/usr/include/dune/geometry/refinement/simplex.cc is in libdune-geometry-dev 2.5.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 | // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_GRID_COMMON_REFINEMENT_SIMPLEX_CC
#define DUNE_GRID_COMMON_REFINEMENT_SIMPLEX_CC
// This file is part of DUNE, a Distributed and Unified Numerics Environment
// This file is copyright (C) 2005 Jorrit Fahlke <jorrit@jorrit.de>
// This file is licensed under version 2 of the GNU General Public License,
// with a special "runtime exception." See COPYING at the top of the source
// tree for the full licence.
/*! @file
@brief This file contains the @ref Refinement implementation for
simplices (triangles, tetrahedrons...)
See @ref SimplexRefinement.
*/
/*! @defgroup SimplexRefinement Refinement implementation for simplices
@ingroup Refinement
This is mainly based on Jürgen Beys
<http://www.igpm.rwth-aachen.de/bey/> dissertation. The relevant
part is available from
<http://www.igpm.rwth-aachen.de/Download/reports/bey/simplex.ps.gz>.
@section Terminology
<!--=============-->
<dl>
<dt>Kuhn simplex</dt>
<dd>To triangulate hypercubes we use the Kuhn triangulation. The
members of this triangulation we call <em>Kuhn simplices</em>.
The Kuhn simplices are indexed by their corresponding
permutation.</dd>
<dt>Kuhn0 simplex</dt>
<dd>The Kuhn simplex corresponding to the permutation number 0.</dd>
<dt>size of a Kuhn simplex</dt>
<dd>The size of a kuhn simplex is equal to the size of the hypercube
that it triangulates.</dd>
<dt>width of a Kuhn simplex</dt>
<dd> See <em>size of a Kuhn simplex</em>.</dd>
</dl>
@section KuhnSimplexIndexing Describing Kuhn simplices by their permutation
<!--====================================================================-->
A Kuhn simplex of dimension n can be described by its size s and a
permutation of the vector \f$\vec{p}=(0,\ldots,n-1)\f$. To get the
coordinates of the corners \f$\vec{x}_0,\ldots,\vec{x}_n\f$ of the
simplex, you do as follows:
- Start at the origin \f$\vec{x}_0\f$.
- For each dimension d from 0 to n-1:
- \f$\vec{x}_{d+1}:=\vec{x}_d+s\cdot\vec{e}_{p_d}\f$
(\f$\vec{e}_i\f$ is the unit vector in direction i.)
@section Kuhn0VertexCounting Number of vertices in a Kuhn0 simplex
<!--===========================================================-->
Let N(n, x) be the number of gridpoints within an n-dimensional
Kuhn0 simplex of x gridunits width.
The number of points in a 0-dimensional simplex is 1, independent of
its width.
N(0, x) = 1
The recursion formula is
<!--
x
--
N(n+1, x) = > N(n, i)
--
i=0
-->
\f[N(n+1,x)=\sum^x_{i=0}N(n,i)\f]
We slice the n+1 dimensional simplex orthogonal to one of the
dimensions and sum the number of points in the n dimensional
subsimplices.
This formula is satisfied by the binomial coefficient
<!--
( n+x )
N(n, x) = ( )
( n )
-->
\f[N(n,x)=\left({n+x}\atop x\right)\f]
See Bronstein, Semendjajew, Musiol, Mühlig "Taschenbuch der
Mathematik" (1999), Formula (1.35c)
Observations:
- N(n, 0) = 1
- N(n, x) = N(x, n)
@section Kuhn0VertexIndexing Index of a vertex within a Kuhn0 simplex
<!--==============================================================-->
@image html simplexvertexindex.png "The image shows the Kuhn0 tetrahedron of width 2 (wireframe). It is partitioned into a tetrahedron (green), a triangle (red), a line (blue), and a vertex (black), each of width 1 and each a Kuhn0 simplex."
Let us calculate the index of vertex 9, which has the coordinates
\f$(x_0,x_1,x_2)=(2,2,2)\f$.
- First we count the number of vertices in the green tetrahedron of
width \f$x_0-1=1\f$ (4). Then we take the green tetrahedron away.
Whats left is a triangle, which extends into the (1,2)-plane.
- Now we count the number of vertices in the red triangle of width
\f$x_1-1=1\f$ (3). Again we take the counted points away and are
left with a line which extends into direction 2.
- We take the blue line of width \f$x_2-1=1\f$, count the number of
vertices (2), and throw away the counted stuff. The only thing
remaining is a point, so we're done.
- We add the counted stuff together and get indeed 9.
On to a more complicated example: vertex 6 with coordinates
\f$(x_0,x_1,x_2)=(2,1,1)\f$.
- First count the vertices in the green tetrahedron again (width
\f$x_0-1=1\f$). The result is 4.
- Count the vertices in the triangle of width \f$x_1-1=0\f$ (vertex
4), which is just a point. The result is 1.
- Count the vertices in the line of width \f$x_2-1=0\f$ (vertex 5),
which is also just a point. The result is 1.
- Add everything together and get 6.
The general algorithm for n dimensions and a vertex with coordinates
\f$\vec{x}=(x_0,\ldots,x_{n-1})\f$ is as follows:
- For each dimension d from 0 to n-1
- Count the vertices in the n-d dimensional simplex of width
\f$x_d-1\f$,
- Add all counts together to get the index of the vertex
In formulas it looks like this:
<!--[ This is the more readable text version of the stuff below ]
Let I(n, X) be the index of point X in the n-dimensional Kuhn0
simplex. X is a vector X=(x[0], ..., x[n-1]). It measures the
position of the point in gridunits and thus is integer.
n-1 n-1
-- -- ( n-i+x[i]-1 )
I(n, X) = > N(n-i, x[i]-1) = > ( )
-- -- ( n-i )
i=0 i=0
Since the dimensions within the Kuhn0 Simplex have a defined order
(x[0] >= x[1] >= ... >= x[n-1]) they cannot simply be swapped so the
sum is somewhat ugly.
-->
Let \f$I(n,\vec{x})\f$ be the index of point \f$\vec{x}\f$ in the
n-dimensional Kuhn0 simplex. The coordinates measure the position
of the point in gridunits and thus are integer.
\f[I(n,\vec{x})=\sum_{i=0}^{n-1}N(n-i,x_i-1)=\sum_{i=0}^{n-1}\left({n-i+x_i-1}\atop{n-i}\right)\f]
Since the coordinates of a vertex within the Kuhn0 obey the relation
\f$x_0\geq x_1\geq\ldots\geq x_{n-1}\f$, they cannot simply be
swapped so the sum is somewhat ugly.
@section Kuhn0SubelementIndexing Index of a subelement within a Kuhn0 simplex
<!--======================================================================-->
We don't know of a way to simply map a subelement of a Kuhn0 simplex
to an index number. Luckily, the iterator interface only requires
that we be able to calculate the next subelement.
Each subelement is a Kuhn (sub)simplex which triangulates a
hypercube. We need to remember the vertex which is the origin of
that hypercube and the index of the permutation of that identifies
the Kuhn subsimplex. Now to get to the next subelement, we simply
need to increment the permutation index, and if the overflows we
reset it and increment the origin to the next vertex (we already
know how to do that).
Some subelements generated this way are outside the refined Kuhn0
simplex, so we have to check for that, and skip them.
@section PermutationIndexing Index of a permutation
<!--============================================-->
[NOTE: There may be some interesting stuff in
http://en.wikipedia.org/wiki/Factoradic . I was not aware of it
while writing this code, however.]
We need to index the n! permutations of the integers from 0 to n-1
and a way to calculate the permutation if given the index.
I'll discuss the permutation P, which operates on a vector
\f$\vec{x}=(x_0,\ldots,x_{n-1})\f$.
P can be made up of n transpositions, \f$P=T_0\cdots T_{n-1}\f$.
Each transposition \f$T_i\f$ exchanges some arbitrary element
\f$x_{t_i}\f$ with the element \f$x_i\f$, where \f$t_i\leq i\f$. So
we can totally describe \f$T_i\f$ by the integer \f$t_i\f$. Thus we
can describe P by the integer vector
\f$\vec{t}=(t_0,\cdots,t_{n-1})\f$, where \f$0\leq t_i\leq i\f$.
Now we need to encode the vector \f$\vec{t}\f$ into a single number.
To do that we view \f$t_i\f$ as digit i of a number p written in a
<em>base faculty notation</em>:
\f[p=\sum_{i=1}^{n-1}i!t_i\f]
This number p is unique for each possible permutation P so we could
use this as index. There is a problem though: we would like the
identity permutation \f$\vec{x}=P\vec{x}\f$ to have index 0. So we
define the index I of the permutation slightly differently:
\f[I=\sum_{i=1}^{n-1}i!(i-t_i)\f]
I can easily calculate the \f$t_i\f$ from I:
\f[i-t_i=(I/i!)\%(i+1)\f]
('/' is integer division and '%' calculates the remainder).
@section KuhnToReference Mapping between some Kuhn and the reference simplex
<!--=====================================================================-->
@image html referencetokuhn0.png "Step 1 moves each point by its x2 value into x1 direction. Step 2 moves each point by its new x1 value into x0 direction."
The algorithm to transform a point
\f$\vec{x}=(x_0,\ldots,x_{n-1})\f$ from the reference simplex of
dimension n to the Kuhn0 simplex (as illustrated in the image) is as
follows:
- For each dimension d from n-2 down to 0:
- \f$x_d:=x_d+x_{d+1}\f$.
The reverse (from Kuhn0 to reference) is simple as well:
- For each dimension d from 0 up to n-2:
- \f$x_d:=x_d-x_{d+1}\f$.
@par Arbitrary Kuhn simplices
<!-------------------------->
For arbitrary Kuhn simplices we have to take the permutation of that
simplex into account. So to map from the reference simplex of n
dimensions to the Kuhn simplex with the permutation P (which is
described by the vector \f$\vec{p}=P(0,\ldots,n-1)\f$) we do:
- For each dimension d from n-2 down to 0:
- \f$x_{p_d}:=x_{p_d}+x_{p_{d+1}}\f$.
And or the reverse:
- For each dimension d from 0 up to n-2:
- \f$x_{p_d}:=x_{p_d}-x_{p_{d+1}}\f$.
*/
#include <algorithm>
#include <dune/common/fvector.hh>
#include <dune/geometry/multilineargeometry.hh>
#include <dune/geometry/referenceelements.hh>
#include <dune/geometry/type.hh>
#include "base.cc"
namespace Dune {
namespace RefinementImp {
/*! @brief This namespace contains the @ref Refinement
implementation for simplices (triangles,
tetrahedrons...)
See @ref SimplexRefinement.
*/
namespace Simplex {
// //////////////////
//
//! @name Utilities
//
//@{
/*! @brief Calculate n!
Runtime is of order O(n).
*/
inline int factorial(int n)
{
int prod = 1;
for(int i = 1; i <= n; ++i)
prod *= i;
return prod;
}
/*! @brief calculate \f$\left({upper}\atop{lower}\right)\f$
Runtime is of order O(min {lower, upper-lower})
*/
inline int binomial(int upper, int lower)
{
lower = std::min( lower, upper - lower );
if(lower < 0)
return 0;
int prod = 1;
for(int i = upper - lower; i < upper; ++i)
prod *= (i+1);
return prod / factorial(lower);
}
/*! @brief calculate the index of a given gridpoint within a
Kuhn0 simplex
Runtime is of order O(dimension^2) (or better for dimension >
the coordinates of the point)
*/
template<int dimension>
int pointIndex(const FieldVector<int, dimension> &point)
{
int index = 0;
for(int i = 0; i < dimension; ++i)
index += binomial(dimension-i + point[i]-1, dimension-i);
return index;
}
/*! @brief Calculate permutation from it's index
Runtime is of order O(n).
*/
template<int n>
FieldVector<int, n> getPermutation(int m)
{
FieldVector<int, n> perm;
for(int i = 0; i < n; ++i)
perm[i] = i;
int base = 1;
for(int i = 1; i <= n; ++i)
base *= i;
for(int i = n; i > 0; --i) {
base /= i;
int d = m / base;
m %= base;
int t = perm[i-1]; perm[i-1] = perm[i-1-d]; perm[i-1-d] = t;
}
return perm;
}
#if 0
Has to be checked
// calculate the index of a permutation
template<int n>
int getPermIndex(const FieldVector<int, n>& test) // O(n^2)
{
int m = 0;
FieldVector<int, n> perm;
for(int i = 0; i < n; ++i)
perm[i] = i;
int base = 1;
for(int i = 1; i <= n; ++i)
base *= i;
for(int i = n; i > 0; --i) {
base /= i;
int d;
for(d = 0; d < i; ++d)
if(test[i-1] == perm[i-1-d])
break;
m += d * base;
int d = m / base;
m %= base;
perm[i-1-d] = perm[i-1];
}
}
#endif
// map between the reference simplex and some arbitrary kuhn simplex (denoted by it's permutation)
/*! @brief Map from the reference simplex to some Kuhn simplex
@tparam dimension Dimension of the simplices
@tparam CoordType The C++ type of the coordinates
Runtime is of order O(dimension)
*/
template<int dimension, class CoordType>
FieldVector<CoordType, dimension>
referenceToKuhn( //! Point to map
FieldVector<CoordType, dimension> point,
//! Permutation of the Kuhn simplex to map to
const FieldVector<int, dimension> &kuhn)
{
for(int i = dimension - 1; i > 0; --i)
point[kuhn[i-1]] += point[kuhn[i]];
return point;
}
/*! @brief Map from some Kuhn simplex to the reference simplex
@tparam dimension Dimension of the simplices
@tparam CoordType The C++ type of the coordinates
Runtime is of order O(dimension)
*/
template<int dimension, class CoordType>
FieldVector<CoordType, dimension>
kuhnToReference( //! Point to map
FieldVector<CoordType, dimension> point,
//! Permutation of the Kuhn simplex to map from
const FieldVector<int, dimension> &kuhn)
{
for(int i = 0; i < dimension - 1; ++i)
point[kuhn[i]] -= point[kuhn[i+1]];
return point;
}
//@} <!-- Group utilities -->
// /////////////////////////////////////////
//
// refinement implementation for simplices
//
template<int dimension_, class CoordType>
class RefinementImp
{
public:
enum { dimension = dimension_ };
typedef CoordType ctype;
template<int codimension>
struct Codim;
typedef typename Codim<dimension>::SubEntityIterator VertexIterator;
typedef FieldVector<CoordType, dimension> CoordVector;
typedef typename Codim<0>::SubEntityIterator ElementIterator;
typedef FieldVector<int, dimension+1> IndexVector;
static int nVertices(int level);
static VertexIterator vBegin(int level);
static VertexIterator vEnd(int level);
static int nElements(int level);
static ElementIterator eBegin(int level);
static ElementIterator eEnd(int level);
};
template<int dimension, class CoordType>
template<int codimension>
struct RefinementImp<dimension, CoordType>::Codim
{
class SubEntityIterator;
// We don't need the caching, but the uncached MultiLinearGeometry has bug FS#1209
typedef Dune::CachedMultiLinearGeometry<CoordType,dimension-codimension,dimension> Geometry;
};
template<int dimension, class CoordType>
int
RefinementImp<dimension, CoordType>::
nVertices(int level)
{
return binomial(dimension + (1 << level), dimension);
}
template<int dimension, class CoordType>
typename RefinementImp<dimension, CoordType>::VertexIterator
RefinementImp<dimension, CoordType>::
vBegin(int level)
{
return VertexIterator(level);
}
template<int dimension, class CoordType>
typename RefinementImp<dimension, CoordType>::VertexIterator
RefinementImp<dimension, CoordType>::
vEnd(int level)
{
return VertexIterator(level, true);
}
template<int dimension, class CoordType>
int
RefinementImp<dimension, CoordType>::
nElements(int level)
{
return 1 << (level * dimension);
}
template<int dimension, class CoordType>
typename RefinementImp<dimension, CoordType>::ElementIterator
RefinementImp<dimension, CoordType>::
eBegin(int level)
{
return ElementIterator(level);
}
template<int dimension, class CoordType>
typename RefinementImp<dimension, CoordType>::ElementIterator
RefinementImp<dimension, CoordType>::
eEnd(int level)
{
return ElementIterator(level, true);
}
// //////////////
//
// The iterator
//
template<int dimension, class CoordType, int codimension>
class RefinementIteratorSpecial;
// vertices
template<int dimension, class CoordType>
class RefinementIteratorSpecial<dimension, CoordType, dimension>
{
public:
typedef RefinementImp<dimension, CoordType> Refinement;
typedef typename Refinement::CoordVector CoordVector;
typedef typename Refinement::template Codim<dimension>::Geometry Geometry;
typedef RefinementIteratorSpecial<dimension, CoordType, dimension> This;
RefinementIteratorSpecial(int level, bool end = false);
void increment();
bool equals(const This &other) const;
CoordVector coords() const;
Geometry geometry () const;
int index() const;
protected:
typedef FieldVector<int, dimension> Vertex;
int size;
Vertex vertex;
};
template<int dimension, class CoordType>
RefinementIteratorSpecial<dimension, CoordType, dimension>::
RefinementIteratorSpecial(int level, bool end)
: size(1<<level)
{
vertex[0] = (end) ? size + 1 : 0;
for(int i = 1; i < dimension; ++ i)
vertex[i] = 0;
}
template<int dimension, class CoordType>
void
RefinementIteratorSpecial<dimension, CoordType, dimension>::
increment()
{
assert(vertex[0] <= size);
for(int i = dimension - 1; i >= 0; --i) {
++vertex[i];
if(i == 0 || vertex[i] <= vertex[i-1])
break;
else
vertex[i] = 0;
}
}
template<int dimension, class CoordType>
bool
RefinementIteratorSpecial<dimension, CoordType, dimension>::
equals(const This &other) const
{
return size == other.size && vertex == other.vertex;
}
template<int dimension, class CoordType>
typename RefinementIteratorSpecial<dimension, CoordType, dimension>::CoordVector
RefinementIteratorSpecial<dimension, CoordType, dimension>::
coords() const
{
Vertex ref = kuhnToReference(vertex, getPermutation<dimension>(0));
CoordVector coords;
for(int i = 0; i < dimension; ++i)
coords[i] = CoordType(ref[i]) / size;
return coords;
}
template<int dimension, class CoordType>
typename RefinementIteratorSpecial<dimension, CoordType, dimension>::Geometry
RefinementIteratorSpecial<dimension, CoordType, dimension>::geometry () const
{
std::vector<CoordVector> corners(1);
corners[0] = (CoordVector)vertex;
return Geometry(GeometryType(0), corners);
}
template<int dimension, class CoordType>
int
RefinementIteratorSpecial<dimension, CoordType, dimension>::
index() const
{
return pointIndex(vertex);
}
// elements
template<int dimension, class CoordType>
class RefinementIteratorSpecial<dimension, CoordType, 0>
{
public:
typedef RefinementImp<dimension, CoordType> Refinement;
typedef typename Refinement::IndexVector IndexVector;
typedef typename Refinement::CoordVector CoordVector;
typedef typename Refinement::template Codim<0>::Geometry Geometry;
typedef RefinementIteratorSpecial<dimension, CoordType, 0> This;
RefinementIteratorSpecial(int level, bool end = false);
void increment();
bool equals(const This &other) const;
IndexVector vertexIndices() const;
int index() const;
CoordVector coords() const;
Geometry geometry () const;
private:
CoordVector global(const CoordVector &local) const;
protected:
typedef FieldVector<int, dimension> Vertex;
enum { nKuhnSimplices = Factorial<dimension>::factorial };
Vertex origin;
int kuhnIndex;
int size;
int index_;
};
template<int dimension, class CoordType>
RefinementIteratorSpecial<dimension, CoordType, 0>::
RefinementIteratorSpecial(int level, bool end)
: kuhnIndex(0), size(1<<level), index_(0)
{
for(int i = 0; i < dimension; ++i)
origin[i] = 0;
if(end) {
index_ = Refinement::nElements(level);
origin[0] = size;
}
}
template<int dimension, class CoordType>
void
RefinementIteratorSpecial<dimension, CoordType, 0>::
increment()
{
assert(origin[0] < size);
++index_;
while(1) {
++kuhnIndex;
if(kuhnIndex == nKuhnSimplices) {
kuhnIndex = 0;
// increment origin
for(int i = dimension - 1; i >= 0; --i) {
++origin[i];
if(i == 0 || origin[i] <= origin[i-1])
break;
else
origin[i] = 0;
}
}
// test whether the current simplex has any corner outside the kuhn0 simplex
FieldVector<int, dimension> perm = getPermutation<dimension>(kuhnIndex);
Vertex corner = origin;
bool outside = false;
for(int i = 0; i < dimension; ++i) {
// next corner
++corner[perm[i]];
if(perm[i] > 0)
if(corner[perm[i]] > corner[perm[i]-1]) {
outside = true;
break;
}
}
if(!outside)
return;
}
}
template<int dimension, class CoordType>
bool
RefinementIteratorSpecial<dimension, CoordType, 0>::
equals(const This &other) const
{
return size == other.size && index_ == other.index_;
}
template<int dimension, class CoordType>
typename RefinementIteratorSpecial<dimension, CoordType, 0>::IndexVector
RefinementIteratorSpecial<dimension, CoordType, 0>::
vertexIndices() const
{
IndexVector indices;
FieldVector<int, dimension> perm = getPermutation<dimension>(kuhnIndex);
Vertex vertex = origin;
indices[0] = pointIndex(vertex);
for(int i = 0; i < dimension; ++i) {
++vertex[perm[i]];
indices[i+1] = pointIndex(vertex);
}
if (kuhnIndex%2 == 1)
for(int i = 0; i < (dimension+1)/2; ++i) {
int t = indices[i];
indices[i] = indices[dimension-i];
indices[dimension-i] = t;
}
return indices;
}
template<int dimension, class CoordType>
int
RefinementIteratorSpecial<dimension, CoordType, 0>::
index() const
{
return index_;
}
template<int dimension, class CoordType>
typename RefinementIteratorSpecial<dimension, CoordType, 0>::CoordVector
RefinementIteratorSpecial<dimension, CoordType, 0>::
coords() const
{
return global(ReferenceElements<CoordType, dimension>
::simplex().position(0,0));
}
template<int dimension, class CoordType>
typename RefinementIteratorSpecial<dimension, CoordType, 0>::Geometry
RefinementIteratorSpecial<dimension, CoordType, 0>::geometry () const
{
std::vector<CoordVector> corners(dimension+1);
CoordVector v;
const ReferenceElement<CoordType, dimension> &refelem =
ReferenceElements<CoordType, dimension>::simplex();
for(int i = 0; i <= dimension; ++i)
corners[i] = global(refelem.position(i, dimension));
return Geometry(refelem.type(), corners);
}
template<int dimension, class CoordType>
typename RefinementIteratorSpecial<dimension, CoordType, 0>::CoordVector
RefinementIteratorSpecial<dimension, CoordType, 0>::
global(const CoordVector &local) const {
CoordVector v =
referenceToKuhn(local, getPermutation<dimension>(kuhnIndex));
v += origin;
v /= (typename CoordVector::value_type)size;
return kuhnToReference(v, getPermutation<dimension>(0));
}
// common
template<int dimension, class CoordType>
template<int codimension>
class RefinementImp<dimension, CoordType>::Codim<codimension>::SubEntityIterator
: public ForwardIteratorFacade<typename RefinementImp<dimension, CoordType>::template Codim<codimension>::SubEntityIterator, int>,
public RefinementIteratorSpecial<dimension, CoordType, codimension>
{
public:
typedef RefinementImp<dimension, CoordType> Refinement;
SubEntityIterator(int level, bool end = false);
};
#ifndef DOXYGEN
template<int dimension, class CoordType>
template<int codimension>
RefinementImp<dimension, CoordType>::Codim<codimension>::SubEntityIterator::
SubEntityIterator(int level, bool end)
: RefinementIteratorSpecial<dimension, CoordType, codimension>(level, end)
{}
#endif
} // namespace Simplex
} // namespace RefinementImp
namespace RefinementImp {
// ///////////////////////
//
// The refinement traits
//
#ifndef DOXYGEN
template<unsigned topologyId, class CoordType, unsigned coerceToId,
int dim>
struct Traits<
topologyId, CoordType, coerceToId, dim,
typename std::enable_if<
((Impl::SimplexTopology<dim>::type::id >> 1) ==
(topologyId >> 1) &&
(Impl::SimplexTopology<dim>::type::id >> 1) ==
(coerceToId >> 1)
)>::type
>
{
typedef Simplex::RefinementImp<dim, CoordType> Imp;
};
#endif
} // namespace RefinementImp
} // namespace Dune
#endif //DUNE_GRID_COMMON_REFINEMENT_SIMPLEX_CC
|