/usr/include/dune/geometry/affinegeometry.hh is in libdune-geometry-dev 2.5.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 | // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_GEOMETRY_AFFINEGEOMETRY_HH
#define DUNE_GEOMETRY_AFFINEGEOMETRY_HH
/** \file
* \brief An implementation of the Geometry interface for affine geometries
* \author Martin Nolte
*/
#include <cmath>
#include <dune/common/fmatrix.hh>
#include <dune/common/fvector.hh>
#include <dune/geometry/type.hh>
namespace Dune
{
// External Forward Declarations
// -----------------------------
template< class ctype, int dim >
class ReferenceElement;
template< class ctype, int dim >
struct ReferenceElements;
namespace Impl
{
// FieldMatrixHelper
// -----------------
template< class ct >
struct FieldMatrixHelper
{
typedef ct ctype;
template< int m, int n >
static void Ax ( const FieldMatrix< ctype, m, n > &A, const FieldVector< ctype, n > &x, FieldVector< ctype, m > &ret )
{
for( int i = 0; i < m; ++i )
{
ret[ i ] = ctype( 0 );
for( int j = 0; j < n; ++j )
ret[ i ] += A[ i ][ j ] * x[ j ];
}
}
template< int m, int n >
static void ATx ( const FieldMatrix< ctype, m, n > &A, const FieldVector< ctype, m > &x, FieldVector< ctype, n > &ret )
{
for( int i = 0; i < n; ++i )
{
ret[ i ] = ctype( 0 );
for( int j = 0; j < m; ++j )
ret[ i ] += A[ j ][ i ] * x[ j ];
}
}
template< int m, int n, int p >
static void AB ( const FieldMatrix< ctype, m, n > &A, const FieldMatrix< ctype, n, p > &B, FieldMatrix< ctype, m, p > &ret )
{
for( int i = 0; i < m; ++i )
{
for( int j = 0; j < p; ++j )
{
ret[ i ][ j ] = ctype( 0 );
for( int k = 0; k < n; ++k )
ret[ i ][ j ] += A[ i ][ k ] * B[ k ][ j ];
}
}
}
template< int m, int n, int p >
static void ATBT ( const FieldMatrix< ctype, m, n > &A, const FieldMatrix< ctype, p, m > &B, FieldMatrix< ctype, n, p > &ret )
{
for( int i = 0; i < n; ++i )
{
for( int j = 0; j < p; ++j )
{
ret[ i ][ j ] = ctype( 0 );
for( int k = 0; k < m; ++k )
ret[ i ][ j ] += A[ k ][ i ] * B[ j ][ k ];
}
}
}
template< int m, int n >
static void ATA_L ( const FieldMatrix< ctype, m, n > &A, FieldMatrix< ctype, n, n > &ret )
{
for( int i = 0; i < n; ++i )
{
for( int j = 0; j <= i; ++j )
{
ret[ i ][ j ] = ctype( 0 );
for( int k = 0; k < m; ++k )
ret[ i ][ j ] += A[ k ][ i ] * A[ k ][ j ];
}
}
}
template< int m, int n >
static void ATA ( const FieldMatrix< ctype, m, n > &A, FieldMatrix< ctype, n, n > &ret )
{
for( int i = 0; i < n; ++i )
{
for( int j = 0; j <= i; ++j )
{
ret[ i ][ j ] = ctype( 0 );
for( int k = 0; k < m; ++k )
ret[ i ][ j ] += A[ k ][ i ] * A[ k ][ j ];
ret[ j ][ i ] = ret[ i ][ j ];
}
ret[ i ][ i ] = ctype( 0 );
for( int k = 0; k < m; ++k )
ret[ i ][ i ] += A[ k ][ i ] * A[ k ][ i ];
}
}
template< int m, int n >
static void AAT_L ( const FieldMatrix< ctype, m, n > &A, FieldMatrix< ctype, m, m > &ret )
{
/*
if (m==2) {
ret[0][0] = A[0]*A[0];
ret[1][1] = A[1]*A[1];
ret[1][0] = A[0]*A[1];
}
else
*/
for( int i = 0; i < m; ++i )
{
for( int j = 0; j <= i; ++j )
{
ctype &retij = ret[ i ][ j ];
retij = A[ i ][ 0 ] * A[ j ][ 0 ];
for( int k = 1; k < n; ++k )
retij += A[ i ][ k ] * A[ j ][ k ];
}
}
}
template< int m, int n >
static void AAT ( const FieldMatrix< ctype, m, n > &A, FieldMatrix< ctype, m, m > &ret )
{
for( int i = 0; i < m; ++i )
{
for( int j = 0; j < i; ++j )
{
ret[ i ][ j ] = ctype( 0 );
for( int k = 0; k < n; ++k )
ret[ i ][ j ] += A[ i ][ k ] * A[ j ][ k ];
ret[ j ][ i ] = ret[ i ][ j ];
}
ret[ i ][ i ] = ctype( 0 );
for( int k = 0; k < n; ++k )
ret[ i ][ i ] += A[ i ][ k ] * A[ i ][ k ];
}
}
template< int n >
static void Lx ( const FieldMatrix< ctype, n, n > &L, const FieldVector< ctype, n > &x, FieldVector< ctype, n > &ret )
{
for( int i = 0; i < n; ++i )
{
ret[ i ] = ctype( 0 );
for( int j = 0; j <= i; ++j )
ret[ i ] += L[ i ][ j ] * x[ j ];
}
}
template< int n >
static void LTx ( const FieldMatrix< ctype, n, n > &L, const FieldVector< ctype, n > &x, FieldVector< ctype, n > &ret )
{
for( int i = 0; i < n; ++i )
{
ret[ i ] = ctype( 0 );
for( int j = i; j < n; ++j )
ret[ i ] += L[ j ][ i ] * x[ j ];
}
}
template< int n >
static void LTL ( const FieldMatrix< ctype, n, n > &L, FieldMatrix< ctype, n, n > &ret )
{
for( int i = 0; i < n; ++i )
{
for( int j = 0; j < i; ++j )
{
ret[ i ][ j ] = ctype( 0 );
for( int k = i; k < n; ++k )
ret[ i ][ j ] += L[ k ][ i ] * L[ k ][ j ];
ret[ j ][ i ] = ret[ i ][ j ];
}
ret[ i ][ i ] = ctype( 0 );
for( int k = i; k < n; ++k )
ret[ i ][ i ] += L[ k ][ i ] * L[ k ][ i ];
}
}
template< int n >
static void LLT ( const FieldMatrix< ctype, n, n > &L, FieldMatrix< ctype, n, n > &ret )
{
for( int i = 0; i < n; ++i )
{
for( int j = 0; j < i; ++j )
{
ret[ i ][ j ] = ctype( 0 );
for( int k = 0; k <= j; ++k )
ret[ i ][ j ] += L[ i ][ k ] * L[ j ][ k ];
ret[ j ][ i ] = ret[ i ][ j ];
}
ret[ i ][ i ] = ctype( 0 );
for( int k = 0; k <= i; ++k )
ret[ i ][ i ] += L[ i ][ k ] * L[ i ][ k ];
}
}
template< int n >
static void cholesky_L ( const FieldMatrix< ctype, n, n > &A, FieldMatrix< ctype, n, n > &ret )
{
for( int i = 0; i < n; ++i )
{
ctype &rii = ret[ i ][ i ];
ctype xDiag = A[ i ][ i ];
for( int j = 0; j < i; ++j )
xDiag -= ret[ i ][ j ] * ret[ i ][ j ];
assert( xDiag > ctype( 0 ) );
rii = sqrt( xDiag );
ctype invrii = ctype( 1 ) / rii;
for( int k = i+1; k < n; ++k )
{
ctype x = A[ k ][ i ];
for( int j = 0; j < i; ++j )
x -= ret[ i ][ j ] * ret[ k ][ j ];
ret[ k ][ i ] = invrii * x;
}
}
}
template< int n >
static ctype detL ( const FieldMatrix< ctype, n, n > &L )
{
ctype det( 1 );
for( int i = 0; i < n; ++i )
det *= L[ i ][ i ];
return det;
}
template< int n >
static ctype invL ( FieldMatrix< ctype, n, n > &L )
{
ctype det( 1 );
for( int i = 0; i < n; ++i )
{
ctype &lii = L[ i ][ i ];
det *= lii;
lii = ctype( 1 ) / lii;
for( int j = 0; j < i; ++j )
{
ctype &lij = L[ i ][ j ];
ctype x = lij * L[ j ][ j ];
for( int k = j+1; k < i; ++k )
x += L[ i ][ k ] * L[ k ][ j ];
lij = (-lii) * x;
}
}
return det;
}
// calculates x := L^{-1} x
template< int n >
static void invLx ( FieldMatrix< ctype, n, n > &L, FieldVector< ctype, n > &x )
{
for( int i = 0; i < n; ++i )
{
for( int j = 0; j < i; ++j )
x[ i ] -= L[ i ][ j ] * x[ j ];
x[ i ] /= L[ i ][ i ];
}
}
// calculates x := L^{-T} x
template< int n >
static void invLTx ( FieldMatrix< ctype, n, n > &L, FieldVector< ctype, n > &x )
{
for( int i = n; i > 0; --i )
{
for( int j = i; j < n; ++j )
x[ i-1 ] -= L[ j ][ i-1 ] * x[ j ];
x[ i-1 ] /= L[ i-1 ][ i-1 ];
}
}
template< int n >
static ctype spdDetA ( const FieldMatrix< ctype, n, n > &A )
{
// return A[0][0]*A[1][1]-A[1][0]*A[1][0];
FieldMatrix< ctype, n, n > L;
cholesky_L( A, L );
return detL( L );
}
template< int n >
static ctype spdInvA ( FieldMatrix< ctype, n, n > &A )
{
FieldMatrix< ctype, n, n > L;
cholesky_L( A, L );
const ctype det = invL( L );
LTL( L, A );
return det;
}
// calculate x := A^{-1} x
template< int n >
static void spdInvAx ( FieldMatrix< ctype, n, n > &A, FieldVector< ctype, n > &x )
{
FieldMatrix< ctype, n, n > L;
cholesky_L( A, L );
invLx( L, x );
invLTx( L, x );
}
template< int m, int n >
static ctype detATA ( const FieldMatrix< ctype, m, n > &A )
{
if( m >= n )
{
FieldMatrix< ctype, n, n > ata;
ATA_L( A, ata );
return spdDetA( ata );
}
else
return ctype( 0 );
}
/** \brief Compute the square root of the determinant of A times A transposed
*
* This is the volume element for an embedded submanifold and needed to
* implement the method integrationElement().
*/
template< int m, int n >
static ctype sqrtDetAAT ( const FieldMatrix< ctype, m, n > &A )
{
using std::abs;
using std::sqrt;
// These special cases are here not only for speed reasons:
// The general implementation aborts if the matrix is almost singular,
// and the special implementation provide a stable way to handle that case.
if( (n == 2) && (m == 2) )
{
// Special implementation for 2x2 matrices: faster and more stable
return abs( A[ 0 ][ 0 ]*A[ 1 ][ 1 ] - A[ 1 ][ 0 ]*A[ 0 ][ 1 ] );
}
else if( (n == 3) && (m == 3) )
{
// Special implementation for 3x3 matrices
const ctype v0 = A[ 0 ][ 1 ] * A[ 1 ][ 2 ] - A[ 1 ][ 1 ] * A[ 0 ][ 2 ];
const ctype v1 = A[ 0 ][ 2 ] * A[ 1 ][ 0 ] - A[ 1 ][ 2 ] * A[ 0 ][ 0 ];
const ctype v2 = A[ 0 ][ 0 ] * A[ 1 ][ 1 ] - A[ 1 ][ 0 ] * A[ 0 ][ 1 ];
return abs( v0 * A[ 2 ][ 0 ] + v1 * A[ 2 ][ 1 ] + v2 * A[ 2 ][ 2 ] );
}
else if ( (n == 3) && (m == 2) )
{
// Special implementation for 2x3 matrices
const ctype v0 = A[ 0 ][ 0 ] * A[ 1 ][ 1 ] - A[ 0 ][ 1 ] * A[ 1 ][ 0 ];
const ctype v1 = A[ 0 ][ 0 ] * A[ 1 ][ 2 ] - A[ 1 ][ 0 ] * A[ 0 ][ 2 ];
const ctype v2 = A[ 0 ][ 1 ] * A[ 1 ][ 2 ] - A[ 0 ][ 2 ] * A[ 1 ][ 1 ];
return sqrt( v0*v0 + v1*v1 + v2*v2);
}
else if( n >= m )
{
// General case
FieldMatrix< ctype, m, m > aat;
AAT_L( A, aat );
return spdDetA( aat );
}
else
return ctype( 0 );
}
// A^{-1}_L = (A^T A)^{-1} A^T
// => A^{-1}_L A = I
template< int m, int n >
static ctype leftInvA ( const FieldMatrix< ctype, m, n > &A, FieldMatrix< ctype, n, m > &ret )
{
static_assert((m >= n), "Matrix has no left inverse.");
FieldMatrix< ctype, n, n > ata;
ATA_L( A, ata );
const ctype det = spdInvA( ata );
ATBT( ata, A, ret );
return det;
}
template< int m, int n >
static void leftInvAx ( const FieldMatrix< ctype, m, n > &A, const FieldVector< ctype, m > &x, FieldVector< ctype, n > &y )
{
static_assert((m >= n), "Matrix has no left inverse.");
FieldMatrix< ctype, n, n > ata;
ATx( A, x, y );
ATA_L( A, ata );
spdInvAx( ata, y );
}
/** \brief Compute right pseudo-inverse of matrix A */
template< int m, int n >
static ctype rightInvA ( const FieldMatrix< ctype, m, n > &A, FieldMatrix< ctype, n, m > &ret )
{
static_assert((n >= m), "Matrix has no right inverse.");
using std::abs;
if( (n == 2) && (m == 2) )
{
const ctype det = (A[ 0 ][ 0 ]*A[ 1 ][ 1 ] - A[ 1 ][ 0 ]*A[ 0 ][ 1 ]);
const ctype detInv = ctype( 1 ) / det;
ret[ 0 ][ 0 ] = A[ 1 ][ 1 ] * detInv;
ret[ 1 ][ 1 ] = A[ 0 ][ 0 ] * detInv;
ret[ 1 ][ 0 ] = -A[ 1 ][ 0 ] * detInv;
ret[ 0 ][ 1 ] = -A[ 0 ][ 1 ] * detInv;
return abs( det );
}
else
{
FieldMatrix< ctype, m , m > aat;
AAT_L( A, aat );
const ctype det = spdInvA( aat );
ATBT( A , aat , ret );
return det;
}
}
template< int m, int n >
static void xTRightInvA ( const FieldMatrix< ctype, m, n > &A, const FieldVector< ctype, n > &x, FieldVector< ctype, m > &y )
{
static_assert((n >= m), "Matrix has no right inverse.");
FieldMatrix< ctype, m, m > aat;
Ax( A, x, y );
AAT_L( A, aat );
spdInvAx( aat, y );
}
};
} // namespace Impl
/** \brief Implementation of the Geometry interface for affine geometries
* \tparam ct Type used for coordinates
* \tparam mydim Dimension of the geometry
* \tparam cdim Dimension of the world space
*/
template< class ct, int mydim, int cdim>
class AffineGeometry
{
public:
/** \brief Type used for coordinates */
typedef ct ctype;
/** \brief Dimension of the geometry */
static const int mydimension= mydim;
/** \brief Dimension of the world space */
static const int coorddimension = cdim;
/** \brief Type for local coordinate vector */
typedef FieldVector< ctype, mydimension > LocalCoordinate;
/** \brief Type for coordinate vector in world space */
typedef FieldVector< ctype, coorddimension > GlobalCoordinate;
/** \brief Type for the transposed Jacobian matrix */
typedef FieldMatrix< ctype, mydimension, coorddimension > JacobianTransposed;
/** \brief Type for the transposed inverse Jacobian matrix */
typedef FieldMatrix< ctype, coorddimension, mydimension > JacobianInverseTransposed;
private:
//! type of reference element
typedef Dune::ReferenceElement< ctype, mydimension > ReferenceElement;
typedef Dune::ReferenceElements< ctype, mydimension > ReferenceElements;
// Helper class to compute a matrix pseudo inverse
typedef Impl::FieldMatrixHelper< ct > MatrixHelper;
public:
/** \brief Create affine geometry from reference element, one vertex, and the Jacobian matrix */
AffineGeometry ( const ReferenceElement &refElement, const GlobalCoordinate &origin,
const JacobianTransposed &jt )
: refElement_(&refElement), origin_(origin), jacobianTransposed_(jt)
{
integrationElement_ = MatrixHelper::template rightInvA< mydimension, coorddimension >( jacobianTransposed_, jacobianInverseTransposed_ );
}
/** \brief Create affine geometry from GeometryType, one vertex, and the Jacobian matrix */
AffineGeometry ( Dune::GeometryType gt, const GlobalCoordinate &origin,
const JacobianTransposed &jt )
: refElement_( &ReferenceElements::general( gt ) ), origin_(origin), jacobianTransposed_( jt )
{
integrationElement_ = MatrixHelper::template rightInvA< mydimension, coorddimension >( jacobianTransposed_, jacobianInverseTransposed_ );
}
/** \brief Create affine geometry from reference element and a vector of vertex coordinates */
template< class CoordVector >
AffineGeometry ( const ReferenceElement &refElement, const CoordVector &coordVector )
: refElement_(&refElement), origin_(coordVector[0])
{
for( int i = 0; i < mydimension; ++i )
jacobianTransposed_[ i ] = coordVector[ i+1 ] - origin_;
integrationElement_ = MatrixHelper::template rightInvA< mydimension, coorddimension >( jacobianTransposed_, jacobianInverseTransposed_ );
}
/** \brief Create affine geometry from GeometryType and a vector of vertex coordinates */
template< class CoordVector >
AffineGeometry ( Dune::GeometryType gt, const CoordVector &coordVector )
: refElement_(&ReferenceElements::general( gt )), origin_(coordVector[0] )
{
for( int i = 0; i < mydimension; ++i )
jacobianTransposed_[ i ] = coordVector[ i+1 ] - origin_;
integrationElement_ = MatrixHelper::template rightInvA< mydimension, coorddimension >( jacobianTransposed_, jacobianInverseTransposed_ );
}
/** \brief Always true: this is an affine geometry */
bool affine () const { return true; }
/** \brief Obtain the type of the reference element */
Dune::GeometryType type () const { return refElement_->type(); }
/** \brief Obtain number of corners of the corresponding reference element */
int corners () const { return refElement_->size( mydimension ); }
/** \brief Obtain coordinates of the i-th corner */
GlobalCoordinate corner ( int i ) const
{
return global( refElement_->position( i, mydimension ) );
}
/** \brief Obtain the centroid of the mapping's image */
GlobalCoordinate center () const { return global( refElement_->position( 0, 0 ) ); }
/** \brief Evaluate the mapping
*
* \param[in] local local coordinate to map
*
* \returns corresponding global coordinate
*/
GlobalCoordinate global ( const LocalCoordinate &local ) const
{
GlobalCoordinate global( origin_ );
jacobianTransposed_.umtv( local, global );
return global;
}
/** \brief Evaluate the inverse mapping
*
* \param[in] global global coordinate to map
*
* \return corresponding local coordinate
*
* The returned local coordinate y minimizes
* \code
* (global( y ) - x).two_norm()
* \endcode
* on the entire affine hull of the reference element. This degenerates
* to the inverse map if the argument y is in the range of the map.
*/
LocalCoordinate local ( const GlobalCoordinate &global ) const
{
LocalCoordinate local;
jacobianInverseTransposed_.mtv( global - origin_, local );
return local;
}
/** \brief Obtain the integration element
*
* If the Jacobian of the mapping is denoted by $J(x)$, the integration
* integration element \f$\mu(x)\f$ is given by
* \f[ \mu(x) = \sqrt{|\det (J^T(x) J(x))|}.\f]
*
* \param[in] local local coordinate to evaluate the integration element in
*
* \returns the integration element \f$\mu(x)\f$.
*/
ctype integrationElement ( const LocalCoordinate &local ) const
{
DUNE_UNUSED_PARAMETER(local);
return integrationElement_;
}
/** \brief Obtain the volume of the element */
ctype volume () const
{
return integrationElement_ * refElement_->volume();
}
/** \brief Obtain the transposed of the Jacobian
*
* \param[in] local local coordinate to evaluate Jacobian in
*
* \returns a reference to the transposed of the Jacobian
*/
const JacobianTransposed &jacobianTransposed ( const LocalCoordinate &local ) const
{
DUNE_UNUSED_PARAMETER(local);
return jacobianTransposed_;
}
/** \brief Obtain the transposed of the Jacobian's inverse
*
* The Jacobian's inverse is defined as a pseudo-inverse. If we denote
* the Jacobian by \f$J(x)\f$, the following condition holds:
* \f[J^{-1}(x) J(x) = I.\f]
*/
const JacobianInverseTransposed &jacobianInverseTransposed ( const LocalCoordinate &local ) const
{
DUNE_UNUSED_PARAMETER(local);
return jacobianInverseTransposed_;
}
friend const ReferenceElement &referenceElement ( const AffineGeometry &geometry ) { return *geometry.refElement_; }
private:
const ReferenceElement* refElement_;
GlobalCoordinate origin_;
JacobianTransposed jacobianTransposed_;
JacobianInverseTransposed jacobianInverseTransposed_;
ctype integrationElement_;
};
} // namespace Dune
#endif // #ifndef DUNE_GEOMETRY_AFFINEGEOMETRY_HH
|