/usr/include/dune/geometry/virtualrefinement.hh is in libdune-geometry-dev 2.5.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 | // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_GEOMETRY_VIRTUALREFINEMENT_HH
#define DUNE_GEOMETRY_VIRTUALREFINEMENT_HH
/*!
* \file
*
* \brief This file contains the virtual wrapper around refinement.
*/
/*!
* \addtogroup VirtualRefinement Virtual Refinement
* \ingroup Refinement
* <!--WWWWWWWWWWWWWWWWWWWW-->
*
* Please have a look on the non-virtual \link Refinement
* Refinement\endlink documentation.
*
* \section Virtual_General General
* <!--=========-->
*
* \link Refinement Refinement\endlink can only be used when you know
* the geometryType of your entities at compile time. You could
* circumvent this by using a switch(geometryType), but each case would
* look very much the same. If you have many such switch() statements,
* or each case contains lots of code, or you simply have many possible
* geometryTypes, this can be quiet annoying.
*
* VirtualRefinement does all of this switch() statements for you. It
* defines a common virtual base class per dimension, and derives one
* class for each geometryType and coerceTo from that class. The
* derived classes simply wrap the non-virtual classes from \link
* Refinement Refinement\endlink. This makes it possible to treat each
* geometryType (of a given dimension) the same, and thus eleminates
* the many repetitions of lots of code.
*
* But the case statements are not totally gone yet. VirtualRefinement
* does these statements once and for all by wrapping them into the
* buildRefinement() function.
*
* \section Virtual_User_interface The user Interface
* <!--===================================-->
*
* \subsection VirtualRefinement The VirtualRefinement class
* <!------------------------------------------------------>
*
* VirtualRefinement is not a set of unrelated specialisations of the
* same template class. VirtualRefinement is a base class with several
* virtual methods, which are overloaded by the concrete
* VirtualRefinement implementation classes. Each implementation class
* wraps one of the non-virtual \link Refinement Refinement\endlink
* classes.
*
* The user interface is modelled closely after the \link
* Refinement Refinement\endlink interface. The main differences are:
*
* - VirtualRefinement is not a static class, but a singleton. Thus
* each VirtualRefinement implementation has to be instantiated
* before use. This is done with the template function
* buildRefinement (see below).
* - Since the methods of VirtualRefinement are virtual (or use virtual
* methods themself) they have to be called like
* \code
* refinementInstace.nElements(level);
* \endcode
* instead of
* \code
* RefinementTypedef::nElements(level);
* \endcode
*
* - IndexVector is a std::vector instead of a FieldVector since the
* number of corners of different geometry types may be different at
* runtime. The user is responsible to always pass the same coerceTo
* parameter to buildRefinement() so he always gets the same number
* of corners.
*
* \code
* template<int dimension>
* class VirtualRefinement
* {
* public:
* template<int Codimension>
* struct Codim {
* class SubEntityIterator;
* };
* typedef VertexIterator; // These are aliases for Codim<codim>::SubEntityIterator
* typedef ElementIterator;
*
* typedef IndexVector; // This is a std::vector
* typedef CoordVector; // This is a FieldVector
*
* virtual int nVertices(int level) const;
* VertexIterator vBegin(int level) const;
* VertexIterator vEnd(int level) const;
* virtual int nElements(int level) const;
* ElementIterator eBegin(int level) const;
* ElementIterator eEnd(int level) const;
* };
* \endcode
*
* The iterators have the same interface as the \link Refinement
* Refinement\endlink iterators except that IndexVector is a
* std::vector instead of a FieldVector (see above). Also the
* restriction that the Iterators are not dereferenceable applies.
*
* \code
* template<int dimension>
* class VertexIterator
* {
* public:
* typedef VirtualRefinement<dimension> Refinement;
*
* int index() const;
* Refinement::CoordVector coords() const;
* };
*
* template<int dimension>
* class ElementIterator
* {
* public:
* typedef VirtualRefinement<dimension> Refinement;
*
* int index() const;
* // Coords of the center of mass of the element
* Refinement::CoordVector coords() const;
* Refinement::IndexVector vertexIndices() const;
* };
* \endcode
*
* \subsection User_interface_buildRefinement buildRefinement()
* <!------------------------------------------>
*
* The declaration for buildRefinement is
*
* \code
* template<int dimension, class CoordType>
* VirtualRefinement<dimension, CoordType> &buildRefinement(GeometryType geometryType, GeometryType coerceTo);
* \endcode
*
* It is expected that you know the dimension and the coordinate type
* of the elements you want to refine at compile time.
*
* The simple case is that you want to refine, say, quadrilaterals and
* the subentities should look like quadrilaterals as well. In that
* case you would call buildRefinement() like
*
* \code
* VirtualRefinement<2, CoordType> &refinement = buildRefinement<2, CoordType>(quadrilateral, quadrilateral);
* \endcode
*
* The more complicated case is that your entity is a quadrilateral,
* but the subentities should look like triangles. In this case call
* buildRefinement() like
*
* \code
* VirtualRefinement<2, CoordType> &refinement = buildRefinement<2, CoordType>(quadrilateral, triangle);
* \endcode
*
* Summary: geometryType is the geometry type of the entity you want to
* refine, while coerceTo is the geometry type of the subentities.
*
* \section Virtual_Implementing Implementing a new Refinement type
* <!--=================================================-->
*
* When you write a Refinement implementation for a new combination of
* geometryType and coerceTo, you have to tell buildRefinement() about
* it.
*
* - First, you have to implement the non-virtual part in \link
* Refinement Refinement\endlink, if you have not done so yet.
* - Second, visit the end of refinementvirtual.cc, and look for the
* specialisations of template<int dimension, class CoordType> class
* RefinementBuilder. There is one specialisation for each
* dimension, containing the single method build().
* - The build() contains two levels of switch statements, the outer
* for geomentryType and the inner for coerceTo. Each case will
* either return the correct VirtualRefinement or fall through to
* the end of the method and throw an error. Insert the cases for
* your refinement.
*
* Everything else has been done for you automatically.
*
* \subsection Virtual_Namespaces Namespaces
* <!------------------->
*
* VirtualRefinement does not use a complicated namespace scheme like
* \link Refinement Refinement\endlink. The complete VirtualRefinement
* stuff simply lives directly in namespace Dune.
*
* \subsection Virtual_Layers Conceptual layers
* <!--------------------------------->
*
* VirtualRefinement adds to more layers to the ones already defined in
* \link Refinement Refinement\endlink:
*
* - <strong>Layer 3</strong> makes it easy to use several Refinement
* implementations in the same code, when you only know at run-time,
* which Refinement implementation you need. It wraps class
* Refinement and its iterators into a Proxy class, retaining its
* interface but all deriving from a virtual base class
* VirtualRefinement<dimension, CoordType>. This is located in
* refinementvirtual.cc.
* - <strong>Layer 4</strong> defines function
* buildRefinement(geometryType, coerceTo), which returns the right
* refinement for a runtime-determined GeometryType. It is also
* located in refinementvirtual.cc
*
* \section Implementation
* <!--================-->
*
* The interface is defined by the template class VirtualRefinement.
* It simply defines the CoordVectors and IndexVectors appropriate for
* this dimension and CoordType, defines which iterators to use, and
* provides some proxy or pure virtual functions.
*
* For each class Refinement<geometryType, CoordType, coercTo, dim> we
* provide a class VirtualRefinementImp<geometryType, CoordType,
* coercTo, dim>, which wraps the matching class
* Refinement<geometryType, CoordType, coercTo, dim> and derives from
* the matching base class VirtualRefinement<dimension, CoordType>.
* Each VirtualRefinementImp is a singleton and has a static instance()
* method which will return this instance as a reference to the base
* class VirtualRefinement. All this is done in a single template
* class.
*
* \subsection Virtual_Iterators The iterators
* <!-------------------------------->
*
* We can't do the same thing with the iterators as we do with class
* VirtualRefinement. Since they are polymorph we cannot simply pass
* them into user code. They are not singletons, so we also cannot
* pass references to them. Passing pointers to iterators would work,
* but then the programmer has to remember to explecitely delete them.
* Also, it is uncommon for iterators to be handled by their pointers.
*
* What we do instead is having a wrapper class which conforms to the
* iterator interface and is the same for all
* VirtualRefinementIterators of a given dimension. This class
* contains a pointer to a polymorph backend object implementing the
* iterator. The various VirtualRefinementImps then derive from the
* abstract backend class and pass a pointer to a concrete backend
* object when instantiating an iterator.
*
* \subsection Implementiaion_buildRefinement buildRefinement()
* <!------------------------------------------>
*
* The template function buildRefinement() has to be specialized for
* each dimension. It makes no sense to test for
* geometryType.isPrism() when dimension==2. But this
* way we run into a limitation of C++: we can't do partial function
* specialisation.
*
* The workaround is to create a class RefinementBuilder with a lone
* static method build() and to call that from buildRefinement().
* Since RefinementBuilder is a class and not a function we can do
* partial specialisations.
*
* It is probably possible to automatically generate the switch
* statements with linked lists of template structs, functions
* implementing the cases, and a recursive template function that will
* iterate over the list, but it is probably not worth the effort, as
* long as buildRefinement() is enough for the job.
*/
#include <vector>
#include <dune/common/fvector.hh>
#include "refinement.hh"
#include "type.hh"
namespace Dune
{
// //////////////////////////////////////////
//
// The virtual base class and its iterators
//
//
// Refinement
//
/*!
* \brief VirtualRefinement base class
*
* \param dimension The dimension of the element to refine
* \param CoordType The C++ type of the coordinates
*/
template<int dimension, class CoordType>
class VirtualRefinement
{
public:
template<int codimension>
struct Codim;
//! The VertexIterator of the VirtualRefinement.
typedef typename Codim<dimension>::SubEntityIterator VertexIterator;
//! The ElementIterator of the VirtualRefinement
typedef typename Codim<0>::SubEntityIterator ElementIterator;
/*!
* \brief The CoordVector of the VirtualRefinement
*
* This is always a typedef to a FieldVector
*/
typedef FieldVector<CoordType, dimension> CoordVector;
/*!
* \brief The IndexVector of the VirtualRefinement
*
* This is always a typedef to a std::vector
*/
typedef std::vector<int> IndexVector;
template<int codimension>
class SubEntityIteratorBack;
typedef SubEntityIteratorBack<dimension> VertexIteratorBack;
typedef SubEntityIteratorBack<0> ElementIteratorBack;
//! Get the number of Vertices
virtual int nVertices(int level) const = 0;
//! Get a VertexIterator
VertexIterator vBegin(int level) const;
//! Get a VertexIterator
VertexIterator vEnd(int level) const;
//! Get the number of Elements
virtual int nElements(int level) const = 0;
//! Get an ElementIterator
ElementIterator eBegin(int level) const;
//! Get an ElementIterator
ElementIterator eEnd(int level) const;
//! Destructor
virtual ~VirtualRefinement()
{}
protected:
virtual VertexIteratorBack *vBeginBack(int level) const = 0;
virtual VertexIteratorBack *vEndBack(int level) const = 0;
virtual ElementIteratorBack *eBeginBack(int level) const = 0;
virtual ElementIteratorBack *eEndBack(int level) const = 0;
};
//! codim database of VirtualRefinement
template<int dimension, class CoordType>
template<int codimension>
struct VirtualRefinement<dimension, CoordType>::Codim
{
class SubEntityIterator;
};
// ////////////////////////
//
// The refinement builder
//
template<int dimension, class CoordType>
VirtualRefinement<dimension, CoordType> &
buildRefinement(GeometryType geometryType, GeometryType coerceTo);
} // namespace Dune
#include "virtualrefinement.cc"
#endif // DUNE_GEOMETRY_VIRTUALREFINEMENT_HH
|