This file is indexed.

/usr/include/dcmtk/dcmimgle/dicrvfit.h is in libdcmtk-dev 3.6.1~20160216-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/*
 *
 *  Copyright (C) 1996-2010, OFFIS e.V.
 *  All rights reserved.  See COPYRIGHT file for details.
 *
 *  This software and supporting documentation were developed by
 *
 *    OFFIS e.V.
 *    R&D Division Health
 *    Escherweg 2
 *    D-26121 Oldenburg, Germany
 *
 *
 *  Module:  dcmimgle
 *
 *  Author:  Joerg Riesmeier
 *
 *  Purpose: DiCurveFitting (header/implementation)
 *
 */


#ifndef DICRVFIT_H
#define DICRVFIT_H

#include "dcmtk/config/osconfig.h"
#include "dcmtk/ofstd/oftypes.h"
#include "dcmtk/ofstd/ofcast.h"

#define INCLUDE_CMATH
#define INCLUDE_CSTDDEF               /* For NULL */
#include "dcmtk/ofstd/ofstdinc.h"


/*---------------------*
 *  macro definitions  *
 *---------------------*/

// SunCC 4.x does not support default values for template types :-/
#define T3_ double


/*------------------*
 *  template class  *
 *------------------*/

/** Template class for polynomial curve fitting algorithm
 */
template <class T1, class T2 /*, class T3 = double*/>
class DiCurveFitting
{

 public:

    /** calculate coefficients for resulting polynomial function.
     *  T1  = type of x coordinates
     *  T2  = type of y coordinates
     *  T3_ = type of coefficients (and for internal calculations)
     *
     ** @param  x  array with x coordinates of given points
     *  @param  y  array with y coordinates of given points
     *  @param  n  number of entries in array (= points)
     *  @param  o  order of polynomial function
     *  @param  c  array to store the resulting coefficients (o+1 entries !)
     *
     ** @return true if successful, false otherwise
     */
    static int calculateCoefficients(const T1 *x,
                                     const T2 *y,
                                     const unsigned int n,
                                     const unsigned int o,
                                     T3_ *c)
    {
        int result = 0;
        if ((x != NULL) && (y != NULL) && (c !=NULL) && (n > 0))
        {
            const unsigned int order = o + 1;
            const unsigned int order2 = order * order;
            T3_ *basis = new T3_[order * n];
            T3_ *alpha = new T3_[order2];
            T3_ *beta = new T3_[order];
            if ((basis != NULL) && (alpha != NULL) && (beta != NULL))
            {
                register unsigned int i;
                register unsigned int j;
                register unsigned int k;
                for (i = 0; i < order; ++i)
                {
                    for (j = 0; j < n; ++j)
                    {
                        k = i + j * order;
                        if (i == 0)
                            basis[k] = 1;
                        else
                            basis[k] = OFstatic_cast(T3_, x[j]) * basis[k - 1];
                     }
                }
                T3_ sum;
                for (i = 0; i < order; ++i)
                {
                    const unsigned int i_order = i * order;
                    for (j = 0; j <= i; ++j)
                    {
                        sum = 0;
                        for (k = 0; k < n; ++k)
                            sum += basis[i + k * order] * basis[j + k * order];
                        alpha[i + j * order] = sum;
                        if (i != j)
                            alpha[j + i_order] = sum;
                    }
                }
                for (i = 0; i < order; ++i)
                {
                    sum = 0;
                    for (j = 0; j < n; ++j)
                        sum += OFstatic_cast(T3_, y[j]) * basis[i + j * order];
                    beta[i] = sum;
                }
                if (solve(alpha, beta, order))
                {
                    for (i = 0; i < order; ++i)
                        c[i] = beta[i];
                    result = 1;
                }
            }
            delete[] basis;
            delete[] alpha;
            delete[] beta;
        }
        return result;
    }


    /** calculate y coordinates for the given range of x coordinates.
     *  The polynomial function is defined by the specified coefficients.
     *  T1  = type of x coordinates
     *  T2  = type of y coordinates
     *  T3_ = type of coefficients (and for internal calculations)
     *
     ** @param  xs  first x coordinate for computation
     *  @param  xe  last x coordinate for computation
     *  @param  y   array to store the resulting y coordinates (n entries !)
     *  @param  n   number of entries in array (= points)
     *  @param  o   order of polynomial function
     *  @param  c   array of coefficients computed by the above method (o+1 entries !)
     *
     ** @return true if successful, false otherwise
     */
    static int calculateValues(const T1 xs,
                               const T1 xe,
                               T2 *y,
                               const unsigned int n,
                               const unsigned int o,
                               const T3_ *c)
    {
        int result = 0;
        if ((y != NULL) && (c != NULL) && (n > 0) && (xe > xs))
        {
            register unsigned int i;
            register unsigned int j;
            T3_ x;
            T3_ x2;
            T3_ w;
            const T3_ xo = OFstatic_cast(T3_, xs);
            const T3_ xi = OFstatic_cast(T3_, (OFstatic_cast(T3_, xe) - OFstatic_cast(T3_, xs)) / (n - 1));
            for (i = 0; i < n; ++i)
            {
                x = xo + OFstatic_cast(T3_, i) * xi;
                x2 = 1;
                w = 0;
                for (j = 0; j <= o; ++j)
                {
                    w += c[j] * x2;
                    x2 *= x;
                }
                convertValue(w, y[i]);          // cut value if necessary
            }
            result = 1;
        }
        return result;
    }


 private:

    /** helper routine: convert to unsigned 8 bit value
     *
     ** @param  input   input value to be converted
     *  @param  output  output value (range: 0..255)
     *
     ** @return output value
     */
    static void convertValue(const T3_ input, Uint8 &output)
    {
        output = (input <= 0) ? 0 : ((input >= 255) ? 255 : OFstatic_cast(Uint8, input));
    }

    /** helper routine: convert to signed 8 bit value
     *
     ** @param  input   input value to be converted
     *  @param  output  output value (range: -128..127)
     *
     ** @return output value
     */
    static void convertValue(const T3_ input, Sint8 &output)
    {
        output = (input <= -128) ? -128 : ((input >= 127) ? 127 : OFstatic_cast(Sint8, input));
    }

    /** helper routine: convert to unsigned 16 bit value
     *
     ** @param  input   input value to be converted
     *  @param  output  output value (range: 0..65535)
     *
     ** @return output value
     */
    static void convertValue(const T3_ input, Uint16 &output)
    {
        output = (input <= 0) ? 0 : ((input >= 65535) ? 65535 : OFstatic_cast(Uint16, input));
    }

    /** helper routine: convert to signed 16 bit value
     *
     ** @param  input   input value to be converted
     *  @param  output  output value (range: -32768..32767)
     *
     ** @return output value
     */
    static void convertValue(const T3_ input, Sint16 &output)
    {
        output = (input <= -32768) ? -32768 : ((input >= 32767) ? 32767 : OFstatic_cast(Sint16, input));
    }

    /** helper routine: convert to floating point value (double precision)
     *
     ** @param  input   input value to be converted
     *  @param  output  output value (double)
     *
     ** @return output value
     */
    static inline void convertValue(const T3_ input, double &output)
    {
        output = OFstatic_cast(double, input);
    }

    /** solve the equation given by the two matrixes.
     *  T3_ = type of coefficients (and for internal calculations)
     *
     ** @param  a  first matrix (array of values)
     *  @param  b  second matrix (array of values)
     *  @param  n  number of entries in array
     *
     ** @return true if successful, false otherwise
     */
    static int solve(T3_ *a,
                     T3_ *b,
                     const unsigned int n)
    {
        int result = 0;
        if ((a != NULL) && (b != NULL) && (n > 0))
        {
            register unsigned int i;
            register unsigned int j;
            register unsigned int k;
            signed int pivot;
            T3_ mag;
            T3_ mag2;
            T3_ temp;
            for (i = 0; i < n; ++i)
            {
                mag = 0;
                pivot = -1;
                for (j = i; j < n; ++j)
                {
                    mag2 = fabs(a[i + j * n]);
                    if (mag2 > mag)
                    {
                        mag = mag2;
                        pivot = j;
                    }
                }
                if ((pivot == -1) || (mag == 0))
                    break;
                else
                {
                    const unsigned int piv = OFstatic_cast(unsigned int, pivot);
                    const unsigned int i_n = i * n;
                    if (piv != i)
                    {
                        const unsigned int piv_n = piv * n;
                        for (j = i; j < n; ++j)
                        {
                            temp = a[j + i_n];
                            a[j + i_n] = a[j + piv_n];
                            a[j + piv_n] = temp;
                        }
                        temp = b[i];
                        b[i] = b[piv];
                        b[piv] = temp;
                    }
                    mag = a[i + i_n];
                    for (j = i; j < n; ++j)
                        a[j + i_n] /= mag;
                    b[i] /= mag;
                    for (j = 0; j < n; ++j)
                    {
                        if (i == j)
                            continue;
                        const unsigned int j_n = j * n;
                        mag2 = a[i + j_n];
                        for (k = i; k < n; ++k)
                            a[k + j_n] -= mag2 * a[k + i_n];
                        b[j] -= mag2 * b[i];
                    }
                    result = 1;
                }

            }
        }
        return result;
    }
};


#endif