/usr/include/ceres/rotation.h is in libceres-dev 1.12.0+dfsg0-1+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 | // Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
// sameeragarwal@google.com (Sameer Agarwal)
//
// Templated functions for manipulating rotations. The templated
// functions are useful when implementing functors for automatic
// differentiation.
//
// In the following, the Quaternions are laid out as 4-vectors, thus:
//
// q[0] scalar part.
// q[1] coefficient of i.
// q[2] coefficient of j.
// q[3] coefficient of k.
//
// where: i*i = j*j = k*k = -1 and i*j = k, j*k = i, k*i = j.
#ifndef CERES_PUBLIC_ROTATION_H_
#define CERES_PUBLIC_ROTATION_H_
#include <algorithm>
#include <cmath>
#include <limits>
namespace ceres {
// Trivial wrapper to index linear arrays as matrices, given a fixed
// column and row stride. When an array "T* array" is wrapped by a
//
// (const) MatrixAdapter<T, row_stride, col_stride> M"
//
// the expression M(i, j) is equivalent to
//
// arrary[i * row_stride + j * col_stride]
//
// Conversion functions to and from rotation matrices accept
// MatrixAdapters to permit using row-major and column-major layouts,
// and rotation matrices embedded in larger matrices (such as a 3x4
// projection matrix).
template <typename T, int row_stride, int col_stride>
struct MatrixAdapter;
// Convenience functions to create a MatrixAdapter that treats the
// array pointed to by "pointer" as a 3x3 (contiguous) column-major or
// row-major matrix.
template <typename T>
MatrixAdapter<T, 1, 3> ColumnMajorAdapter3x3(T* pointer);
template <typename T>
MatrixAdapter<T, 3, 1> RowMajorAdapter3x3(T* pointer);
// Convert a value in combined axis-angle representation to a quaternion.
// The value angle_axis is a triple whose norm is an angle in radians,
// and whose direction is aligned with the axis of rotation,
// and quaternion is a 4-tuple that will contain the resulting quaternion.
// The implementation may be used with auto-differentiation up to the first
// derivative, higher derivatives may have unexpected results near the origin.
template<typename T>
void AngleAxisToQuaternion(const T* angle_axis, T* quaternion);
// Convert a quaternion to the equivalent combined axis-angle representation.
// The value quaternion must be a unit quaternion - it is not normalized first,
// and angle_axis will be filled with a value whose norm is the angle of
// rotation in radians, and whose direction is the axis of rotation.
// The implemention may be used with auto-differentiation up to the first
// derivative, higher derivatives may have unexpected results near the origin.
template<typename T>
void QuaternionToAngleAxis(const T* quaternion, T* angle_axis);
// Conversions between 3x3 rotation matrix (in column major order) and
// quaternion rotation representations. Templated for use with
// autodifferentiation.
template <typename T>
void RotationMatrixToQuaternion(const T* R, T* quaternion);
template <typename T, int row_stride, int col_stride>
void RotationMatrixToQuaternion(
const MatrixAdapter<const T, row_stride, col_stride>& R,
T* quaternion);
// Conversions between 3x3 rotation matrix (in column major order) and
// axis-angle rotation representations. Templated for use with
// autodifferentiation.
template <typename T>
void RotationMatrixToAngleAxis(const T* R, T* angle_axis);
template <typename T, int row_stride, int col_stride>
void RotationMatrixToAngleAxis(
const MatrixAdapter<const T, row_stride, col_stride>& R,
T* angle_axis);
template <typename T>
void AngleAxisToRotationMatrix(const T* angle_axis, T* R);
template <typename T, int row_stride, int col_stride>
void AngleAxisToRotationMatrix(
const T* angle_axis,
const MatrixAdapter<T, row_stride, col_stride>& R);
// Conversions between 3x3 rotation matrix (in row major order) and
// Euler angle (in degrees) rotation representations.
//
// The {pitch,roll,yaw} Euler angles are rotations around the {x,y,z}
// axes, respectively. They are applied in that same order, so the
// total rotation R is Rz * Ry * Rx.
template <typename T>
void EulerAnglesToRotationMatrix(const T* euler, int row_stride, T* R);
template <typename T, int row_stride, int col_stride>
void EulerAnglesToRotationMatrix(
const T* euler,
const MatrixAdapter<T, row_stride, col_stride>& R);
// Convert a 4-vector to a 3x3 scaled rotation matrix.
//
// The choice of rotation is such that the quaternion [1 0 0 0] goes to an
// identity matrix and for small a, b, c the quaternion [1 a b c] goes to
// the matrix
//
// [ 0 -c b ]
// I + 2 [ c 0 -a ] + higher order terms
// [ -b a 0 ]
//
// which corresponds to a Rodrigues approximation, the last matrix being
// the cross-product matrix of [a b c]. Together with the property that
// R(q1 * q2) = R(q1) * R(q2) this uniquely defines the mapping from q to R.
//
// No normalization of the quaternion is performed, i.e.
// R = ||q||^2 * Q, where Q is an orthonormal matrix
// such that det(Q) = 1 and Q*Q' = I
//
// WARNING: The rotation matrix is ROW MAJOR
template <typename T> inline
void QuaternionToScaledRotation(const T q[4], T R[3 * 3]);
template <typename T, int row_stride, int col_stride> inline
void QuaternionToScaledRotation(
const T q[4],
const MatrixAdapter<T, row_stride, col_stride>& R);
// Same as above except that the rotation matrix is normalized by the
// Frobenius norm, so that R * R' = I (and det(R) = 1).
//
// WARNING: The rotation matrix is ROW MAJOR
template <typename T> inline
void QuaternionToRotation(const T q[4], T R[3 * 3]);
template <typename T, int row_stride, int col_stride> inline
void QuaternionToRotation(
const T q[4],
const MatrixAdapter<T, row_stride, col_stride>& R);
// Rotates a point pt by a quaternion q:
//
// result = R(q) * pt
//
// Assumes the quaternion is unit norm. This assumption allows us to
// write the transform as (something)*pt + pt, as is clear from the
// formula below. If you pass in a quaternion with |q|^2 = 2 then you
// WILL NOT get back 2 times the result you get for a unit quaternion.
template <typename T> inline
void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);
// With this function you do not need to assume that q has unit norm.
// It does assume that the norm is non-zero.
template <typename T> inline
void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);
// zw = z * w, where * is the Quaternion product between 4 vectors.
template<typename T> inline
void QuaternionProduct(const T z[4], const T w[4], T zw[4]);
// xy = x cross y;
template<typename T> inline
void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]);
template<typename T> inline
T DotProduct(const T x[3], const T y[3]);
// y = R(angle_axis) * x;
template<typename T> inline
void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]);
// --- IMPLEMENTATION
template<typename T, int row_stride, int col_stride>
struct MatrixAdapter {
T* pointer_;
explicit MatrixAdapter(T* pointer)
: pointer_(pointer)
{}
T& operator()(int r, int c) const {
return pointer_[r * row_stride + c * col_stride];
}
};
template <typename T>
MatrixAdapter<T, 1, 3> ColumnMajorAdapter3x3(T* pointer) {
return MatrixAdapter<T, 1, 3>(pointer);
}
template <typename T>
MatrixAdapter<T, 3, 1> RowMajorAdapter3x3(T* pointer) {
return MatrixAdapter<T, 3, 1>(pointer);
}
template<typename T>
inline void AngleAxisToQuaternion(const T* angle_axis, T* quaternion) {
const T& a0 = angle_axis[0];
const T& a1 = angle_axis[1];
const T& a2 = angle_axis[2];
const T theta_squared = a0 * a0 + a1 * a1 + a2 * a2;
// For points not at the origin, the full conversion is numerically stable.
if (theta_squared > T(0.0)) {
const T theta = sqrt(theta_squared);
const T half_theta = theta * T(0.5);
const T k = sin(half_theta) / theta;
quaternion[0] = cos(half_theta);
quaternion[1] = a0 * k;
quaternion[2] = a1 * k;
quaternion[3] = a2 * k;
} else {
// At the origin, sqrt() will produce NaN in the derivative since
// the argument is zero. By approximating with a Taylor series,
// and truncating at one term, the value and first derivatives will be
// computed correctly when Jets are used.
const T k(0.5);
quaternion[0] = T(1.0);
quaternion[1] = a0 * k;
quaternion[2] = a1 * k;
quaternion[3] = a2 * k;
}
}
template<typename T>
inline void QuaternionToAngleAxis(const T* quaternion, T* angle_axis) {
const T& q1 = quaternion[1];
const T& q2 = quaternion[2];
const T& q3 = quaternion[3];
const T sin_squared_theta = q1 * q1 + q2 * q2 + q3 * q3;
// For quaternions representing non-zero rotation, the conversion
// is numerically stable.
if (sin_squared_theta > T(0.0)) {
const T sin_theta = sqrt(sin_squared_theta);
const T& cos_theta = quaternion[0];
// If cos_theta is negative, theta is greater than pi/2, which
// means that angle for the angle_axis vector which is 2 * theta
// would be greater than pi.
//
// While this will result in the correct rotation, it does not
// result in a normalized angle-axis vector.
//
// In that case we observe that 2 * theta ~ 2 * theta - 2 * pi,
// which is equivalent saying
//
// theta - pi = atan(sin(theta - pi), cos(theta - pi))
// = atan(-sin(theta), -cos(theta))
//
const T two_theta =
T(2.0) * ((cos_theta < 0.0)
? atan2(-sin_theta, -cos_theta)
: atan2(sin_theta, cos_theta));
const T k = two_theta / sin_theta;
angle_axis[0] = q1 * k;
angle_axis[1] = q2 * k;
angle_axis[2] = q3 * k;
} else {
// For zero rotation, sqrt() will produce NaN in the derivative since
// the argument is zero. By approximating with a Taylor series,
// and truncating at one term, the value and first derivatives will be
// computed correctly when Jets are used.
const T k(2.0);
angle_axis[0] = q1 * k;
angle_axis[1] = q2 * k;
angle_axis[2] = q3 * k;
}
}
template <typename T>
void RotationMatrixToQuaternion(const T* R, T* angle_axis) {
RotationMatrixToQuaternion(ColumnMajorAdapter3x3(R), angle_axis);
}
// This algorithm comes from "Quaternion Calculus and Fast Animation",
// Ken Shoemake, 1987 SIGGRAPH course notes
template <typename T, int row_stride, int col_stride>
void RotationMatrixToQuaternion(
const MatrixAdapter<const T, row_stride, col_stride>& R,
T* quaternion) {
const T trace = R(0, 0) + R(1, 1) + R(2, 2);
if (trace >= 0.0) {
T t = sqrt(trace + T(1.0));
quaternion[0] = T(0.5) * t;
t = T(0.5) / t;
quaternion[1] = (R(2, 1) - R(1, 2)) * t;
quaternion[2] = (R(0, 2) - R(2, 0)) * t;
quaternion[3] = (R(1, 0) - R(0, 1)) * t;
} else {
int i = 0;
if (R(1, 1) > R(0, 0)) {
i = 1;
}
if (R(2, 2) > R(i, i)) {
i = 2;
}
const int j = (i + 1) % 3;
const int k = (j + 1) % 3;
T t = sqrt(R(i, i) - R(j, j) - R(k, k) + T(1.0));
quaternion[i + 1] = T(0.5) * t;
t = T(0.5) / t;
quaternion[0] = (R(k, j) - R(j, k)) * t;
quaternion[j + 1] = (R(j, i) + R(i, j)) * t;
quaternion[k + 1] = (R(k, i) + R(i, k)) * t;
}
}
// The conversion of a rotation matrix to the angle-axis form is
// numerically problematic when then rotation angle is close to zero
// or to Pi. The following implementation detects when these two cases
// occurs and deals with them by taking code paths that are guaranteed
// to not perform division by a small number.
template <typename T>
inline void RotationMatrixToAngleAxis(const T* R, T* angle_axis) {
RotationMatrixToAngleAxis(ColumnMajorAdapter3x3(R), angle_axis);
}
template <typename T, int row_stride, int col_stride>
void RotationMatrixToAngleAxis(
const MatrixAdapter<const T, row_stride, col_stride>& R,
T* angle_axis) {
T quaternion[4];
RotationMatrixToQuaternion(R, quaternion);
QuaternionToAngleAxis(quaternion, angle_axis);
return;
}
template <typename T>
inline void AngleAxisToRotationMatrix(const T* angle_axis, T* R) {
AngleAxisToRotationMatrix(angle_axis, ColumnMajorAdapter3x3(R));
}
template <typename T, int row_stride, int col_stride>
void AngleAxisToRotationMatrix(
const T* angle_axis,
const MatrixAdapter<T, row_stride, col_stride>& R) {
static const T kOne = T(1.0);
const T theta2 = DotProduct(angle_axis, angle_axis);
if (theta2 > T(std::numeric_limits<double>::epsilon())) {
// We want to be careful to only evaluate the square root if the
// norm of the angle_axis vector is greater than zero. Otherwise
// we get a division by zero.
const T theta = sqrt(theta2);
const T wx = angle_axis[0] / theta;
const T wy = angle_axis[1] / theta;
const T wz = angle_axis[2] / theta;
const T costheta = cos(theta);
const T sintheta = sin(theta);
R(0, 0) = costheta + wx*wx*(kOne - costheta);
R(1, 0) = wz*sintheta + wx*wy*(kOne - costheta);
R(2, 0) = -wy*sintheta + wx*wz*(kOne - costheta);
R(0, 1) = wx*wy*(kOne - costheta) - wz*sintheta;
R(1, 1) = costheta + wy*wy*(kOne - costheta);
R(2, 1) = wx*sintheta + wy*wz*(kOne - costheta);
R(0, 2) = wy*sintheta + wx*wz*(kOne - costheta);
R(1, 2) = -wx*sintheta + wy*wz*(kOne - costheta);
R(2, 2) = costheta + wz*wz*(kOne - costheta);
} else {
// Near zero, we switch to using the first order Taylor expansion.
R(0, 0) = kOne;
R(1, 0) = angle_axis[2];
R(2, 0) = -angle_axis[1];
R(0, 1) = -angle_axis[2];
R(1, 1) = kOne;
R(2, 1) = angle_axis[0];
R(0, 2) = angle_axis[1];
R(1, 2) = -angle_axis[0];
R(2, 2) = kOne;
}
}
template <typename T>
inline void EulerAnglesToRotationMatrix(const T* euler,
const int row_stride_parameter,
T* R) {
EulerAnglesToRotationMatrix(euler, RowMajorAdapter3x3(R));
}
template <typename T, int row_stride, int col_stride>
void EulerAnglesToRotationMatrix(
const T* euler,
const MatrixAdapter<T, row_stride, col_stride>& R) {
const double kPi = 3.14159265358979323846;
const T degrees_to_radians(kPi / 180.0);
const T pitch(euler[0] * degrees_to_radians);
const T roll(euler[1] * degrees_to_radians);
const T yaw(euler[2] * degrees_to_radians);
const T c1 = cos(yaw);
const T s1 = sin(yaw);
const T c2 = cos(roll);
const T s2 = sin(roll);
const T c3 = cos(pitch);
const T s3 = sin(pitch);
R(0, 0) = c1*c2;
R(0, 1) = -s1*c3 + c1*s2*s3;
R(0, 2) = s1*s3 + c1*s2*c3;
R(1, 0) = s1*c2;
R(1, 1) = c1*c3 + s1*s2*s3;
R(1, 2) = -c1*s3 + s1*s2*c3;
R(2, 0) = -s2;
R(2, 1) = c2*s3;
R(2, 2) = c2*c3;
}
template <typename T> inline
void QuaternionToScaledRotation(const T q[4], T R[3 * 3]) {
QuaternionToScaledRotation(q, RowMajorAdapter3x3(R));
}
template <typename T, int row_stride, int col_stride> inline
void QuaternionToScaledRotation(
const T q[4],
const MatrixAdapter<T, row_stride, col_stride>& R) {
// Make convenient names for elements of q.
T a = q[0];
T b = q[1];
T c = q[2];
T d = q[3];
// This is not to eliminate common sub-expression, but to
// make the lines shorter so that they fit in 80 columns!
T aa = a * a;
T ab = a * b;
T ac = a * c;
T ad = a * d;
T bb = b * b;
T bc = b * c;
T bd = b * d;
T cc = c * c;
T cd = c * d;
T dd = d * d;
R(0, 0) = aa + bb - cc - dd; R(0, 1) = T(2) * (bc - ad); R(0, 2) = T(2) * (ac + bd); // NOLINT
R(1, 0) = T(2) * (ad + bc); R(1, 1) = aa - bb + cc - dd; R(1, 2) = T(2) * (cd - ab); // NOLINT
R(2, 0) = T(2) * (bd - ac); R(2, 1) = T(2) * (ab + cd); R(2, 2) = aa - bb - cc + dd; // NOLINT
}
template <typename T> inline
void QuaternionToRotation(const T q[4], T R[3 * 3]) {
QuaternionToRotation(q, RowMajorAdapter3x3(R));
}
template <typename T, int row_stride, int col_stride> inline
void QuaternionToRotation(const T q[4],
const MatrixAdapter<T, row_stride, col_stride>& R) {
QuaternionToScaledRotation(q, R);
T normalizer = q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3];
normalizer = T(1) / normalizer;
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
R(i, j) *= normalizer;
}
}
}
template <typename T> inline
void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {
const T t2 = q[0] * q[1];
const T t3 = q[0] * q[2];
const T t4 = q[0] * q[3];
const T t5 = -q[1] * q[1];
const T t6 = q[1] * q[2];
const T t7 = q[1] * q[3];
const T t8 = -q[2] * q[2];
const T t9 = q[2] * q[3];
const T t1 = -q[3] * q[3];
result[0] = T(2) * ((t8 + t1) * pt[0] + (t6 - t4) * pt[1] + (t3 + t7) * pt[2]) + pt[0]; // NOLINT
result[1] = T(2) * ((t4 + t6) * pt[0] + (t5 + t1) * pt[1] + (t9 - t2) * pt[2]) + pt[1]; // NOLINT
result[2] = T(2) * ((t7 - t3) * pt[0] + (t2 + t9) * pt[1] + (t5 + t8) * pt[2]) + pt[2]; // NOLINT
}
template <typename T> inline
void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {
// 'scale' is 1 / norm(q).
const T scale = T(1) / sqrt(q[0] * q[0] +
q[1] * q[1] +
q[2] * q[2] +
q[3] * q[3]);
// Make unit-norm version of q.
const T unit[4] = {
scale * q[0],
scale * q[1],
scale * q[2],
scale * q[3],
};
UnitQuaternionRotatePoint(unit, pt, result);
}
template<typename T> inline
void QuaternionProduct(const T z[4], const T w[4], T zw[4]) {
zw[0] = z[0] * w[0] - z[1] * w[1] - z[2] * w[2] - z[3] * w[3];
zw[1] = z[0] * w[1] + z[1] * w[0] + z[2] * w[3] - z[3] * w[2];
zw[2] = z[0] * w[2] - z[1] * w[3] + z[2] * w[0] + z[3] * w[1];
zw[3] = z[0] * w[3] + z[1] * w[2] - z[2] * w[1] + z[3] * w[0];
}
// xy = x cross y;
template<typename T> inline
void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]) {
x_cross_y[0] = x[1] * y[2] - x[2] * y[1];
x_cross_y[1] = x[2] * y[0] - x[0] * y[2];
x_cross_y[2] = x[0] * y[1] - x[1] * y[0];
}
template<typename T> inline
T DotProduct(const T x[3], const T y[3]) {
return (x[0] * y[0] + x[1] * y[1] + x[2] * y[2]);
}
template<typename T> inline
void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]) {
const T theta2 = DotProduct(angle_axis, angle_axis);
if (theta2 > T(std::numeric_limits<double>::epsilon())) {
// Away from zero, use the rodriguez formula
//
// result = pt costheta +
// (w x pt) * sintheta +
// w (w . pt) (1 - costheta)
//
// We want to be careful to only evaluate the square root if the
// norm of the angle_axis vector is greater than zero. Otherwise
// we get a division by zero.
//
const T theta = sqrt(theta2);
const T costheta = cos(theta);
const T sintheta = sin(theta);
const T theta_inverse = T(1.0) / theta;
const T w[3] = { angle_axis[0] * theta_inverse,
angle_axis[1] * theta_inverse,
angle_axis[2] * theta_inverse };
// Explicitly inlined evaluation of the cross product for
// performance reasons.
const T w_cross_pt[3] = { w[1] * pt[2] - w[2] * pt[1],
w[2] * pt[0] - w[0] * pt[2],
w[0] * pt[1] - w[1] * pt[0] };
const T tmp =
(w[0] * pt[0] + w[1] * pt[1] + w[2] * pt[2]) * (T(1.0) - costheta);
result[0] = pt[0] * costheta + w_cross_pt[0] * sintheta + w[0] * tmp;
result[1] = pt[1] * costheta + w_cross_pt[1] * sintheta + w[1] * tmp;
result[2] = pt[2] * costheta + w_cross_pt[2] * sintheta + w[2] * tmp;
} else {
// Near zero, the first order Taylor approximation of the rotation
// matrix R corresponding to a vector w and angle w is
//
// R = I + hat(w) * sin(theta)
//
// But sintheta ~ theta and theta * w = angle_axis, which gives us
//
// R = I + hat(w)
//
// and actually performing multiplication with the point pt, gives us
// R * pt = pt + w x pt.
//
// Switching to the Taylor expansion near zero provides meaningful
// derivatives when evaluated using Jets.
//
// Explicitly inlined evaluation of the cross product for
// performance reasons.
const T w_cross_pt[3] = { angle_axis[1] * pt[2] - angle_axis[2] * pt[1],
angle_axis[2] * pt[0] - angle_axis[0] * pt[2],
angle_axis[0] * pt[1] - angle_axis[1] * pt[0] };
result[0] = pt[0] + w_cross_pt[0];
result[1] = pt[1] + w_cross_pt[1];
result[2] = pt[2] + w_cross_pt[2];
}
}
} // namespace ceres
#endif // CERES_PUBLIC_ROTATION_H_
|