This file is indexed.

/usr/include/dolfin/fem/DirichletBC.h is in libdolfin-dev 2016.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
// Copyright (C) 2007-2012 Anders Logg and Garth N. Wells
//
// This file is part of DOLFIN.
//
// DOLFIN is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// DOLFIN is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
//
// Modified by Kristian Oelgaard, 2007
// Modified by Johan Hake, 2009
// Modified by Joachim B Haga, 2012
// Modified by Mikael Mortensen, 2014
//
// First added:  2007-04-10
// Last changed: 2014-01-23
//
// FIXME: This class needs some cleanup, in particular collecting
//        all data from different representations into a common
//        data structure (perhaps an std::vector<std::size_t> with
//        facet indices).

#ifndef __DIRICHLET_BC_H
#define __DIRICHLET_BC_H

#include <map>
#include <set>
#include <string>
#include <vector>
#include <boost/multi_array.hpp>
#include <memory>
#include <unordered_map>

#include <dolfin/common/types.h>
#include <dolfin/common/Hierarchical.h>
#include <dolfin/common/MPI.h>
#include <dolfin/common/Variable.h>

namespace dolfin
{

  class GenericFunction;
  class FunctionSpace;
  class Facet;
  class GenericMatrix;
  class GenericVector;
  class SubDomain;
  template<typename T> class MeshFunction;

  /// This class specifies the interface for setting (strong)
  /// Dirichlet boundary conditions for partial differential
  /// equations,
  ///
  /// .. math::
  ///
  ///     u = g \hbox{ on } G,
  ///
  /// where :math:`u` is the solution to be computed, :math:`g` is a function
  /// and :math:`G` is a sub domain of the mesh.
  ///
  /// A DirichletBC is specified by the function g, the function space
  /// (trial space) and boundary indicators on (a subset of) the mesh
  /// boundary.
  ///
  /// The boundary indicators may be specified in a number of
  /// different ways.
  ///
  /// The simplest approach is to specify the boundary by a _SubDomain_
  /// object, using the inside() function to specify on which facets
  /// the boundary conditions should be applied. The boundary facets
  /// will then be searched for and marked *only* on the first call to
  /// apply. This means that the mesh could be moved after the first
  /// apply and the boundary markers would still remain intact.
  ///
  /// Alternatively, the boundary may be specified by a _MeshFunction_
  /// over facets labeling all mesh facets together with a number that
  /// specifies which facets should be included in the boundary.
  ///
  /// The third option is to attach the boundary information to the
  /// mesh. This is handled automatically when exporting a mesh from
  /// for example VMTK.
  ///
  /// The 'method' variable may be used to specify the type of method
  /// used to identify degrees of freedom on the boundary. Available
  /// methods are: topological approach (default), geometric approach,
  /// and pointwise approach. The topological approach is faster, but
  /// will only identify degrees of freedom that are located on a
  /// facet that is entirely on the boundary. In particular, the
  /// topological approach will not identify degrees of freedom for
  /// discontinuous elements (which are all internal to the cell). A
  /// remedy for this is to use the geometric approach. In the
  /// geometric approach, each dof on each facet that matches the
  /// boundary condition will be checked. To apply pointwise boundary
  /// conditions e.g. pointloads, one will have to use the pointwise
  /// approach. The three possibilities are "topological", "geometric"
  /// and "pointwise".
  ///
  /// Note: when using "pointwise", the boolean argument `on_boundary`
  /// in SubDomain::inside will always be false.
  ///
  /// The 'check_midpoint' variable can be used to decide whether or
  /// not the midpoint of each facet should be checked when a
  /// user-defined _SubDomain_ is used to define the domain of the
  /// boundary condition. By default, midpoints are always checked.
  /// Note that this variable may be of importance close to corners,
  /// in which case it is sometimes important to check the midpoint to
  /// avoid including facets "on the diagonal close" to a corner. This
  /// variable is also of importance for curved boundaries (like on a
  /// sphere or cylinder), in which case it is important *not* to
  /// check the midpoint which will be located in the interior of a
  /// domain defined relative to a radius.
  ///
  /// Note that there may be caching employed in BC computation for
  /// performance reasons. In particular, applicable DOFs are cached
  /// by some methods on a first apply(). This means that changing a
  /// supplied object (defining boundary subdomain) after first use may
  /// have no effect. But this is implementation and method specific.
  class DirichletBC : public Hierarchical<DirichletBC>, public Variable
  {

  public:

    typedef std::unordered_map<std::size_t, double> Map;

    /// Create boundary condition for subdomain
    ///
    /// *Arguments*
    ///     V (_FunctionSpace_)
    ///         The function space
    ///     g (_GenericFunction_)
    ///         The value
    ///     sub_domain (_SubDomain_)
    ///         The subdomain
    ///     method (std::string)
    ///         Optional argument: A string specifying
    ///         the method to identify dofs
    DirichletBC(std::shared_ptr<const FunctionSpace> V,
                std::shared_ptr<const GenericFunction> g,
                std::shared_ptr<const SubDomain> sub_domain,
                std::string method="topological",
                bool check_midpoint=true);

    /// Create boundary condition for subdomain specified by index
    ///
    /// *Arguments*
    ///     V (_FunctionSpace_)
    ///         The function space.
    ///     g (_GenericFunction_)
    ///         The value.
    ///     sub_domains (_MeshFunction_ <std::size_t>)
    ///         Subdomain markers
    ///     sub_domain (std::size_t)
    ///         The subdomain index (number)
    ///     method (std::string)
    ///         Optional argument: A string specifying the
    ///         method to identify dofs.
    DirichletBC(std::shared_ptr<const FunctionSpace> V,
                std::shared_ptr<const GenericFunction> g,
                std::shared_ptr<const MeshFunction<std::size_t>> sub_domains,
                std::size_t sub_domain,
                std::string method="topological");

    // TODO: Remove/deprecate this function
    /// Create boundary condition for boundary data included in the mesh
    ///
    /// *Arguments*
    ///     V (_FunctionSpace_)
    ///         The function space.
    ///     g (_GenericFunction_)
    ///         The value.
    ///     sub_domain (std::size_t)
    ///         The subdomain index (number)
    ///     method (std::string)
    ///         Optional argument: A string specifying the
    ///         method to identify dofs.
    DirichletBC(std::shared_ptr<const FunctionSpace> V,
                std::shared_ptr<const GenericFunction> g,
                std::size_t sub_domain,
                std::string method="topological");

    /// Create boundary condition for subdomain by boundary markers
    /// (cells, local facet numbers)
    ///
    /// *Arguments*
    ///     V (_FunctionSpace_)
    ///         The function space.
    ///     g (_GenericFunction_)
    ///         The value.
    ///     markers (std::vector<std::size_t>)
    ///         Subdomain markers (facet index local to process)
    ///     method (std::string)
    ///         Optional argument: A string specifying the
    ///         method to identify dofs.
    DirichletBC(std::shared_ptr<const FunctionSpace> V,
                std::shared_ptr<const GenericFunction> g,
                const std::vector<std::size_t>& markers,
                std::string method="topological");

    /// Copy constructor. Either cached DOF data are copied.
    ///
    /// *Arguments*
    ///     bc (_DirichletBC_)
    ///         The object to be copied.
    DirichletBC(const DirichletBC& bc);

    /// Destructor
    ~DirichletBC();

    /// Assignment operator. Either cached DOF data are assigned.
    ///
    /// *Arguments*
    ///     bc (_DirichletBC_)
    ///         Another DirichletBC object.
    const DirichletBC& operator= (const DirichletBC& bc);

    /// Apply boundary condition to a matrix
    ///
    /// *Arguments*
    ///     A (_GenericMatrix_)
    ///         The matrix to apply boundary condition to.
    void apply(GenericMatrix& A) const;

    /// Apply boundary condition to a vector
    ///
    /// *Arguments*
    ///     b (_GenericVector_)
    ///         The vector to apply boundary condition to.
    void apply(GenericVector& b) const;

    /// Apply boundary condition to a linear system
    ///
    /// *Arguments*
    ///     A (_GenericMatrix_)
    ///         The matrix to apply boundary condition to.
    ///     b (_GenericVector_)
    ///         The vector to apply boundary condition to.
    void apply(GenericMatrix& A, GenericVector& b) const;

    /// Apply boundary condition to vectors for a nonlinear problem
    ///
    /// *Arguments*
    ///     b (_GenericVector_)
    ///         The vector to apply boundary conditions to.
    ///     x (_GenericVector_)
    ///         Another vector (nonlinear problem).
    void apply(GenericVector& b, const GenericVector& x) const;

    /// Apply boundary condition to a linear system for a nonlinear problem
    ///
    /// *Arguments*
    ///     A (_GenericMatrix_)
    ///         The matrix to apply boundary conditions to.
    ///     b (_GenericVector_)
    ///         The vector to apply boundary conditions to.
    ///     x (_GenericVector_)
    ///         Another vector (nonlinear problem).
    void apply(GenericMatrix& A, GenericVector& b,
               const GenericVector& x) const;

    /// Get Dirichlet dofs and values. If a method other than 'pointwise' is
    /// used in parallel, the map may not be complete for local vertices since
    /// a vertex can have a bc applied, but the partition might not have a
    /// facet on the boundary. To ensure all local boundary dofs are marked,
    /// it is necessary to call gather() on the returned boundary values.
    ///
    /// *Arguments*
    ///     boundary_values (std::unordered_map<std::size_t, double>)
    ///         Map from dof to boundary value.
    void get_boundary_values(Map& boundary_values) const;

    /// Get boundary values from neighbour processes. If a method other than
    /// "pointwise" is used, this is necessary to ensure all boundary dofs are
    /// marked on all processes.
    ///
    /// *Arguments*
    ///     boundary_values (std::unordered_map<std::size_t, double>)
    ///         Map from dof to boundary value.
    void gather(Map& boundary_values) const;

    /// Make rows of matrix associated with boundary condition zero,
    /// useful for non-diagonal matrices in a block matrix.
    ///
    /// *Arguments*
    ///     A (_GenericMatrix_)
    ///         The matrix
    void zero(GenericMatrix& A) const;

    /// Make columns of matrix associated with boundary condition
    /// zero, and update a (right-hand side) vector to reflect the
    /// changes. Useful for non-diagonals.
    ///
    /// *Arguments*
    ///     A (_GenericMatrix_)
    ///         The matrix
    ///     b (_GenericVector_)
    ///         The vector
    ///     diag_val (double)
    ///         This parameter would normally be -1, 0 or 1.
    void zero_columns(GenericMatrix& A, GenericVector& b,
                      double diag_val=0) const;

    /// Return boundary markers
    ///
    /// *Returns*
    ///     std::vector<std::pair<std::size_t, std::size_t>>
    ///         Boundary markers (facets stored as pairs of cells and
    ///         local facet numbers).
    const std::vector<std::size_t>& markers() const;

    /// Return function space V
    ///
    /// *Returns*
    ///     _FunctionSpace_
    ///         The function space to which boundary conditions are applied.
    std::shared_ptr<const FunctionSpace> function_space() const
    { return _function_space; }

    /// Return boundary value g
    ///
    /// *Returns*
    ///     _GenericFunction_
    ///         The boundary values.
    std::shared_ptr<const GenericFunction> value() const;

    /// Return shared pointer to subdomain
    ///
    /// *Returns*
    ///     _SubDomain_
    ///         Shared pointer to subdomain.
    std::shared_ptr<const SubDomain> user_sub_domain() const;

    /// Set value g for boundary condition, domain remains unchanged
    ///
    /// *Arguments*
    ///     g (_GenericFunction_)
    ///         The value.
    void set_value(std::shared_ptr<const GenericFunction> g);

    /// Set value to 0.0
    void homogenize();

    /// Return method used for computing Dirichlet dofs
    ///
    /// *Returns*
    ///     std::string
    ///         Method used for computing Dirichlet dofs ("topological",
    ///         "geometric" or "pointwise").
    std::string method() const;

    /// Default parameter values
    static Parameters default_parameters()
    {
      Parameters p("dirichlet_bc");
      p.add("use_ident", true);
      p.add("check_dofmap_range", true);
      return p;
    }

  private:

    class LocalData;

    // Apply boundary conditions, common method
    void apply(GenericMatrix* A, GenericVector* b,
               const GenericVector* x) const;

    // Check input data to constructor
    void check() const;

    // Initialize facets (from sub domain, mesh, etc)
    void init_facets(const MPI_Comm mpi_comm) const;

    // Initialize sub domain markers from sub domain
    void
      init_from_sub_domain(std::shared_ptr<const SubDomain> sub_domain) const;

    // Initialize sub domain markers from MeshFunction
    void init_from_mesh_function(const MeshFunction<std::size_t>& sub_domains,
                                 std::size_t sub_domain) const;

    // Initialize sub domain markers from mesh
    void init_from_mesh(std::size_t sub_domain) const;

    // Compute dofs and values for application of boundary conditions
    // using given method
    void compute_bc(Map& boundary_values, LocalData& data,
                    std::string method) const;

    // Compute boundary values for facet (topological approach)
    void compute_bc_topological(Map& boundary_values,
                                LocalData& data) const;

    // Compute boundary values for facet (geometrical approach)
    void compute_bc_geometric(Map& boundary_values,
                              LocalData& data) const;

    // Compute boundary values for facet (pointwise approach)
    void compute_bc_pointwise(Map& boundary_values,
                              LocalData& data) const;

    // Check if the point is in the same plane as the given facet
    bool on_facet(const double* coordinates, const Facet& facet) const;

    // Check arguments
    void check_arguments(GenericMatrix* A, GenericVector* b,
                         const GenericVector* x) const;

    // The function space (possibly a sub function space)
    std::shared_ptr<const FunctionSpace> _function_space;

    // The function
    std::shared_ptr<const GenericFunction> _g;

    // Search method
    std::string _method;

    // Possible search methods
    static const std::set<std::string> methods;

  public:

    // User defined sub domain
    std::shared_ptr<const SubDomain> _user_sub_domain;

  private:

    // Cached number of bc dofs, used for memory allocation on second use
    mutable std::size_t _num_dofs;

    // Boundary facets, stored by facet index (local to process)
    mutable std::vector<std::size_t> _facets;

    // Cells attached to boundary, stored by cell index with map to
    // local dof number
    mutable std::map<std::size_t, std::vector<std::size_t>>
      _cells_to_localdofs;

    // User defined mesh function
    std::shared_ptr<const MeshFunction<std::size_t>> _user_mesh_function;

    // User defined sub domain marker for mesh or mesh function
    std::size_t _user_sub_domain_marker;

    // Flag for whether midpoints should be checked
    bool _check_midpoint;

    // Local data for application of boundary conditions
    class LocalData
    {
    public:

      // Constructor
      LocalData(const FunctionSpace& V);

      // Coefficients
      std::vector<double> w;

      // Facet dofs
      std::vector<std::size_t> facet_dofs;

      // Coordinates for dofs
      boost::multi_array<double, 2> coordinates;

    };


  };

}

#endif