This file is indexed.

/usr/include/dune/geometry/referenceelements.hh is in libdune-geometry-dev 2.5.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_GEOMETRY_REFERENCEELEMENTS_HH
#define DUNE_GEOMETRY_REFERENCEELEMENTS_HH

#include <cassert>

#include <algorithm>
#include <limits>
#include <tuple>
#include <utility>
#include <vector>

#include <dune/common/array.hh>
#include <dune/common/forloop.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/fvector.hh>
#include <dune/common/typetraits.hh>
#include <dune/common/visibility.hh>
#include <dune/common/unused.hh>

#include <dune/geometry/affinegeometry.hh>
#include <dune/geometry/type.hh>

namespace Dune
{

  // Internal Forward Declarations
  // -----------------------------

  template< class ctype, int dim >
  class ReferenceElementContainer;

  template< class ctype, int dim >
  struct ReferenceElements;



  namespace Impl
  {

    /** \brief Compute the number of subentities of a given codimension */
    unsigned int size ( unsigned int topologyId, int dim, int codim );



    /** \brief Compute the topology id of a given subentity
     *
     * \param topologyId Topology id of entity
     * \param dim Dimension of entity
     * \param codim Codimension of the subentity that we are interested in
     * \param i Number of the subentity that we are interested in
     */
    unsigned int subTopologyId ( unsigned int topologyId, int dim, int codim, unsigned int i );



    // subTopologyNumbering
    // --------------------

    void subTopologyNumbering ( unsigned int topologyId, int dim, int codim, unsigned int i, int subcodim,
                                unsigned int *beginOut, unsigned int *endOut );




    // checkInside
    // -----------

    template< class ct, int cdim >
    inline bool
    checkInside ( unsigned int topologyId, int dim, const FieldVector< ct, cdim > &x, ct tolerance, ct factor = ct( 1 ) )
    {
      assert( (dim >= 0) && (dim <= cdim) );
      assert( topologyId < numTopologies( dim ) );

      if( dim > 0 )
      {
        const ct baseFactor = (isPrism( topologyId, dim ) ? factor : factor - x[ dim-1 ]);
        if( (x[ dim-1 ] > -tolerance) && (factor - x[ dim-1 ] > -tolerance) )
          return checkInside< ct, cdim >( baseTopologyId( topologyId, dim ), dim-1, x, tolerance, baseFactor );
        else
          return false;
      }
      else
        return true;
    }



    // referenceCorners
    // ----------------

    template< class ct, int cdim >
    inline unsigned int
    referenceCorners ( unsigned int topologyId, int dim, FieldVector< ct, cdim > *corners )
    {
      assert( (dim >= 0) && (dim <= cdim) );
      assert( topologyId < numTopologies( dim ) );

      if( dim > 0 )
      {
        const unsigned int nBaseCorners
          = referenceCorners( baseTopologyId( topologyId, dim ), dim-1, corners );
        assert( nBaseCorners == size( baseTopologyId( topologyId, dim ), dim-1, dim-1 ) );
        if( isPrism( topologyId, dim ) )
        {
          std::copy( corners, corners + nBaseCorners, corners + nBaseCorners );
          for( unsigned int i = 0; i < nBaseCorners; ++i )
            corners[ i+nBaseCorners ][ dim-1 ] = ct( 1 );
          return 2*nBaseCorners;
        }
        else
        {
          corners[ nBaseCorners ] = FieldVector< ct, cdim >( ct( 0 ) );
          corners[ nBaseCorners ][ dim-1 ] = ct( 1 );
          return nBaseCorners+1;
        }
      }
      else
      {
        *corners = FieldVector< ct, cdim >( ct( 0 ) );
        return 1;
      }
    }



    // referenceVolume
    // ---------------

    unsigned long referenceVolumeInverse ( unsigned int topologyId, int dim );

    template< class ct >
    inline ct referenceVolume ( unsigned int topologyId, int dim )
    {
      return ct( 1 ) / ct( referenceVolumeInverse( topologyId, dim ) );
    }



    // referenceOrigins
    // ----------------

    template< class ct, int cdim >
    inline unsigned int
    referenceOrigins ( unsigned int topologyId, int dim, int codim, FieldVector< ct, cdim > *origins )
    {
      assert( (dim >= 0) && (dim <= cdim) );
      assert( topologyId < numTopologies( dim ) );
      assert( (codim >= 0) && (codim <= dim) );

      if( codim > 0 )
      {
        const unsigned int baseId = baseTopologyId( topologyId, dim );
        if( isPrism( topologyId, dim ) )
        {
          const unsigned int n = (codim < dim ? referenceOrigins( baseId, dim-1, codim, origins ) : 0);
          const unsigned int m = referenceOrigins( baseId, dim-1, codim-1, origins+n );
          for( unsigned int i = 0; i < m; ++i )
          {
            origins[ n+m+i ] = origins[ n+i ];
            origins[ n+m+i ][ dim-1 ] = ct( 1 );
          }
          return n+2*m;
        }
        else
        {
          const unsigned int m = referenceOrigins( baseId, dim-1, codim-1, origins );
          if( codim == dim )
          {
            origins[ m ] = FieldVector< ct, cdim >( ct( 0 ) );
            origins[ m ][ dim-1 ] = ct( 1 );
            return m+1;
          }
          else
            return m+referenceOrigins( baseId, dim-1, codim, origins+m );
        }
      }
      else
      {
        origins[ 0 ] = FieldVector< ct, cdim >( ct( 0 ) );
        return 1;
      }
    }



    // referenceEmbeddings
    // -------------------

    template< class ct, int cdim, int mydim >
    inline unsigned int
    referenceEmbeddings ( unsigned int topologyId, int dim, int codim,
                          FieldVector< ct, cdim > *origins,
                          FieldMatrix< ct, mydim, cdim > *jacobianTransposeds )
    {
      assert( (0 <= codim) && (codim <= dim) && (dim <= cdim) );
      assert( (dim - codim <= mydim) && (mydim <= cdim) );
      assert( topologyId < numTopologies( dim ) );

      if( codim > 0 )
      {
        const unsigned int baseId = baseTopologyId( topologyId, dim );
        if( isPrism( topologyId, dim ) )
        {
          const unsigned int n = (codim < dim ? referenceEmbeddings( baseId, dim-1, codim, origins, jacobianTransposeds ) : 0);
          for( unsigned int i = 0; i < n; ++i )
            jacobianTransposeds[ i ][ dim-codim-1 ][ dim-1 ] = ct( 1 );

          const unsigned int m = referenceEmbeddings( baseId, dim-1, codim-1, origins+n, jacobianTransposeds+n );
          std::copy( origins+n, origins+n+m, origins+n+m );
          std::copy( jacobianTransposeds+n, jacobianTransposeds+n+m, jacobianTransposeds+n+m );
          for( unsigned int i = 0; i < m; ++i )
            origins[ n+m+i ][ dim-1 ] = ct( 1 );

          return n+2*m;
        }
        else
        {
          const unsigned int m = referenceEmbeddings( baseId, dim-1, codim-1, origins, jacobianTransposeds );
          if( codim == dim )
          {
            origins[ m ] = FieldVector< ct, cdim >( ct( 0 ) );
            origins[ m ][ dim-1 ] = ct( 1 );
            jacobianTransposeds[ m ] = FieldMatrix< ct, mydim, cdim >( ct( 0 ) );
            return m+1;
          }
          else
          {
            const unsigned int n = referenceEmbeddings( baseId, dim-1, codim, origins+m, jacobianTransposeds+m );
            for( unsigned int i = 0; i < n; ++i )
            {
              for( int k = 0; k < dim-1; ++k )
                jacobianTransposeds[ m+i ][ dim-codim-1 ][ k ] = -origins[ m+i ][ k ];
              jacobianTransposeds[ m+i ][ dim-codim-1 ][ dim-1 ] = ct( 1 );
            }
            return m+n;
          }
        }
      }
      else
      {
        origins[ 0 ] = FieldVector< ct, cdim >( ct( 0 ) );
        jacobianTransposeds[ 0 ] = FieldMatrix< ct, mydim, cdim >( ct( 0 ) );
        for( int k = 0; k < dim; ++k )
          jacobianTransposeds[ 0 ][ k ][ k ] = ct( 1 );
        return 1;
      }
    }



    // referenceIntegrationOuterNormals
    // --------------------------------

    template< class ct, int cdim >
    inline unsigned int
    referenceIntegrationOuterNormals ( unsigned int topologyId, int dim,
                                       const FieldVector< ct, cdim > *origins,
                                       FieldVector< ct, cdim > *normals )
    {
      assert( (dim > 0) && (dim <= cdim) );
      assert( topologyId < numTopologies( dim ) );

      if( dim > 1 )
      {
        const unsigned int baseId = baseTopologyId( topologyId, dim );
        if( isPrism( topologyId, dim ) )
        {
          const unsigned int numBaseFaces
            = referenceIntegrationOuterNormals( baseId, dim-1, origins, normals );

          for( unsigned int i = 0; i < 2; ++i )
          {
            normals[ numBaseFaces+i ] = FieldVector< ct, cdim >( ct( 0 ) );
            normals[ numBaseFaces+i ][ dim-1 ] = ct( 2*int( i )-1 );
          }

          return numBaseFaces+2;
        }
        else
        {
          normals[ 0 ] = FieldVector< ct, cdim >( ct( 0 ) );
          normals[ 0 ][ dim-1 ] = ct( -1 );

          const unsigned int numBaseFaces
            = referenceIntegrationOuterNormals( baseId, dim-1, origins+1, normals+1 );
          for( unsigned int i = 1; i <= numBaseFaces; ++i )
            normals[ i ][ dim-1 ] = normals[ i ]*origins[ i ];

          return numBaseFaces+1;
        }
      }
      else
      {
        for( unsigned int i = 0; i < 2; ++i )
        {
          normals[ i ] = FieldVector< ct, cdim >( ct( 0 ) );
          normals[ i ][ 0 ] = ct( 2*int( i )-1 );
        }

        return 2;
      }
    }

    template< class ct, int cdim >
    inline unsigned int
    referenceIntegrationOuterNormals ( unsigned int topologyId, int dim,
                                       FieldVector< ct, cdim > *normals )
    {
      assert( (dim > 0) && (dim <= cdim) );

      FieldVector< ct, cdim > *origins
        = new FieldVector< ct, cdim >[ size( topologyId, dim, 1 ) ];
      referenceOrigins( topologyId, dim, 1, origins );

      const unsigned int numFaces
        = referenceIntegrationOuterNormals( topologyId, dim, origins, normals );
      assert( numFaces == size( topologyId, dim, 1 ) );

      delete[] origins;

      return numFaces;
    }

  } // namespace Impl



  // ReferenceElement
  // ----------------

  /** \class ReferenceElement
   *  \ingroup GeometryReferenceElements
   *  \brief This class provides access to geometric and topological
   *  properties of a reference element.
   *
   *  This includes its type,
   *  the number of subentities, the volume, and a method for checking
   *  if a point is contained in the reference element.
   *  The embedding of each subentity into the reference element is also
   *  provided.
   *
   *  A singleton of this class for a given geometry type can be accessed
   *  through the ReferenceElements class.

   *  \tparam ctype  field type for coordinates
   *  \tparam dim    dimension of the reference element
   *
   */
  template< class ctype, int dim >
  class ReferenceElement
  {
    typedef ReferenceElement< ctype, dim > This;

    friend class ReferenceElementContainer< ctype, dim >;

    struct SubEntityInfo;

    // make copy constructor private
    ReferenceElement ( const This & );

    ReferenceElement () {}

    template< int codim > struct CreateGeometries;

  public:
    /** \brief Collection of types depending on the codimension */
    template< int codim >
    struct Codim
    {
      //! type of geometry embedding a subentity into the reference element
      typedef AffineGeometry< ctype, dim-codim, dim > Geometry;
    };

    /** \brief number of subentities of codimension c
     *
     *  \param[in]  c  codimension whose size is desired
     */
    int size ( int c ) const
    {
      assert( (c >= 0) && (c <= dim) );
      return info_[ c ].size();
    }

    /** \brief number of subentities of codimension cc of subentity (i,c)
     *
     *  Denote by E the i-th subentity of codimension c of the current
     *  reference element. This method returns the number of subentities
     *  of codimension cc of the current reference element, that are also
     *  a subentity of E.
     *
     *  \param[in]  i   number of subentity E (0 <= i < size( c ))
     *  \param[in]  c   codimension of subentity E
     *  \param[in]  cc  codimension whose size is desired (c <= cc <= dim)
     */
    int size ( int i, int c, int cc ) const
    {
      assert( (i >= 0) && (i < size( c )) );
      return info_[ c ][ i ].size( cc );
    }

    /** \brief obtain number of ii-th subentity with codim cc of (i,c)
     *
     *  Denote by E the i-th subentity of codimension c of the current
     *  reference element. And denote by S the ii-th subentity of codimension
     *  (cc-c) of E. Then, S is a also a subentity of codimension c of the current
     *  reference element. This method returns the number of S with respect
     *  to the current reference element.
     *
     *  \param[in]  i   number of subentity E (0 <= i < size( c ))
     *  \param[in]  c   codimension of subentity E
     *  \param[in]  ii  number of subentity S (with respect to E)
     *  \param[in]  cc  codimension of subentity S (c <= cc <= dim)
     */
    int subEntity ( int i, int c, int ii, int cc ) const
    {
      assert( (i >= 0) && (i < size( c )) );
      return info_[ c ][ i ].number( ii, cc );
    }

    /** \brief obtain the type of subentity (i,c)
     *
     *  Denote by E the i-th subentity of codimension c of the current
     *  reference element. This method returns the GeometryType of E.
     *
     *  \param[in]  i      number of subentity E (0 <= i < size( c ))
     *  \param[in]  c      codimension of subentity E
     */
    const GeometryType &type ( int i, int c ) const
    {
      assert( (i >= 0) && (i < size( c )) );
      return info_[ c ][ i ].type();
    }

    /** \brief obtain the type of this reference element */
    const GeometryType &type () const { return type( 0, 0 ); }

    /** \brief position of the barycenter of entity (i,c)
     *
     *  Denote by E the i-th subentity of codimension c of the current
     *  reference element. This method returns the coordinates of
     *  the center of gravity of E within the current reference element.
     *
     *  \param[in]  i   number of subentity E (0 <= i < size( c ))
     *  \param[in]  c   codimension of subentity E
     */
    const FieldVector< ctype, dim > &position( int i, int c ) const
    {
      assert( (c >= 0) && (c <= dim) );
      return baryCenters_[ c ][ i ];
    }

    /** \brief check if a coordinate is in the reference element
     *
     *  This method returns true if the given local coordinate is within this
     *  reference element.
     *
     *  \param[in]  local  coordinates of the point
     */
    bool checkInside ( const FieldVector< ctype, dim > &local ) const
    {
      const ctype tolerance = ctype( 64 ) * std::numeric_limits< ctype >::epsilon();
      return Impl::template checkInside< ctype, dim >( type().id(), dim, local, tolerance );
    }

    /** \brief obtain the embedding of subentity (i,codim) into the reference
     *         element
     *
     *  Denote by E the i-th subentity of codimension codim of the current
     *  reference element. This method returns a \ref Dune::AffineGeometry
     *  that maps the reference element of E into the current reference element.
     *
     *  \tparam     codim  codimension of subentity E
     *
     *  \param[in]  i      number of subentity E (0 <= i < size( codim ))
     */
    template< int codim >
    typename Codim< codim >::Geometry geometry ( int i ) const
    {
      return std::get< codim >( geometries_ )[ i ];
    }

    /** \brief obtain the volume of the reference element */
    ctype volume () const
    {
      return volume_;
    }

    /** \brief obtain the integration outer normal of the reference element
     *
     *  The integration outer normal is the outer normal whose length coincides
     *  with the face's integration element.
     *
     *  \param[in]  face  index of the face, whose normal is desired
     */
    const FieldVector< ctype, dim > &integrationOuterNormal ( int face ) const
    {
      assert( (face >= 0) && (face < int( integrationNormals_.size() )) );
      return integrationNormals_[ face ];
    }

  private:
    void initialize ( unsigned int topologyId )
    {
      assert( topologyId < Impl::numTopologies( dim ) );

      // set up subentities
      for( int codim = 0; codim <= dim; ++codim )
      {
        const unsigned int size = Impl::size( topologyId, dim, codim );
        info_[ codim ].resize( size );
        for( unsigned int i = 0; i < size; ++i )
          info_[ codim ][ i ].initialize( topologyId, codim, i );
      }

      // compute corners
      const unsigned int numVertices = size( dim );
      baryCenters_[ dim ].resize( numVertices );
      Impl::referenceCorners( topologyId, dim, &(baryCenters_[ dim ][ 0 ]) );

      // compute barycenters
      for( int codim = 0; codim < dim; ++codim )
      {
        baryCenters_[ codim ].resize( size(codim) );
        for( int i = 0; i < size( codim ); ++i )
        {
          baryCenters_[ codim ][ i ] = FieldVector< ctype, dim >( ctype( 0 ) );
          const unsigned int numCorners = size( i, codim, dim );
          for( unsigned int j = 0; j < numCorners; ++j )
            baryCenters_[ codim ][ i ] += baryCenters_[ dim ][ subEntity( i, codim, j, dim ) ];
          baryCenters_[ codim ][ i ] *= ctype( 1 ) / ctype( numCorners );
        }
      }

      // compute reference element volume
      volume_ = Impl::template referenceVolume< ctype >( topologyId, dim );

      // compute integration outer normals
      if( dim > 0 )
      {
        integrationNormals_.resize( size( 1 ) );
        Impl::referenceIntegrationOuterNormals( topologyId, dim, &(integrationNormals_[ 0 ]) );
      }

      // set up geometries
      Dune::ForLoop< CreateGeometries, 0, dim >::apply( *this, geometries_ );
    }

    template< int... codim >
    static std::tuple< std::vector< typename Codim< codim >::Geometry >... >
    makeGeometryTable ( std::integer_sequence< int, codim... > );

    /** \brief Type to store all subentities of all codimensions */
    typedef decltype( makeGeometryTable( std::make_integer_sequence< int, dim+1 >() ) ) GeometryTable;

    /** \brief The reference element volume */
    ctype volume_;

    std::vector< FieldVector< ctype, dim > > baryCenters_[ dim+1 ];
    std::vector< FieldVector< ctype, dim > > integrationNormals_;

    /** \brief Stores all subentities of all codimensions */
    GeometryTable geometries_;

    std::vector< SubEntityInfo > info_[ dim+1 ];
  };

  /** \brief topological information about the subentities of a reference element */
  template< class ctype, int dim >
  struct ReferenceElement< ctype, dim >::SubEntityInfo
  {
    SubEntityInfo ()
      : numbering_( nullptr )
    {
      std::fill( offset_.begin(), offset_.end(), 0 );
    }

    SubEntityInfo ( const SubEntityInfo &other )
      : offset_( other.offset_ ),
        type_( other.type_ )
    {
      numbering_ = allocate();
      std::copy( other.numbering_, other.numbering_ + capacity(), numbering_ );
    }

    ~SubEntityInfo () { deallocate( numbering_ ); }

    const SubEntityInfo &operator= ( const SubEntityInfo &other )
    {
      type_ = other.type_;
      offset_ = other.offset_;

      deallocate( numbering_ );
      numbering_ = allocate();
      std::copy( other.numbering_, other.numbering_ + capacity(), numbering_ );

      return *this;
    }

    int size ( int cc ) const
    {
      assert( (cc >= codim()) && (cc <= dim) );
      return (offset_[ cc+1 ] - offset_[ cc ]);
    }

    int number ( int ii, int cc ) const
    {
      assert( (ii >= 0) && (ii < size( cc )) );
      return numbering_[ offset_[ cc ] + ii ];
    }

    const GeometryType &type () const { return type_; }

    void initialize ( unsigned int topologyId, int codim, unsigned int i )
    {
      const unsigned int subId = Impl::subTopologyId( topologyId, dim, codim, i );
      type_ = GeometryType( subId, dim-codim );

      // compute offsets
      for( int cc = 0; cc <= codim; ++cc )
        offset_[ cc ] = 0;
      for( int cc = codim; cc <= dim; ++cc )
        offset_[ cc+1 ] = offset_[ cc ] + Impl::size( subId, dim-codim, cc-codim );

      // compute subnumbering
      deallocate( numbering_ );
      numbering_ = allocate();
      for( int cc = codim; cc <= dim; ++cc )
        Impl::subTopologyNumbering( topologyId, dim, codim, i, cc-codim, numbering_+offset_[ cc ], numbering_+offset_[ cc+1 ] );
    }

  protected:
    int codim () const { return dim - type().dim(); }

    unsigned int *allocate () { return (capacity() != 0 ? new unsigned int[ capacity() ] : nullptr); }
    void deallocate ( unsigned int *ptr ) { delete[] ptr; }
    unsigned int capacity () const { return offset_[ dim+1 ]; }

  private:
    unsigned int *numbering_;
    std::array< unsigned int, dim+2 > offset_;
    GeometryType type_;
  };


  template< class ctype, int dim >
  template< int codim >
  struct ReferenceElement< ctype, dim >::CreateGeometries
  {
    template< int cc >
    static const ReferenceElement< ctype, dim-cc > &
    subRefElement( const ReferenceElement< ctype, dim > &refElement, int i, std::integral_constant< int, cc > )
    {
      return ReferenceElements< ctype, dim-cc >::general( refElement.type( i, cc ) );
    }

    static const ReferenceElement< ctype, dim > &
    subRefElement( const ReferenceElement< ctype, dim > &refElement, int i, std::integral_constant< int, 0 > )
    {
      DUNE_UNUSED_PARAMETER(i);
      return refElement;
    }

    static void apply ( const ReferenceElement< ctype, dim > &refElement, GeometryTable &geometries )
    {
      const int size = refElement.size( codim );
      std::vector< FieldVector< ctype, dim > > origins( size );
      std::vector< FieldMatrix< ctype, dim - codim, dim > > jacobianTransposeds( size );
      Impl::referenceEmbeddings( refElement.type().id(), dim, codim, &(origins[ 0 ]), &(jacobianTransposeds[ 0 ]) );

      std::get< codim >( geometries ).reserve( size );
      for( int i = 0; i < size; ++i )
      {
        typename Codim< codim >::Geometry geometry( subRefElement( refElement, i, std::integral_constant< int, codim >() ), origins[ i ], jacobianTransposeds[ i ] );
        std::get< codim >( geometries ).push_back( geometry );
      }
    }
  };



  // ReferenceElementContainer
  // -------------------------

  template< class ctype, int dim >
  class ReferenceElementContainer
  {
    static const unsigned int numTopologies = (1u << dim);

  public:
    typedef ReferenceElement< ctype, dim > value_type;
    typedef const value_type *const_iterator;

    ReferenceElementContainer ()
    {
      for( unsigned int topologyId = 0; topologyId < numTopologies; ++topologyId )
        values_[ topologyId ].initialize( topologyId );
    }

    const value_type &operator() ( const GeometryType &type ) const
    {
      assert( type.dim() == dim );
      return values_[ type.id() ];
    }

    const value_type &simplex () const
    {
      return values_[ Impl::SimplexTopology< dim >::type::id ];
    }

    const value_type &cube () const
    {
      return values_[ Impl::CubeTopology< dim >::type::id ];
    }

    const value_type &pyramid () const
    {
      return values_[ Impl::PyramidTopology< dim >::type::id ];
    }

    const value_type &prism () const
    {
      return values_[ Impl::PrismTopology< dim >::type::id ];
    }

    const_iterator begin () const { return values_; }
    const_iterator end () const { return values_ + numTopologies; }

  private:
    value_type values_[ numTopologies ];
  };



  // ReferenceElements
  // ------------------------

  /** \brief Class providing access to the singletons of the
   *  reference elements
   *
   *  Special methods are available for
   *  simplex and cube elements of any dimension.
   *  The method general can be used to obtain the reference element
   *  for a given geometry type.
   *
   *  \ingroup GeometryReferenceElements
   */
  template< class ctype, int dim >
  struct ReferenceElements
  {
    typedef typename ReferenceElementContainer< ctype, dim >::const_iterator Iterator;

    //! get general reference elements
    static const ReferenceElement< ctype, dim > &
    general ( const GeometryType &type )
    {
      return container() ( type );
    }

    //! get simplex reference elements
    static const ReferenceElement< ctype, dim > &simplex ()
    {
      return container().simplex();
    }

    //! get hypercube reference elements
    static const ReferenceElement< ctype, dim > &cube ()
    {
      return container().cube();
    }

    static Iterator begin () { return container().begin(); }
    static Iterator end () { return container().end(); }

  private:
    DUNE_EXPORT static const ReferenceElementContainer< ctype, dim > &container ()
    {
      static ReferenceElementContainer< ctype, dim > container;
      return container;
    }
  };

} // namespace Dune

#endif // #ifndef DUNE_GEOMETRY_REFERENCEELEMENTS_HH