/usr/include/dcmtk/dcmimgle/dicrvfit.h is in libdcmtk-dev 3.6.1~20160216-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 | /*
*
* Copyright (C) 1996-2010, OFFIS e.V.
* All rights reserved. See COPYRIGHT file for details.
*
* This software and supporting documentation were developed by
*
* OFFIS e.V.
* R&D Division Health
* Escherweg 2
* D-26121 Oldenburg, Germany
*
*
* Module: dcmimgle
*
* Author: Joerg Riesmeier
*
* Purpose: DiCurveFitting (header/implementation)
*
*/
#ifndef DICRVFIT_H
#define DICRVFIT_H
#include "dcmtk/config/osconfig.h"
#include "dcmtk/ofstd/oftypes.h"
#include "dcmtk/ofstd/ofcast.h"
#define INCLUDE_CMATH
#define INCLUDE_CSTDDEF /* For NULL */
#include "dcmtk/ofstd/ofstdinc.h"
/*---------------------*
* macro definitions *
*---------------------*/
// SunCC 4.x does not support default values for template types :-/
#define T3_ double
/*------------------*
* template class *
*------------------*/
/** Template class for polynomial curve fitting algorithm
*/
template <class T1, class T2 /*, class T3 = double*/>
class DiCurveFitting
{
public:
/** calculate coefficients for resulting polynomial function.
* T1 = type of x coordinates
* T2 = type of y coordinates
* T3_ = type of coefficients (and for internal calculations)
*
** @param x array with x coordinates of given points
* @param y array with y coordinates of given points
* @param n number of entries in array (= points)
* @param o order of polynomial function
* @param c array to store the resulting coefficients (o+1 entries !)
*
** @return true if successful, false otherwise
*/
static int calculateCoefficients(const T1 *x,
const T2 *y,
const unsigned int n,
const unsigned int o,
T3_ *c)
{
int result = 0;
if ((x != NULL) && (y != NULL) && (c !=NULL) && (n > 0))
{
const unsigned int order = o + 1;
const unsigned int order2 = order * order;
T3_ *basis = new T3_[order * n];
T3_ *alpha = new T3_[order2];
T3_ *beta = new T3_[order];
if ((basis != NULL) && (alpha != NULL) && (beta != NULL))
{
register unsigned int i;
register unsigned int j;
register unsigned int k;
for (i = 0; i < order; ++i)
{
for (j = 0; j < n; ++j)
{
k = i + j * order;
if (i == 0)
basis[k] = 1;
else
basis[k] = OFstatic_cast(T3_, x[j]) * basis[k - 1];
}
}
T3_ sum;
for (i = 0; i < order; ++i)
{
const unsigned int i_order = i * order;
for (j = 0; j <= i; ++j)
{
sum = 0;
for (k = 0; k < n; ++k)
sum += basis[i + k * order] * basis[j + k * order];
alpha[i + j * order] = sum;
if (i != j)
alpha[j + i_order] = sum;
}
}
for (i = 0; i < order; ++i)
{
sum = 0;
for (j = 0; j < n; ++j)
sum += OFstatic_cast(T3_, y[j]) * basis[i + j * order];
beta[i] = sum;
}
if (solve(alpha, beta, order))
{
for (i = 0; i < order; ++i)
c[i] = beta[i];
result = 1;
}
}
delete[] basis;
delete[] alpha;
delete[] beta;
}
return result;
}
/** calculate y coordinates for the given range of x coordinates.
* The polynomial function is defined by the specified coefficients.
* T1 = type of x coordinates
* T2 = type of y coordinates
* T3_ = type of coefficients (and for internal calculations)
*
** @param xs first x coordinate for computation
* @param xe last x coordinate for computation
* @param y array to store the resulting y coordinates (n entries !)
* @param n number of entries in array (= points)
* @param o order of polynomial function
* @param c array of coefficients computed by the above method (o+1 entries !)
*
** @return true if successful, false otherwise
*/
static int calculateValues(const T1 xs,
const T1 xe,
T2 *y,
const unsigned int n,
const unsigned int o,
const T3_ *c)
{
int result = 0;
if ((y != NULL) && (c != NULL) && (n > 0) && (xe > xs))
{
register unsigned int i;
register unsigned int j;
T3_ x;
T3_ x2;
T3_ w;
const T3_ xo = OFstatic_cast(T3_, xs);
const T3_ xi = OFstatic_cast(T3_, (OFstatic_cast(T3_, xe) - OFstatic_cast(T3_, xs)) / (n - 1));
for (i = 0; i < n; ++i)
{
x = xo + OFstatic_cast(T3_, i) * xi;
x2 = 1;
w = 0;
for (j = 0; j <= o; ++j)
{
w += c[j] * x2;
x2 *= x;
}
convertValue(w, y[i]); // cut value if necessary
}
result = 1;
}
return result;
}
private:
/** helper routine: convert to unsigned 8 bit value
*
** @param input input value to be converted
* @param output output value (range: 0..255)
*
** @return output value
*/
static void convertValue(const T3_ input, Uint8 &output)
{
output = (input <= 0) ? 0 : ((input >= 255) ? 255 : OFstatic_cast(Uint8, input));
}
/** helper routine: convert to signed 8 bit value
*
** @param input input value to be converted
* @param output output value (range: -128..127)
*
** @return output value
*/
static void convertValue(const T3_ input, Sint8 &output)
{
output = (input <= -128) ? -128 : ((input >= 127) ? 127 : OFstatic_cast(Sint8, input));
}
/** helper routine: convert to unsigned 16 bit value
*
** @param input input value to be converted
* @param output output value (range: 0..65535)
*
** @return output value
*/
static void convertValue(const T3_ input, Uint16 &output)
{
output = (input <= 0) ? 0 : ((input >= 65535) ? 65535 : OFstatic_cast(Uint16, input));
}
/** helper routine: convert to signed 16 bit value
*
** @param input input value to be converted
* @param output output value (range: -32768..32767)
*
** @return output value
*/
static void convertValue(const T3_ input, Sint16 &output)
{
output = (input <= -32768) ? -32768 : ((input >= 32767) ? 32767 : OFstatic_cast(Sint16, input));
}
/** helper routine: convert to floating point value (double precision)
*
** @param input input value to be converted
* @param output output value (double)
*
** @return output value
*/
static inline void convertValue(const T3_ input, double &output)
{
output = OFstatic_cast(double, input);
}
/** solve the equation given by the two matrixes.
* T3_ = type of coefficients (and for internal calculations)
*
** @param a first matrix (array of values)
* @param b second matrix (array of values)
* @param n number of entries in array
*
** @return true if successful, false otherwise
*/
static int solve(T3_ *a,
T3_ *b,
const unsigned int n)
{
int result = 0;
if ((a != NULL) && (b != NULL) && (n > 0))
{
register unsigned int i;
register unsigned int j;
register unsigned int k;
signed int pivot;
T3_ mag;
T3_ mag2;
T3_ temp;
for (i = 0; i < n; ++i)
{
mag = 0;
pivot = -1;
for (j = i; j < n; ++j)
{
mag2 = fabs(a[i + j * n]);
if (mag2 > mag)
{
mag = mag2;
pivot = j;
}
}
if ((pivot == -1) || (mag == 0))
break;
else
{
const unsigned int piv = OFstatic_cast(unsigned int, pivot);
const unsigned int i_n = i * n;
if (piv != i)
{
const unsigned int piv_n = piv * n;
for (j = i; j < n; ++j)
{
temp = a[j + i_n];
a[j + i_n] = a[j + piv_n];
a[j + piv_n] = temp;
}
temp = b[i];
b[i] = b[piv];
b[piv] = temp;
}
mag = a[i + i_n];
for (j = i; j < n; ++j)
a[j + i_n] /= mag;
b[i] /= mag;
for (j = 0; j < n; ++j)
{
if (i == j)
continue;
const unsigned int j_n = j * n;
mag2 = a[i + j_n];
for (k = i; k < n; ++k)
a[k + j_n] -= mag2 * a[k + i_n];
b[j] -= mag2 * b[i];
}
result = 1;
}
}
}
return result;
}
};
#endif
|