 0; i < N; i++) {
if (g.v[i] != T(0.0)) {
// Return a NaN when g.v != 0.
ret.v[i] = std::numeric_limits<T>::quiet_NaN();
}
}
return ret;
}
// Handle the remaining cases. For cases 4,5,6,9 we allow the log() function
// to generate -HUGE_VAL or NaN, since those cases result in a nonfinite
// derivative.
T const tmp1 = pow(f.a, g.a);
T const tmp2 = g.a * pow(f.a, g.a - T(1.0));
T const tmp3 = tmp1 * log(f.a);
return Jet<T, N>(tmp1, tmp2 * f.v + tmp3 * g.v);
}
// Define the helper functions Eigen needs to embed Jet types.
//
// NOTE(keir): machine_epsilon() and precision() are missing, because they don't
// work with nested template types (e.g. where the scalar is itself templated).
// Among other things, this means that decompositions of Jet's does not work,
// for example
//
// Matrix<Jet<T, N> ... > A, x, b;
// ...
// A.solve(b, &x)
//
// does not work and will fail with a strange compiler error.
//
// TODO(keir): This is an Eigen 2.0 limitation that is lifted in 3.0. When we
// switch to 3.0, also add the rest of the specialization functionality.
template<typename T, int N> inline const Jet<T, N>& ei_conj(const Jet<T, N>& x) { return x; } // NOLINT
template<typename T, int N> inline const Jet<T, N>& ei_real(const Jet<T, N>& x) { return x; } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_imag(const Jet<T, N>& ) { return Jet<T, N>(0.0); } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_abs (const Jet<T, N>& x) { return fabs(x); } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_abs2(const Jet<T, N>& x) { return x * x; } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_sqrt(const Jet<T, N>& x) { return sqrt(x); } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_exp (const Jet<T, N>& x) { return exp(x); } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_log (const Jet<T, N>& x) { return log(x); } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_sin (const Jet<T, N>& x) { return sin(x); } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_cos (const Jet<T, N>& x) { return cos(x); } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_tan (const Jet<T, N>& x) { return tan(x); } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_atan(const Jet<T, N>& x) { return atan(x); } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_sinh(const Jet<T, N>& x) { return sinh(x); } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_cosh(const Jet<T, N>& x) { return cosh(x); } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_tanh(const Jet<T, N>& x) { return tanh(x); } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_pow (const Jet<T, N>& x, Jet<T, N> y) { return pow(x, y); } // NOLINT
// Note: This has to be in the ceres namespace for argument dependent lookup to
// function correctly. Otherwise statements like CHECK_LE(x, 2.0) fail with
// strange compile errors.
template <typename T, int N>
inline std::ostream &operator<<(std::ostream &s, const Jet<T, N>& z) {
s << "[" << z.a << " ; ";
for (int i = 0; i < N; ++i) {
s << z.v[i];
if (i != N - 1) {
s << ", ";
}
}
s << "]";
return s;
}
} // namespace ceres
namespace Eigen {
// Creating a specialization of NumTraits enables placing Jet objects inside
// Eigen arrays, getting all the goodness of Eigen combined with autodiff.
template<typename T, int N>
struct NumTraits<ceres::Jet<T, N> > {
typedef ceres::Jet<T, N> Real;
typedef ceres::Jet<T, N> NonInteger;
typedef ceres::Jet<T, N> Nested;
typedef ceres::Jet<T, N> Literal;
static typename ceres::Jet<T, N> dummy_precision() {
return ceres::Jet<T, N>(1e-12);
}
static inline Real epsilon() {
return Real(std::numeric_limits<T>::epsilon());
}
enum {
IsComplex = 0,
IsInteger = 0,
IsSigned,
ReadCost = 1,
AddCost = 1,
// For Jet types, multiplication is more expensive than addition.
MulCost = 3,
HasFloatingPoint = 1,
RequireInitialization = 1
};
template<bool Vectorized>
struct Div {
enum {
#if defined(EIGEN_VECTORIZE_AVX)
AVX = true,
#else
AVX = false,
#endif
// Assuming that for Jets, division is as expensive as
// multiplication.
Cost = 3
};
};
};
} // namespace Eigen
#endif // CERES_PUBLIC_JET_H_
|