This file is indexed.

/usr/lib/llvm-3.8/include/polly/CodeGen/BlockGenerators.h is in libclang-common-3.8-dev 1:3.8.1-24.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
//===-BlockGenerators.h - Helper to generate code for statements-*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the BlockGenerator and VectorBlockGenerator classes, which
// generate sequential code and vectorized code for a polyhedral statement,
// respectively.
//
//===----------------------------------------------------------------------===//

#ifndef POLLY_BLOCK_GENERATORS_H
#define POLLY_BLOCK_GENERATORS_H

#include "polly/CodeGen/IRBuilder.h"
#include "polly/Support/ScopHelper.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "isl/map.h"

struct isl_ast_build;
struct isl_id_to_ast_expr;

namespace llvm {
class Pass;
class Region;
class ScalarEvolution;
}

namespace polly {
using namespace llvm;
class ScopStmt;
class MemoryAccess;
class ScopArrayInfo;
class IslExprBuilder;

/// @brief Generate a new basic block for a polyhedral statement.
class BlockGenerator {
public:
  typedef llvm::SmallVector<ValueMapT, 8> VectorValueMapT;

  /// @brief Map types to resolve scalar dependences.
  ///
  ///@{

  /// @see The ScalarMap and PHIOpMap member.
  using ScalarAllocaMapTy = DenseMap<AssertingVH<Value>, AssertingVH<Value>>;

  /// @brief Simple vector of instructions to store escape users.
  using EscapeUserVectorTy = SmallVector<Instruction *, 4>;

  /// @brief Map type to resolve escaping users for scalar instructions.
  ///
  /// @see The EscapeMap member.
  using EscapeUsersAllocaMapTy =
      DenseMap<Instruction *,
               std::pair<AssertingVH<Value>, EscapeUserVectorTy>>;

  ///@}

  /// @brief Create a generator for basic blocks.
  ///
  /// @param Builder     The LLVM-IR Builder used to generate the statement. The
  ///                    code is generated at the location, the Builder points
  ///                    to.
  /// @param LI          The loop info for the current function
  /// @param SE          The scalar evolution info for the current function
  /// @param DT          The dominator tree of this function.
  /// @param ScalarMap   Map from scalars to their demoted location.
  /// @param PHIOpMap    Map from PHIs to their demoted operand location.
  /// @param EscapeMap   Map from scalars to their escape users and locations.
  /// @param GlobalMap   A mapping from llvm::Values used in the original scop
  ///                    region to a new set of llvm::Values. Each reference to
  ///                    an original value appearing in this mapping is replaced
  ///                    with the new value it is mapped to.
  /// @param ExprBuilder An expression builder to generate new access functions.
  BlockGenerator(PollyIRBuilder &Builder, LoopInfo &LI, ScalarEvolution &SE,
                 DominatorTree &DT, ScalarAllocaMapTy &ScalarMap,
                 ScalarAllocaMapTy &PHIOpMap, EscapeUsersAllocaMapTy &EscapeMap,
                 ValueMapT &GlobalMap, IslExprBuilder *ExprBuilder = nullptr);

  /// @brief Copy the basic block.
  ///
  /// This copies the entire basic block and updates references to old values
  /// with references to new values, as defined by GlobalMap.
  ///
  /// @param Stmt        The block statement to code generate.
  /// @param LTS         A map from old loops to new induction variables as
  ///                    SCEVs.
  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  void copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
                isl_id_to_ast_expr *NewAccesses);

  /// @brief Return the scalar alloca for @p ScalarBase
  ///
  /// If no alloca was mapped to @p ScalarBase a new one is created.
  ///
  /// @param ScalarBase The demoted scalar value.
  /// @param GlobalMap  A mapping from Allocas to other memory locations that
  ///                   can be used to replace the original alloca locations
  ///                   with new memory locations, e.g. when passing values to
  ///                   subfunctions while offloading parallel sections.
  ///
  /// @returns The alloca for @p ScalarBase or a replacement value taken from
  ///          GlobalMap.
  Value *getOrCreateScalarAlloca(Value *ScalarBase);

  /// @brief Return the PHi-node alloca for @p ScalarBase
  ///
  /// If no alloca was mapped to @p ScalarBase a new one is created.
  ///
  /// @param ScalarBase The demoted scalar value.
  ///
  /// @returns The alloca for @p ScalarBase or a replacement value taken from
  ///          GlobalMap.
  Value *getOrCreatePHIAlloca(Value *ScalarBase);

  /// @brief Return the alloca for @p Access
  ///
  /// If no alloca was mapped for @p Access a new one is created.
  ///
  /// @param Access    The memory access for which to generate the alloca
  ///
  /// @returns The alloca for @p Access or a replacement value taken from
  ///          GlobalMap.
  Value *getOrCreateAlloca(MemoryAccess &Access);

  /// @brief Return the alloca for @p Array
  ///
  /// If no alloca was mapped for @p Array a new one is created.
  ///
  /// @param Array The array for which to generate the alloca
  ///
  /// @returns The alloca for @p Array or a replacement value taken from
  ///          GlobalMap.
  Value *getOrCreateAlloca(const ScopArrayInfo *Array);

  /// @brief Finalize the code generation for the SCoP @p S.
  ///
  /// This will initialize and finalize the scalar variables we demoted during
  /// the code generation.
  ///
  /// @see createScalarInitialization(Scop &)
  /// @see createScalarFinalization(Region &)
  void finalizeSCoP(Scop &S);

  /// @brief An empty destructor
  virtual ~BlockGenerator(){};

  BlockGenerator(const BlockGenerator &) = default;

protected:
  PollyIRBuilder &Builder;
  LoopInfo &LI;
  ScalarEvolution &SE;
  IslExprBuilder *ExprBuilder;

  /// @brief The dominator tree of this function.
  DominatorTree &DT;

  /// @brief The entry block of the current function.
  BasicBlock *EntryBB;

  /// @brief Maps to resolve scalar dependences for PHI operands and scalars.
  ///
  /// When translating code that contains scalar dependences as they result from
  /// inter-block scalar dependences (including the use of data carrying
  /// PHI nodes), we do not directly regenerate in-register SSA code, but
  /// instead allocate some stack memory through which these scalar values are
  /// passed. Only a later pass of -mem2reg will then (re)introduce in-register
  /// computations.
  ///
  /// To keep track of the memory location(s) used to store the data computed by
  /// a given SSA instruction, we use the maps 'ScalarMap' and 'PHIOpMap'. Each
  /// maps a given scalar value to a junk of stack allocated memory.
  ///
  /// 'ScalarMap' is used for normal scalar dependences that go from a scalar
  /// definition to its use. Such dependences are lowered by directly writing
  /// the value an instruction computes into the corresponding chunk of memory
  /// and reading it back from this chunk of memory right before every use of
  /// this original scalar value. The memory locations in 'ScalarMap' end with
  /// '.s2a'.
  ///
  /// 'PHIOpMap' is used to model PHI nodes. For each PHI nodes we introduce,
  /// besides the memory in 'ScalarMap', a second chunk of memory into which we
  /// write at the end of each basic block preceeding the PHI instruction the
  /// value passed through this basic block. At the place where the PHI node is
  /// executed, we replace the PHI node with a load from the corresponding
  /// memory location in the 'PHIOpMap' table. The memory locations in
  /// 'PHIOpMap' end with '.phiops'.
  ///
  /// The ScopArrayInfo objects of accesses that belong to a PHI node may have
  /// identical base pointers, even though they refer to two different memory
  /// locations, the normal '.s2a' locations and the special '.phiops'
  /// locations. For historic reasons we keep such accesses in two maps
  /// 'ScalarMap' and 'PHIOpMap', index by the BasePointer. An alternative
  /// implemenation, could use a single map that uses the ScopArrayInfo object
  /// as index.
  ///
  /// Example:
  ///
  ///                              Input C Code
  ///                              ============
  ///
  ///                 S1:      x1 = ...
  ///                          for (i=0...N) {
  ///                 S2:           x2 = phi(x1, add)
  ///                 S3:           add = x2 + 42;
  ///                          }
  ///                 S4:      print(x1)
  ///                          print(x2)
  ///                          print(add)
  ///
  ///
  ///        Unmodified IR                         IR After expansion
  ///        =============                         ==================
  ///
  /// S1:   x1 = ...                     S1:    x1 = ...
  ///                                           x1.s2a = s1
  ///                                           x2.phiops = s1
  ///        |                                    |
  ///        |   <--<--<--<--<                    |   <--<--<--<--<
  ///        | /              \                   | /              \     .
  ///        V V               \                  V V               \    .
  /// S2:  x2 = phi (x1, add)   |        S2:    x2 = x2.phiops       |
  ///                           |               x2.s2a = x2          |
  ///                           |                                    |
  /// S3:  add = x2 + 42        |        S3:    add = x2 + 42        |
  ///                           |               add.s2a = add        |
  ///                           |               x2.phiops = add      |
  ///        | \               /                  | \               /
  ///        |  \             /                   |  \             /
  ///        |   >-->-->-->-->                    |   >-->-->-->-->
  ///        V                                    V
  ///
  ///                                    S4:    x1 = x1.s2a
  /// S4:  ... = x1                             ... = x1
  ///                                           x2 = x2.s2a
  ///      ... = x2                             ... = x2
  ///                                           add = add.s2a
  ///      ... = add                            ... = add
  ///
  ///      ScalarMap = { x1 -> x1.s2a, x2 -> x2.s2a, add -> add.s2a }
  ///      PHIOpMap =  { x2 -> x2.phiops }
  ///
  ///
  ///  ??? Why does a PHI-node require two memory chunks ???
  ///
  ///  One may wonder why a PHI node requires two memory chunks and not just
  ///  all data is stored in a single location. The following example tries
  ///  to store all data in .s2a and drops the .phiops location:
  ///
  ///      S1:    x1 = ...
  ///             x1.s2a = s1
  ///             x2.s2a = s1             // use .s2a instead of .phiops
  ///               |
  ///               |   <--<--<--<--<
  ///               | /              \    .
  ///               V V               \   .
  ///      S2:    x2 = x2.s2a          |  // value is same as above, but read
  ///                                  |  // from .s2a
  ///                                  |
  ///             x2.s2a = x2          |  // store into .s2a as normal
  ///                                  |
  ///      S3:    add = x2 + 42        |
  ///             add.s2a = add        |
  ///             x2.s2a = add         |  // use s2a instead of .phiops
  ///               | \               /   // !!! This is wrong, as x2.s2a now
  ///               |   >-->-->-->-->     // contains add instead of x2.
  ///               V
  ///
  ///      S4:    x1 = x1.s2a
  ///             ... = x1
  ///             x2 = x2.s2a             // !!! We now read 'add' instead of
  ///             ... = x2                // 'x2'
  ///             add = add.s2a
  ///             ... = add
  ///
  ///  As visible in the example, the SSA value of the PHI node may still be
  ///  needed _after_ the basic block, which could conceptually branch to the
  ///  PHI node, has been run and has overwritten the PHI's old value. Hence, a
  ///  single memory location is not enough to code-generate a PHI node.
  ///
  ///{
  ///
  /// @brief Memory locations used for the special PHI node modeling.
  ScalarAllocaMapTy &PHIOpMap;

  /// @brief Memory locations used to model scalar dependences.
  ScalarAllocaMapTy &ScalarMap;
  ///}

  /// @brief Map from instructions to their escape users as well as the alloca.
  EscapeUsersAllocaMapTy &EscapeMap;

  /// @brief A map from llvm::Values referenced in the old code to a new set of
  ///        llvm::Values, which is used to replace these old values during
  ///        code generation.
  ValueMapT &GlobalMap;

  /// @brief Split @p BB to create a new one we can use to clone @p BB in.
  BasicBlock *splitBB(BasicBlock *BB);

  /// @brief Copy the given basic block.
  ///
  /// @param Stmt      The statement to code generate.
  /// @param BB        The basic block to code generate.
  /// @param BBMap     A mapping from old values to their new values in this
  /// block.
  /// @param LTS         A map from old loops to new induction variables as
  ///                    SCEVs.
  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  ///
  /// @returns The copy of the basic block.
  BasicBlock *copyBB(ScopStmt &Stmt, BasicBlock *BB, ValueMapT &BBMap,
                     LoopToScevMapT &LTS, isl_id_to_ast_expr *NewAccesses);

  /// @brief Copy the given basic block.
  ///
  /// @param Stmt      The statement to code generate.
  /// @param BB        The basic block to code generate.
  /// @param BBCopy    The new basic block to generate code in.
  /// @param BBMap     A mapping from old values to their new values in this
  /// block.
  /// @param LTS         A map from old loops to new induction variables as
  ///                    SCEVs.
  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  void copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *BBCopy,
              ValueMapT &BBMap, LoopToScevMapT &LTS,
              isl_id_to_ast_expr *NewAccesses);

  /// @brief Return the alloca for @p ScalarBase in @p Map.
  ///
  /// If no alloca was mapped to @p ScalarBase in @p Map a new one is created
  /// and named after @p ScalarBase with the suffix @p NameExt.
  ///
  /// @param ScalarBase The demoted scalar value.
  /// @param Map        The map we should look for a mapped alloca value.
  /// @param NameExt    The suffix we add to the name of a new created alloca.
  ///
  /// @returns The alloca for @p ScalarBase.
  Value *getOrCreateAlloca(Value *ScalarBase, ScalarAllocaMapTy &Map,
                           const char *NameExt);

  /// @brief Generate reload of scalars demoted to memory and needed by @p Stmt.
  ///
  /// @param Stmt  The statement we generate code for.
  /// @param BBMap A mapping from old values to their new values in this block.
  void generateScalarLoads(ScopStmt &Stmt, ValueMapT &BBMap);

  /// @brief Generate the scalar stores for the given statement.
  ///
  /// After the statement @p Stmt was copied all inner-SCoP scalar dependences
  /// starting in @p Stmt (hence all scalar write accesses in @p Stmt) need to
  /// be demoted to memory.
  ///
  /// @param Stmt  The statement we generate code for.
  /// @param LTS   A mapping from loops virtual canonical induction
  ///              variable to their new values
  ///              (for values recalculated in the new ScoP, but not
  ///               within this basic block)
  /// @param BBMap A mapping from old values to their new values in this block.
  virtual void generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS,
                                    ValueMapT &BBMap);

  /// @brief Handle users of @p Inst outside the SCoP.
  ///
  /// @param R         The current SCoP region.
  /// @param Inst      The current instruction we check.
  /// @param Address   If given it is used as the escape address for @p Inst.
  void handleOutsideUsers(const Region &R, Instruction *Inst,
                          Value *Address = nullptr);

  /// @brief Find scalar statements that have outside users.
  ///
  /// We register these scalar values to later update subsequent scalar uses of
  /// these values to either use the newly computed value from within the scop
  /// (if the scop was executed) or the unchanged original code (if the run-time
  /// check failed).
  ///
  /// @param S The scop for which to find the outside users.
  void findOutsideUsers(Scop &S);

  /// @brief Initialize the memory of demoted scalars.
  ///
  /// @param S The scop for which to generate the scalar initializers.
  void createScalarInitialization(Scop &S);

  /// @brief Create exit PHI node merges for PHI nodes with more than two edges
  ///        from inside the scop.
  ///
  /// For scops which have a PHI node in the exit block that has more than two
  /// incoming edges from inside the scop region, we require some special
  /// handling to understand which of the possible values will be passed to the
  /// PHI node from inside the optimized version of the scop. To do so ScopInfo
  /// models the possible incoming values as write accesses of the ScopStmts.
  ///
  /// This function creates corresponding code to reload the computed outgoing
  /// value from the stack slot it has been stored into and to pass it on to the
  /// PHI node in the original exit block.
  ///
  /// @param S The scop for which to generate the exiting PHI nodes.
  void createExitPHINodeMerges(Scop &S);

  /// @brief Promote the values of demoted scalars after the SCoP.
  ///
  /// If a scalar value was used outside the SCoP we need to promote the value
  /// stored in the memory cell allocated for that scalar and combine it with
  /// the original value in the non-optimized SCoP.
  void createScalarFinalization(Region &R);

  /// @brief Try to synthesize a new value
  ///
  /// Given an old value, we try to synthesize it in a new context from its
  /// original SCEV expression. We start from the original SCEV expression,
  /// then replace outdated parameter and loop references, and finally
  /// expand it to code that computes this updated expression.
  ///
  /// @param Stmt      The statement to code generate
  /// @param Old       The old Value
  /// @param BBMap     A mapping from old values to their new values
  ///                  (for values recalculated within this basic block)
  /// @param LTS       A mapping from loops virtual canonical induction
  ///                  variable to their new values
  ///                  (for values recalculated in the new ScoP, but not
  ///                   within this basic block)
  /// @param L         The loop that surrounded the instruction that referenced
  ///                  this value in the original code. This loop is used to
  ///                  evaluate the scalar evolution at the right scope.
  ///
  /// @returns  o A newly synthesized value.
  ///           o NULL, if synthesizing the value failed.
  Value *trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap,
                               LoopToScevMapT &LTS, Loop *L) const;

  /// @brief Get the new version of a value.
  ///
  /// Given an old value, we first check if a new version of this value is
  /// available in the BBMap or GlobalMap. In case it is not and the value can
  /// be recomputed using SCEV, we do so. If we can not recompute a value
  /// using SCEV, but we understand that the value is constant within the scop,
  /// we return the old value.  If the value can still not be derived, this
  /// function will assert.
  ///
  /// @param Stmt      The statement to code generate.
  /// @param Old       The old Value.
  /// @param BBMap     A mapping from old values to their new values
  ///                  (for values recalculated within this basic block).
  /// @param LTS       A mapping from loops virtual canonical induction
  ///                  variable to their new values
  ///                  (for values recalculated in the new ScoP, but not
  ///                   within this basic block).
  /// @param L         The loop that surrounded the instruction that referenced
  ///                  this value in the original code. This loop is used to
  ///                  evaluate the scalar evolution at the right scope.
  ///
  /// @returns  o The old value, if it is still valid.
  ///           o The new value, if available.
  ///           o NULL, if no value is found.
  Value *getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap,
                     LoopToScevMapT &LTS, Loop *L) const;

  void copyInstScalar(ScopStmt &Stmt, Instruction *Inst, ValueMapT &BBMap,
                      LoopToScevMapT &LTS);

  /// @brief Get the innermost loop that surrounds an instruction.
  ///
  /// @param Inst The instruction for which we get the loop.
  /// @return The innermost loop that surrounds the instruction.
  Loop *getLoopForInst(const Instruction *Inst);

  /// @brief Generate the operand address
  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  Value *generateLocationAccessed(ScopStmt &Stmt, const Instruction *Inst,
                                  Value *Pointer, ValueMapT &BBMap,
                                  LoopToScevMapT &LTS,
                                  isl_id_to_ast_expr *NewAccesses);

  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  Value *generateScalarLoad(ScopStmt &Stmt, LoadInst *load, ValueMapT &BBMap,
                            LoopToScevMapT &LTS,
                            isl_id_to_ast_expr *NewAccesses);

  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  void generateScalarStore(ScopStmt &Stmt, StoreInst *store, ValueMapT &BBMap,
                           LoopToScevMapT &LTS,
                           isl_id_to_ast_expr *NewAccesses);

  /// @brief Copy a single PHI instruction.
  ///
  /// The implementation in the BlockGenerator is trivial, however it allows
  /// subclasses to handle PHIs different.
  ///
  /// @returns The nullptr as the BlockGenerator does not copy PHIs.
  virtual Value *copyPHIInstruction(ScopStmt &, PHINode *, ValueMapT &,
                                    LoopToScevMapT &) {
    return nullptr;
  }

  /// @brief Copy a single Instruction.
  ///
  /// This copies a single Instruction and updates references to old values
  /// with references to new values, as defined by GlobalMap and BBMap.
  ///
  /// @param Stmt        The statement to code generate.
  /// @param Inst        The instruction to copy.
  /// @param BBMap       A mapping from old values to their new values
  ///                    (for values recalculated within this basic block).
  /// @param GlobalMap   A mapping from old values to their new values
  ///                    (for values recalculated in the new ScoP, but not
  ///                    within this basic block).
  /// @param LTS         A mapping from loops virtual canonical induction
  ///                    variable to their new values
  ///                    (for values recalculated in the new ScoP, but not
  ///                     within this basic block).
  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  void copyInstruction(ScopStmt &Stmt, Instruction *Inst, ValueMapT &BBMap,
                       LoopToScevMapT &LTS, isl_id_to_ast_expr *NewAccesses);

  /// @brief Helper to get the newest version of @p ScalarValue.
  ///
  /// @param ScalarValue The original value needed.
  /// @param R           The current SCoP region.
  /// @param Stmt        The ScopStmt in which we look up this value.
  /// @param LTS         A mapping from loops virtual canonical induction
  ///                    variable to their new values
  ///                    (for values recalculated in the new ScoP, but not
  ///                     within this basic block)
  /// @param BBMap       A mapping from old values to their new values
  ///                    (for values recalculated within this basic block).
  ///
  /// @returns The newest version (e.g., reloaded) of the scalar value.
  Value *getNewScalarValue(Value *ScalarValue, const Region &R, ScopStmt &,
                           LoopToScevMapT &LTS, ValueMapT &BBMap);

  /// @brief Helper to determine if @p Inst can be synthezised in @p Stmt.
  ///
  /// @returns false, iff @p Inst can be synthesized in @p Stmt.
  bool canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst);
};

/// @brief Generate a new vector basic block for a polyhedral statement.
///
/// The only public function exposed is generate().
class VectorBlockGenerator : BlockGenerator {
public:
  /// @brief Generate a new vector basic block for a ScoPStmt.
  ///
  /// This code generation is similar to the normal, scalar code generation,
  /// except that each instruction is code generated for several vector lanes
  /// at a time. If possible instructions are issued as actual vector
  /// instructions, but e.g. for address calculation instructions we currently
  /// generate scalar instructions for each vector lane.
  ///
  /// @param BlockGen    A block generator object used as parent.
  /// @param Stmt        The statement to code generate.
  /// @param VLTS        A mapping from loops virtual canonical induction
  ///                    variable to their new values
  ///                    (for values recalculated in the new ScoP, but not
  ///                     within this basic block), one for each lane.
  /// @param Schedule    A map from the statement to a schedule where the
  ///                    innermost dimension is the dimension of the innermost
  ///                    loop containing the statemenet.
  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  static void generate(BlockGenerator &BlockGen, ScopStmt &Stmt,
                       std::vector<LoopToScevMapT> &VLTS,
                       __isl_keep isl_map *Schedule,
                       __isl_keep isl_id_to_ast_expr *NewAccesses) {
    VectorBlockGenerator Generator(BlockGen, VLTS, Schedule);
    Generator.copyStmt(Stmt, NewAccesses);
  }

private:
  // This is a vector of loop->scev maps.  The first map is used for the first
  // vector lane, ...
  // Each map, contains information about Instructions in the old ScoP, which
  // are recalculated in the new SCoP. When copying the basic block, we replace
  // all referenes to the old instructions with their recalculated values.
  //
  // For example, when the code generator produces this AST:
  //
  //   for (int c1 = 0; c1 <= 1023; c1 += 1)
  //     for (int c2 = 0; c2 <= 1023; c2 += VF)
  //       for (int lane = 0; lane <= VF; lane += 1)
  //         Stmt(c2 + lane + 3, c1);
  //
  // VLTS[lane] contains a map:
  //   "outer loop in the old loop nest" -> SCEV("c2 + lane + 3"),
  //   "inner loop in the old loop nest" -> SCEV("c1").
  std::vector<LoopToScevMapT> &VLTS;

  // A map from the statement to a schedule where the innermost dimension is the
  // dimension of the innermost loop containing the statemenet.
  isl_map *Schedule;

  VectorBlockGenerator(BlockGenerator &BlockGen,
                       std::vector<LoopToScevMapT> &VLTS,
                       __isl_keep isl_map *Schedule);

  int getVectorWidth();

  Value *getVectorValue(ScopStmt &Stmt, Value *Old, ValueMapT &VectorMap,
                        VectorValueMapT &ScalarMaps, Loop *L);

  Type *getVectorPtrTy(const Value *V, int Width);

  /// @brief Load a vector from a set of adjacent scalars
  ///
  /// In case a set of scalars is known to be next to each other in memory,
  /// create a vector load that loads those scalars
  ///
  /// %vector_ptr= bitcast double* %p to <4 x double>*
  /// %vec_full = load <4 x double>* %vector_ptr
  ///
  /// @param Stmt           The statement to code generate.
  /// @param NegativeStride This is used to indicate a -1 stride. In such
  ///                       a case we load the end of a base address and
  ///                       shuffle the accesses in reverse order into the
  ///                       vector. By default we would do only positive
  ///                       strides.
  ///
  /// @param NewAccesses    A map from memory access ids to new ast
  ///                       expressions, which may contain new access
  ///                       expressions for certain memory accesses.
  Value *generateStrideOneLoad(ScopStmt &Stmt, LoadInst *Load,
                               VectorValueMapT &ScalarMaps,
                               __isl_keep isl_id_to_ast_expr *NewAccesses,
                               bool NegativeStride);

  /// @brief Load a vector initialized from a single scalar in memory
  ///
  /// In case all elements of a vector are initialized to the same
  /// scalar value, this value is loaded and shuffeled into all elements
  /// of the vector.
  ///
  /// %splat_one = load <1 x double>* %p
  /// %splat = shufflevector <1 x double> %splat_one, <1 x
  ///       double> %splat_one, <4 x i32> zeroinitializer
  ///
  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  Value *generateStrideZeroLoad(ScopStmt &Stmt, LoadInst *Load,
                                ValueMapT &BBMap,
                                __isl_keep isl_id_to_ast_expr *NewAccesses);

  /// @brief Load a vector from scalars distributed in memory
  ///
  /// In case some scalars a distributed randomly in memory. Create a vector
  /// by loading each scalar and by inserting one after the other into the
  /// vector.
  ///
  /// %scalar_1= load double* %p_1
  /// %vec_1 = insertelement <2 x double> undef, double %scalar_1, i32 0
  /// %scalar 2 = load double* %p_2
  /// %vec_2 = insertelement <2 x double> %vec_1, double %scalar_1, i32 1
  ///
  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  Value *generateUnknownStrideLoad(ScopStmt &Stmt, LoadInst *Load,
                                   VectorValueMapT &ScalarMaps,
                                   __isl_keep isl_id_to_ast_expr *NewAccesses);

  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  void generateLoad(ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap,
                    VectorValueMapT &ScalarMaps,
                    __isl_keep isl_id_to_ast_expr *NewAccesses);

  void copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst,
                     ValueMapT &VectorMap, VectorValueMapT &ScalarMaps);

  void copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst,
                      ValueMapT &VectorMap, VectorValueMapT &ScalarMaps);

  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  void copyStore(ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap,
                 VectorValueMapT &ScalarMaps,
                 __isl_keep isl_id_to_ast_expr *NewAccesses);

  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  void copyInstScalarized(ScopStmt &Stmt, Instruction *Inst,
                          ValueMapT &VectorMap, VectorValueMapT &ScalarMaps,
                          __isl_keep isl_id_to_ast_expr *NewAccesses);

  bool extractScalarValues(const Instruction *Inst, ValueMapT &VectorMap,
                           VectorValueMapT &ScalarMaps);

  bool hasVectorOperands(const Instruction *Inst, ValueMapT &VectorMap);

  /// @brief Generate vector loads for scalars.
  ///
  /// @param Stmt           The scop statement for which to generate the loads.
  /// @param VectorBlockMap A map that will be updated to relate the original
  ///                       values with the newly generated vector loads.
  void generateScalarVectorLoads(ScopStmt &Stmt, ValueMapT &VectorBlockMap);

  /// @brief Verify absence of scalar stores.
  ///
  /// @param Stmt The scop statement to check for scalar stores.
  void verifyNoScalarStores(ScopStmt &Stmt);

  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  void copyInstruction(ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
                       VectorValueMapT &ScalarMaps,
                       __isl_keep isl_id_to_ast_expr *NewAccesses);

  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  void copyStmt(ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses);
};

/// @brief Generator for new versions of polyhedral region statements.
class RegionGenerator : public BlockGenerator {
public:
  /// @brief Create a generator for regions.
  ///
  /// @param BlockGen A generator for basic blocks.
  RegionGenerator(BlockGenerator &BlockGen) : BlockGenerator(BlockGen) {}

  virtual ~RegionGenerator(){};

  /// @brief Copy the region statement @p Stmt.
  ///
  /// This copies the entire region represented by @p Stmt and updates
  /// references to old values with references to new values, as defined by
  /// GlobalMap.
  ///
  /// @param Stmt      The statement to code generate.
  /// @param LTS       A map from old loops to new induction variables as SCEVs.
  void copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
                __isl_keep isl_id_to_ast_expr *IdToAstExp);

private:
  /// @brief A map from old to new blocks in the region.
  DenseMap<BasicBlock *, BasicBlock *> BlockMap;

  /// @brief The "BBMaps" for the whole region (one for each block).
  DenseMap<BasicBlock *, ValueMapT> RegionMaps;

  /// @brief Mapping to remember PHI nodes that still need incoming values.
  using PHINodePairTy = std::pair<const PHINode *, PHINode *>;
  DenseMap<BasicBlock *, SmallVector<PHINodePairTy, 4>> IncompletePHINodeMap;

  /// @brief Repair the dominance tree after we created a copy block for @p BB.
  ///
  /// @returns The immediate dominator in the DT for @p BBCopy if in the region.
  BasicBlock *repairDominance(BasicBlock *BB, BasicBlock *BBCopy);

  /// @brief Add the new operand from the copy of @p IncomingBB to @p PHICopy.
  ///
  /// @param Stmt       The statement to code generate.
  /// @param PHI        The original PHI we copy.
  /// @param PHICopy    The copy of @p PHI.
  /// @param IncomingBB An incoming block of @p PHI.
  /// @param LTS        A map from old loops to new induction variables as
  /// SCEVs.
  void addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI, PHINode *PHICopy,
                       BasicBlock *IncomingBB, LoopToScevMapT &LTS);

  /// @brief Generate the scalar stores for the given statement.
  ///
  /// After the statement @p Stmt was copied all inner-SCoP scalar dependences
  /// starting in @p Stmt (hence all scalar write accesses in @p Stmt) need to
  /// be demoted to memory.
  ///
  /// @param Stmt  The statement we generate code for.
  /// @param LTS   A mapping from loops virtual canonical induction variable to
  ///              their new values (for values recalculated in the new ScoP,
  ///              but not within this basic block)
  /// @param BBMap A mapping from old values to their new values in this block.
  virtual void generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS,
                                    ValueMapT &BBMAp) override;

  /// @brief Copy a single PHI instruction.
  ///
  /// This copies a single PHI instruction and updates references to old values
  /// with references to new values, as defined by GlobalMap and BBMap.
  ///
  /// @param Stmt      The statement to code generate.
  /// @param PHI       The PHI instruction to copy.
  /// @param BBMap     A mapping from old values to their new values
  ///                  (for values recalculated within this basic block).
  /// @param LTS       A map from old loops to new induction variables as SCEVs.
  ///
  /// @returns The copied instruction or nullptr if no copy was made.
  virtual Value *copyPHIInstruction(ScopStmt &Stmt, PHINode *Inst,
                                    ValueMapT &BBMap,
                                    LoopToScevMapT &LTS) override;
};
}
#endif