This file is indexed.

/usr/include/ug/shapes.h is in libdune-uggrid-dev 2.5.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
/*! \file shapes.h
 * \ingroup gm
*/


/****************************************************************************/
/*                                                                          */
/* File:      shapes.h                                                      */
/*                                                                          */
/* Purpose:   header file for shape functions                               */
/*                                                                          */
/* Author:    Klaus Johannsen                                               */
/*            Interdisziplinaeres Zentrum fuer Wissenschaftliches Rechnen   */
/*            Universitaet Heidelberg                                       */
/*            Im Neuenheimer Feld 368                                       */
/*            6900 Heidelberg                                               */
/* internet:  ug@ica3.uni-stuttgart.de                                      */
/*                                                                          */
/* History:   28.11.95 begin, ug version 3.1                                */
/*                                                                          */
/* Remarks:                                                                 */
/*                                                                          */
/****************************************************************************/


/****************************************************************************/
/*                                                                          */
/* auto include mechanism and other include files                           */
/*                                                                          */
/****************************************************************************/

#ifndef __SHAPES__
#define __SHAPES__

#include "gm.h"
#include "evm.h"

#include "namespace.h"

START_UGDIM_NAMESPACE

/****************************************************************************/
/*                                                                          */
/* defines in the following order                                           */
/*                                                                          */
/*                compile time constants defining static data size (i.e. arrays)        */
/*                other constants                                                                                                       */
/*                macros                                                                                                                        */
/*                                                                          */
/****************************************************************************/

#ifdef __TWODIM__
#define DNDS(n,i,s,t,r)                 if (n==3)\
                                                                {\
                                                                        switch (i)\
                                                                        {\
                                                                                case 0 : r=-1.0; break;\
                                                                                case 1 : r=1.0; break;\
                                                                                case 2 : r=0.0; break;\
                                                                        }\
                                                                }\
                                                                else if (n==4)\
                                                                {\
                                                                        switch (i)\
                                                                        {\
                                                                                case 0 : r=t-1; break;\
                                                                                case 1 : r=1-t; break;\
                                                                                case 2 : r=t;   break;\
                                                                                case 3 : r=-t;  break;\
                                                                        }\
                                                                }

#define DNDT(n,i,s,t,r)             if (n==3)\
                                                                {\
                                                                        switch (i)\
                                                                        {\
                                                                                case 0 : r=-1; break;\
                                                                                case 1 : r=0; break;\
                                                                                case 2 : r=1; break;\
                                                                        }\
                                                                }\
                                                                else if (n==4)\
                                                                {\
                                                                        switch (i)\
                                                                        {\
                                                                                case 0 : r=s-1; break;\
                                                                                case 1 : r=-s;  break;\
                                                                                case 2 : r=s;   break;\
                                                                                case 3 : r=1-s; break;\
                                                                        }\
                                                                }

#define CORNER_COORDINATES_TRIANGLE(e,n,x)                                \
                                   {(n)=3;                                \
                                                                   (x)[0]=CVECT(MYVERTEX(CORNER((e),0))); \
                                                                   (x)[1]=CVECT(MYVERTEX(CORNER((e),1))); \
                                                                   (x)[2]=CVECT(MYVERTEX(CORNER((e),2)));}

#define COPY_COORDINATES_TRIANGLE(e,n,x)                                     \
                                  {DOUBLE *cvect;                             \
                                   (n) = 3;                                  \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),0)));     \
                                   V_DIM_COPY(cvect,x[0]);                   \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),1)));     \
                                   V_DIM_COPY(cvect,x[1]);                   \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),2)));     \
                                                                   V_DIM_COPY(cvect,x[2]); }

#define CORNER_COORDINATES_QUADRILATERAL(e,n,x)                           \
                                   {(n)=4;                                \
                                                                   (x)[0]=CVECT(MYVERTEX(CORNER((e),0))); \
                                                                   (x)[1]=CVECT(MYVERTEX(CORNER((e),1))); \
                                                                   (x)[2]=CVECT(MYVERTEX(CORNER((e),2))); \
                                                                   (x)[3]=CVECT(MYVERTEX(CORNER((e),3)));}

#define COPY_COORDINATES_QUADRILATERAL(e,n,x)                                \
                                  {DOUBLE *cvect;                             \
                                   (n) = 4;                                  \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),0)));     \
                                   V_DIM_COPY(cvect,x[0]);                   \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),1)));     \
                                   V_DIM_COPY(cvect,x[1]);                   \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),2)));     \
                                   V_DIM_COPY(cvect,x[2]);                   \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),3)));     \
                                                       V_DIM_COPY(cvect,x[3]); }

#define CORNER_COORDINATES(e,n,x)                               \
 {if (TAG((e))==TRIANGLE)                                       \
                 CORNER_COORDINATES_TRIANGLE((e),(n),(x))       \
  else           CORNER_COORDINATES_QUADRILATERAL((e),(n),(x))}

#define COPY_CORNER_COORDINATES(e,n,x)                          \
 {if (TAG((e))==TRIANGLE)                                       \
                 COPY_COORDINATES_TRIANGLE((e),(n),(x))         \
  else if (TAG((e))==QUADRILATERAL)                             \
                 COPY_COORDINATES_QUADRILATERAL((e),(n),(x))}

#endif /* __TWODIM__ */


#define LOCAL_TO_GLOBAL_TRIANGLE(x,local,global)          \
 {(global)[0] = (1.0-(local)[0]-(local)[1])*(x)[0][0]     \
   +(local)[0]*(x)[1][0] + (local)[1]*(x)[2][0];          \
  (global)[1] = (1.0-(local)[0]-(local)[1])*(x)[0][1]     \
   +(local)[0]*(x)[1][1] + (local)[1]*(x)[2][1]; }

#define LOCAL_TO_GLOBAL_QUADRILATERAL(x,local,global)         \
{(global)[0] = (1.0-(local)[0])*(1.0-(local)[1])*(x)[0][0]    \
   + (local)[0]*(1.0-(local)[1])*(x)[1][0]                    \
   + (local)[0]*(local)[1]*(x)[2][0]                          \
   + (1.0-(local)[0])*(local)[1]*(x)[3][0];                   \
 (global)[1] = (1.0-(local)[0])*(1.0-(local)[1])*(x)[0][1]    \
   + (local)[0]*(1.0-(local)[1])*(x)[1][1]                    \
   + (local)[0]*(local)[1]*(x)[2][1]                          \
   + (1.0-(local)[0])*(local)[1]*(x)[3][1];}

#define LOCAL_TO_GLOBAL_2D(n,x,local,global)                              \
 {if ((n) == 3)      LOCAL_TO_GLOBAL_TRIANGLE((x),(local),(global))       \
  else if ((n) == 4) LOCAL_TO_GLOBAL_QUADRILATERAL((x),(local),(global))}

#define AREA_OF_TRIANGLE(x,area)     {DOUBLE detJ; DOUBLE_VECTOR a,b;      \
                                                                          V2_SUBTRACT((x)[1],(x)[0],a);        \
                                                                          V2_SUBTRACT((x)[2],(x)[0],b);        \
                                                                          V2_VECTOR_PRODUCT(a,b,detJ);         \
                                                                          (area) = ABS(detJ) * 0.5;}

#define AREA_OF_QUADRILATERAL(x,area)   {DOUBLE detJ,ar; DOUBLE_VECTOR a,b;  \
                                                                                 V2_SUBTRACT((x)[1],(x)[0],a);       \
                                                                                 V2_SUBTRACT((x)[2],(x)[0],b);       \
                                                                                 V2_VECTOR_PRODUCT(a,b,detJ);        \
                                                                             ar = ABS(detJ) * 0.5;               \
                                                                                 V2_SUBTRACT((x)[3],(x)[0],a);       \
                                                                                 V2_VECTOR_PRODUCT(a,b,detJ);        \
                                                                             (area) = ABS(detJ) * 0.5 + ar;}

#define AREA_OF_ELEMENT_2D(n,x,area)                       \
 {if ((n) == 3)      AREA_OF_TRIANGLE((x),(area))       \
  else if ((n) == 4) AREA_OF_QUADRILATERAL((x),(area)) }

#define AREA_OF_REF_2D(n,area)       { if ( (n) == 3) (area) = 0.5;     \
                                                                        else if ( (n) == 4) (area) = 1.0; }

#define TRANSFORMATION_OF_TRIANGLE(x,M)     \
    { V2_SUBTRACT((x)[1],(x)[0],(M)[0]);    \
          V2_SUBTRACT((x)[2],(x)[0],(M)[1]); }

#define TRANSFORMATION_OF_QUADRILATERAL(x,local,M)                        \
        { DOUBLE a;                                                           \
          a = 1.0 - (local)[1];                                               \
          (M)[0][0] = a*((x)[1][0]-x[0][0])+(local)[1]*((x)[2][0]-(x)[3][0]); \
          (M)[0][1] = a*((x)[1][1]-x[0][1])+(local)[1]*((x)[2][1]-(x)[3][1]); \
          a = 1.0 - (local)[0];                                               \
          (M)[1][0] = a*((x)[3][0]-x[0][0])+(local)[0]*((x)[2][0]-(x)[1][0]); \
          (M)[1][1] = a*((x)[3][1]-x[0][1])+(local)[0]*((x)[2][1]-(x)[1][1]); }

#define TRANSFORMATION_2D(n,x,local,M)                                      \
 {if ((n) == 3)      {TRANSFORMATION_OF_TRIANGLE((x),(M));}              \
  else TRANSFORMATION_OF_QUADRILATERAL((x),(local),(M)); }

#define SIDE_NORMAL_2D(n,i,x,normal)                 \
   { DOUBLE s; DOUBLE_VECTOR y;                   \
         V2_SUBTRACT(x[(i+1)%n],x[i],y);              \
         V2_EUKLIDNORM(y,s);                          \
         V2_SCALE(1.0/s,y);                           \
         V2_SUBTRACT(x[(i+1)%n],x[(i+2)%n],normal);   \
         V2_SCALAR_PRODUCT(normal,y,s);               \
         V2_LINCOMB(1.0,normal,-s,y,normal);          \
         V2_EUKLIDNORM(normal,s);                     \
         V2_SCALE(1.0/s,normal);}



#ifdef __THREEDIM__
#define CORNER_COORDINATES_TETRAHEDRON(e,n,x)                              \
                                  {(n) = 4;                                \
                                                                   (x)[0]=CVECT(MYVERTEX(CORNER((e),0)));  \
                                                                   (x)[1]=CVECT(MYVERTEX(CORNER((e),1)));  \
                                                                   (x)[2]=CVECT(MYVERTEX(CORNER((e),2)));  \
                                                   (x)[3]=CVECT(MYVERTEX(CORNER((e),3)));}

#define COPY_COORDINATES_TETRAHEDRON(e,n,x)                                  \
                                  {DOUBLE *cvect;                             \
                                   (n) = 4;                                  \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),0)));     \
                                   V_DIM_COPY(cvect,x[0]);                   \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),1)));     \
                                   V_DIM_COPY(cvect,x[1]);                   \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),2)));     \
                                   V_DIM_COPY(cvect,x[2]);                   \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),3)));     \
                                                       V_DIM_COPY(cvect,x[3]); }

#define CORNER_COORDINATES_PYRAMID(e,n,x)                                  \
                                  {(n) = 5;                                \
                                                                   (x)[0]=CVECT(MYVERTEX(CORNER((e),0)));  \
                                                                   (x)[1]=CVECT(MYVERTEX(CORNER((e),1)));  \
                                                                   (x)[2]=CVECT(MYVERTEX(CORNER((e),2)));  \
                                   (x)[3]=CVECT(MYVERTEX(CORNER((e),3)));  \
                                   (x)[4]=CVECT(MYVERTEX(CORNER((e),4)));}

#define COPY_COORDINATES_PYRAMID(e,n,x)                                      \
                                  {DOUBLE *cvect;                             \
                                   (n) = 5;                                  \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),0)));     \
                                   V_DIM_COPY(cvect,x[0]);                   \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),1)));     \
                                   V_DIM_COPY(cvect,x[1]);                   \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),2)));     \
                                   V_DIM_COPY(cvect,x[2]);                   \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),3)));     \
                                   V_DIM_COPY(cvect,x[3]);                   \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),4)));     \
                                                       V_DIM_COPY(cvect,x[4]); }

#define CORNER_COORDINATES_PRISM(e,n,x)                                    \
                                  {(n) = 6;                                \
                                                                   (x)[0]=CVECT(MYVERTEX(CORNER((e),0)));  \
                                                                   (x)[1]=CVECT(MYVERTEX(CORNER((e),1)));  \
                                                                   (x)[2]=CVECT(MYVERTEX(CORNER((e),2)));  \
                                   (x)[3]=CVECT(MYVERTEX(CORNER((e),3)));  \
                                   (x)[4]=CVECT(MYVERTEX(CORNER((e),4)));  \
                                   (x)[5]=CVECT(MYVERTEX(CORNER((e),5)));}

#define COPY_COORDINATES_PRISM(e,n,x)                                        \
                                  {DOUBLE *cvect;                             \
                                   (n) = 6;                                  \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),0)));     \
                                   V_DIM_COPY(cvect,x[0]);                   \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),1)));     \
                                   V_DIM_COPY(cvect,x[1]);                   \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),2)));     \
                                   V_DIM_COPY(cvect,x[2]);                   \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),3)));     \
                                   V_DIM_COPY(cvect,x[3]);                   \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),4)));     \
                                   V_DIM_COPY(cvect,x[4]);                   \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),5)));     \
                                                       V_DIM_COPY(cvect,x[5]); }

#define CORNER_COORDINATES_HEXAHEDRON(e,n,x)                               \
                                  {(n) = 8;                                \
                                                                   (x)[0]=CVECT(MYVERTEX(CORNER((e),0)));  \
                                                                   (x)[1]=CVECT(MYVERTEX(CORNER((e),1)));  \
                                                                   (x)[2]=CVECT(MYVERTEX(CORNER((e),2)));  \
                                                   (x)[3]=CVECT(MYVERTEX(CORNER((e),3)));  \
                                                                   (x)[4]=CVECT(MYVERTEX(CORNER((e),4)));  \
                                                                   (x)[5]=CVECT(MYVERTEX(CORNER((e),5)));  \
                                                                   (x)[6]=CVECT(MYVERTEX(CORNER((e),6)));  \
                                                                   (x)[7]=CVECT(MYVERTEX(CORNER((e),7)));}

#define COPY_COORDINATES_HEXAHEDRON(e,n,x)                                   \
                                  {DOUBLE *cvect;                             \
                                   (n) = 8;                                  \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),0)));     \
                                   V_DIM_COPY(cvect,x[0]);                   \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),1)));     \
                                   V_DIM_COPY(cvect,x[1]);                   \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),2)));     \
                                   V_DIM_COPY(cvect,x[2]);                   \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),3)));     \
                                   V_DIM_COPY(cvect,x[3]);                   \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),4)));     \
                                   V_DIM_COPY(cvect,x[4]);                   \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),5)));     \
                                   V_DIM_COPY(cvect,x[5]);                   \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),6)));     \
                                   V_DIM_COPY(cvect,x[6]);                   \
                                                                   cvect=CVECT(MYVERTEX(CORNER((e),7)));     \
                                                       V_DIM_COPY(cvect,x[7]); }

#define CORNER_COORDINATES(e,n,x)                                            \
  {if (TAG((e))==TETRAHEDRON)     CORNER_COORDINATES_TETRAHEDRON((e),(n),(x))\
   else if (TAG((e))==PYRAMID)    CORNER_COORDINATES_PYRAMID((e),(n),(x))    \
   else if (TAG((e))==PRISM)      CORNER_COORDINATES_PRISM((e),(n),(x))      \
   else CORNER_COORDINATES_HEXAHEDRON((e),(n),(x))}

#define COPY_CORNER_COORDINATES(e,n,x)                                     \
  {if (TAG((e))==TETRAHEDRON)     COPY_COORDINATES_TETRAHEDRON((e),(n),(x))\
   else if (TAG((e))==PYRAMID)    COPY_COORDINATES_PYRAMID((e),(n),(x))    \
   else if (TAG((e))==PRISM)      COPY_COORDINATES_PRISM((e),(n),(x))      \
   else if (TAG((e))==HEXAHEDRON) COPY_COORDINATES_HEXAHEDRON((e),(n),(x))}

#endif /* __THREEDIM__ */


#define LOCAL_TO_GLOBAL_TETRAHEDRON(x,local,global)                       \
 {(global)[0] = (1.0-(local)[0]-(local)[1]-(local)[2])*(x)[0][0]          \
   +(local)[0]*(x)[1][0] + (local)[1]*(x)[2][0] + (local)[2]*(x)[3][0];   \
  (global)[1] = (1.0-(local)[0]-(local)[1]-(local)[2])*(x)[0][1]          \
   +(local)[0]*(x)[1][1] + (local)[1]*(x)[2][1] + (local)[2]*(x)[3][1];   \
  (global)[2] = (1.0-(local)[0]-(local)[1]-(local)[2])*(x)[0][2]          \
   +(local)[0]*(x)[1][2] + (local)[1]*(x)[2][2] + (local)[2]*(x)[3][2]; }

#define LOCAL_TO_GLOBAL_PYRAMID(x,local,global)                             \
 {DOUBLE a,b,a0,a1,a2,a3;                                                   \
  a = 1.0 - (local)[0];                                                     \
  b = 1.0 - (local)[1];                                                     \
  if ((local)[0] > (local)[1]) {                                            \
  a0 = a * b - (local)[2] * b;                                              \
  a1 = (local)[0] * b - (local)[2]*(local)[1];                              \
  a2 = (local)[0] * (local)[1] + (local)[2]*(local)[1];                     \
  a3 = a * (local)[1] - (local)[2] * (local)[1];                            \
  (global)[0] =                                                               \
        a0*(x)[0][0]+a1*(x)[1][0]+a2*(x)[2][0]+a3*(x)[3][0]+(local)[2]*(x)[4][0]; \
  (global)[1] =                                                               \
        a0*(x)[0][1]+a1*(x)[1][1]+a2*(x)[2][1]+a3*(x)[3][1]+(local)[2]*(x)[4][1]; \
  (global)[2] =                                                               \
        a0*(x)[0][2]+a1*(x)[1][2]+a2*(x)[2][2]+a3*(x)[3][2]+(local)[2]*(x)[4][2];}\
  else {                                                                      \
  a0 = a * b - (local)[2] * a;                                                \
  a1 = (local)[0] * b - (local)[2]*(local)[0];                                \
  a2 = (local)[0] * (local)[1] + (local)[2]*(local)[0];                       \
  a3 = a * (local)[1] - (local)[2] * (local)[0];                              \
  (global)[0] =                                                               \
        a0*(x)[0][0]+a1*(x)[1][0]+a2*(x)[2][0]+a3*(x)[3][0]+(local)[2]*(x)[4][0]; \
  (global)[1] =                                                               \
        a0*(x)[0][1]+a1*(x)[1][1]+a2*(x)[2][1]+a3*(x)[3][1]+(local)[2]*(x)[4][1]; \
  (global)[2] =                                                               \
        a0*(x)[0][2]+a1*(x)[1][2]+a2*(x)[2][2]+a3*(x)[3][2]+(local)[2]*(x)[4][2];}}

#define LOCAL_TO_GLOBAL_PRISM(x,local,global)                               \
 {DOUBLE a,b,a0,a1,a2,a3,a4,a5;                                                 \
  a = 1.0 - (local)[0] - (local)[1];                                        \
  b = 1.0 - (local)[2];                                                     \
  a0 = a * b;                                                               \
  a1 = (local)[0] * b;                                                      \
  a2 = (local)[1] * b;                                                      \
  a3 = a * (local)[2];                                                      \
  a4 = (local)[0] * (local)[2];                                             \
  a5 = (local)[1] * (local)[2];                                             \
  (global)[0] =                                                             \
        a0*(x)[0][0]+a1*(x)[1][0]+a2*(x)[2][0]+a3*(x)[3][0]+                    \
    a4*(x)[4][0]+a5*(x)[5][0];                                              \
  (global)[1] =                                                             \
        a0*(x)[0][1]+a1*(x)[1][1]+a2*(x)[2][1]+a3*(x)[3][1]+                    \
        a4*(x)[4][1]+a5*(x)[5][1];                                              \
  (global)[2] =                                                             \
        a0*(x)[0][2]+a1*(x)[1][2]+a2*(x)[2][2]+a3*(x)[3][2]+                    \
        a4*(x)[4][2]+a5*(x)[5][2]; }

#define LOCAL_TO_GLOBAL_HEXAHEDRON(x,local,global)                          \
 {DOUBLE a,b,c,a0,a1,a2,a3,a4,a5,a6,a7;                                     \
  a = 1.0 - (local)[0];                                                     \
  b = 1.0 - (local)[1];                                                     \
  c = 1.0 - (local)[2];                                                     \
  a0 = a * b * c;                                                           \
  a1 = (local)[0] * b * c;                                                  \
  a2 = (local)[0] * (local)[1] * c;                                         \
  a3 = a * (local)[1] * c;                                                  \
  a4 = a * b * (local)[2];                                                  \
  a5 = (local)[0] * b * (local)[2];                                         \
  a6 = (local)[0] * (local)[1] * (local)[2];                                \
  a7 = a * (local)[1] * (local)[2];                                         \
  (global)[0] =                                                             \
        a0*(x)[0][0]+a1*(x)[1][0]+a2*(x)[2][0]+a3*(x)[3][0]+                    \
        a4*(x)[4][0]+a5*(x)[5][0]+a6*(x)[6][0]+a7*(x)[7][0];                    \
  (global)[1] =                                                             \
        a0*(x)[0][1]+a1*(x)[1][1]+a2*(x)[2][1]+a3*(x)[3][1]+                    \
        a4*(x)[4][1]+a5*(x)[5][1]+a6*(x)[6][1]+a7*(x)[7][1];                    \
  (global)[2] =                                                             \
        a0*(x)[0][2]+a1*(x)[1][2]+a2*(x)[2][2]+a3*(x)[3][2]+                    \
        a4*(x)[4][2]+a5*(x)[5][2]+a6*(x)[6][2]+a7*(x)[7][2]; }

#define LOCAL_TO_GLOBAL_3D(n,x,local,global)                              \
 {if ((n) == 4)      LOCAL_TO_GLOBAL_TETRAHEDRON((x),(local),(global))    \
  else if ((n) == 5) LOCAL_TO_GLOBAL_PYRAMID((x),(local),(global))        \
  else if ((n) == 6) LOCAL_TO_GLOBAL_PRISM((x),(local),(global))          \
  else if ((n) == 8) LOCAL_TO_GLOBAL_HEXAHEDRON((x),(local),(global))}

#define AREA_OF_TETRAHEDRON(x,area)  {DOUBLE detJ; DOUBLE_VECTOR a,b,c;    \
                                                                          V3_SUBTRACT((x)[1],(x)[0],a);        \
                                                                          V3_SUBTRACT((x)[2],(x)[0],b);        \
                                                                          V3_VECTOR_PRODUCT(a,b,c);            \
                                                                          V3_SUBTRACT((x)[3],(x)[0],a);        \
                                                                          V3_SCALAR_PRODUCT(a,c,detJ);         \
                                                                          (area) = ABS(detJ)/6.0;}

#define AREA_OF_PYRAMID(x,area)      {DOUBLE detJ,ar; DOUBLE_VECTOR a,b,c,d;\
                                                                          V3_SUBTRACT((x)[1],(x)[0],a);         \
                                                                          V3_SUBTRACT((x)[2],(x)[0],b);         \
                                                                          V3_VECTOR_PRODUCT(a,b,c);             \
                                                                          V3_SUBTRACT((x)[4],(x)[0],d);         \
                                                                          V3_SCALAR_PRODUCT(c,d,detJ);          \
                                                                          ar = ABS(detJ)/6.0;                   \
                                                                          V3_SUBTRACT((x)[3],(x)[0],a);         \
                                                                          V3_VECTOR_PRODUCT(a,b,c);             \
                                                                          V3_SCALAR_PRODUCT(c,d,detJ);          \
                                                                          (area) = ABS(detJ)/6.0 + ar;}

#define AREA_OF_PRISM(x,area)   {DOUBLE detJ,ar; DOUBLE_VECTOR a,b,c;      \
                                                                          V3_SUBTRACT((x)[1],(x)[0],a);        \
                                                                          V3_SUBTRACT((x)[2],(x)[0],b);        \
                                                                          V3_VECTOR_PRODUCT(a,b,c);            \
                                                                          V3_SUBTRACT((x)[3],(x)[0],a);        \
                                                                          V3_SCALAR_PRODUCT(a,c,detJ);         \
                                                                          ar = ABS(detJ)/6.0;                  \
                                                                          V3_SUBTRACT((x)[2],(x)[1],a);        \
                                                                          V3_SUBTRACT((x)[3],(x)[1],b);        \
                                                                          V3_VECTOR_PRODUCT(a,b,c);            \
                                                                          V3_SUBTRACT((x)[4],(x)[1],a);        \
                                                                          V3_SCALAR_PRODUCT(a,c,detJ);         \
                                                                          ar += ABS(detJ)/6.0;                 \
                                                                          V3_SUBTRACT((x)[2],(x)[5],a);        \
                                                                          V3_SUBTRACT((x)[3],(x)[5],b);        \
                                                                          V3_VECTOR_PRODUCT(a,b,c);            \
                                                                          V3_SUBTRACT((x)[4],(x)[5],a);        \
                                                                          V3_SCALAR_PRODUCT(a,c,detJ);         \
                                                                          (area) = ABS(detJ)/6.0 + ar;}

#define AREA_OF_HEXAHEDRON(x,area)   {DOUBLE detJ,ar; DOUBLE_VECTOR a,b,c; \
                                                                          V3_SUBTRACT((x)[1],(x)[0],a);        \
                                                                          V3_SUBTRACT((x)[2],(x)[0],b);        \
                                                                          V3_VECTOR_PRODUCT(a,b,c);            \
                                                                          V3_SUBTRACT((x)[5],(x)[0],a);        \
                                                                          V3_SCALAR_PRODUCT(a,c,detJ);         \
                                                                          ar = ABS(detJ)/6.0;                  \
                                                                          V3_SUBTRACT((x)[2],(x)[0],a);        \
                                                                          V3_SUBTRACT((x)[5],(x)[0],b);        \
                                                                          V3_VECTOR_PRODUCT(a,b,c);            \
                                                                          V3_SUBTRACT((x)[6],(x)[0],a);        \
                                                                          V3_SCALAR_PRODUCT(a,c,detJ);         \
                                                                          ar += ABS(detJ)/6.0;                 \
                                                                          V3_SUBTRACT((x)[4],(x)[0],a);        \
                                                                          V3_SUBTRACT((x)[5],(x)[0],b);        \
                                                                          V3_VECTOR_PRODUCT(a,b,c);            \
                                                                          V3_SUBTRACT((x)[6],(x)[0],a);        \
                                                                          V3_SCALAR_PRODUCT(a,c,detJ);         \
                                                                          ar += ABS(detJ)/6.0;                 \
                                                                          V3_SUBTRACT((x)[2],(x)[0],a);        \
                                                                          V3_SUBTRACT((x)[3],(x)[0],b);        \
                                                                          V3_VECTOR_PRODUCT(a,b,c);            \
                                                                          V3_SUBTRACT((x)[6],(x)[0],a);        \
                                                                          V3_SCALAR_PRODUCT(a,c,detJ);         \
                                                                          ar += ABS(detJ)/6.0;                 \
                                                                          V3_SUBTRACT((x)[3],(x)[0],a);        \
                                                                          V3_SUBTRACT((x)[4],(x)[0],b);        \
                                                                          V3_VECTOR_PRODUCT(a,b,c);            \
                                                                          V3_SUBTRACT((x)[6],(x)[0],a);        \
                                                                          V3_SCALAR_PRODUCT(a,c,detJ);         \
                                                                          ar += ABS(detJ)/6.0;                 \
                                                                          V3_SUBTRACT((x)[3],(x)[7],a);        \
                                                                          V3_SUBTRACT((x)[4],(x)[7],b);        \
                                                                          V3_VECTOR_PRODUCT(a,b,c);            \
                                                                          V3_SUBTRACT((x)[6],(x)[7],a);        \
                                                                          V3_SCALAR_PRODUCT(a,c,detJ);         \
                                                                          (area) = ABS(detJ)/6.0 + ar;}

#define AREA_OF_ELEMENT_3D(n,x,area)                        \
 {if ((n) == 4)      {AREA_OF_TETRAHEDRON((x),(area));}  \
  else if ((n) == 5) {AREA_OF_PYRAMID((x),(area));}      \
  else if ((n) == 6) {AREA_OF_PRISM((x),(area));}        \
  else if ((n) == 8) {AREA_OF_HEXAHEDRON((x),(area));}}

#define AREA_OF_REF_3D(n,area)          { if ( (n) == 4)                   \
                                          (area) = 0.16666666666666666; \
                                       else if ( (n) == 5)              \
                                                                                  (area) = 0.33333333333333333; \
                                                                           else if ( (n) == 6)              \
                                          (area) = 0.5;                 \
                                                                           else if ( (n) == 8)              \
                                          (area) = 1.0; }

#define TRANSFORMATION_OF_TETRAHEDRON(x,M)   \
        { V3_SUBTRACT((x)[1],(x)[0],(M)[0]);     \
          V3_SUBTRACT((x)[2],(x)[0],(M)[1]);     \
          V3_SUBTRACT((x)[3],(x)[0],(M)[2]);}

#define TRANSFORMATION_OF_PYRAMID(x,local,M)                              \
        { DOUBLE a,b,c;                                                       \
          a = (x)[0][0]-(x)[1][0]+(x)[2][0]-(x)[3][0];                        \
          b = (x)[0][1]-(x)[1][1]+(x)[2][1]-(x)[3][1];                        \
          c = (x)[0][2]-(x)[1][2]+(x)[2][2]-(x)[3][2];                        \
          if ((local)[0] > (local)[1]) {                                      \
          (M)[0][0] = (x)[1][0]-(x)[0][0]+(local)[1]*a;                       \
          (M)[0][1] = (x)[1][1]-(x)[0][1]+(local)[1]*b;                       \
          (M)[0][2] = (x)[1][2]-(x)[0][2]+(local)[1]*c;                       \
          (M)[1][0] = (x)[3][0]-(x)[0][0]+((local)[0]+(local)[2])*a;          \
          (M)[1][1] = (x)[3][1]-(x)[0][1]+((local)[0]+(local)[2])*b;          \
          (M)[1][2] = (x)[3][2]-(x)[0][2]+((local)[0]+(local)[2])*c;          \
          (M)[2][0] = (x)[4][0]-(x)[0][0]+(local)[1]*a;                       \
          (M)[2][1] = (x)[4][1]-(x)[0][1]+(local)[1]*b;                       \
          (M)[2][2] = (x)[4][2]-(x)[0][2]+(local)[1]*c;}                      \
          else {                                                              \
          (M)[0][0] = (x)[1][0]-(x)[0][0]+((local)[1]+(local)[2])*a;          \
          (M)[0][1] = (x)[1][1]-(x)[0][1]+((local)[1]+(local)[2])*b;          \
          (M)[0][2] = (x)[1][2]-(x)[0][2]+((local)[1]+(local)[2])*c;          \
          (M)[1][0] = (x)[3][0]-(x)[0][0]+(local)[0]*a;                       \
          (M)[1][1] = (x)[3][1]-(x)[0][1]+(local)[0]*b;                       \
          (M)[1][2] = (x)[3][2]-(x)[0][2]+(local)[0]*c;                       \
          (M)[2][0] = (x)[4][0]-(x)[0][0]+(local)[0]*a;                       \
          (M)[2][1] = (x)[4][1]-(x)[0][1]+(local)[0]*b;                       \
          (M)[2][2] = (x)[4][2]-(x)[0][2]+(local)[0]*c;}  }

#define TRANSFORMATION_OF_PRISM(x,local,M)                                \
        { DOUBLE a0,a1,a2,b0,b1,b2;                                           \
          a0 = (x)[0][0]-(x)[1][0]-(x)[3][0]+(x)[4][0];                       \
          a1 = (x)[0][1]-(x)[1][1]-(x)[3][1]+(x)[4][1];                       \
          a2 = (x)[0][2]-(x)[1][2]-(x)[3][2]+(x)[4][2];                       \
          b0 = (x)[0][0]-(x)[2][0]-(x)[3][0]+(x)[5][0];                       \
          b1 = (x)[0][1]-(x)[2][1]-(x)[3][1]+(x)[5][1];                       \
          b2 = (x)[0][2]-(x)[2][2]-(x)[3][2]+(x)[5][2];                       \
          (M)[0][0] = (x)[1][0]-(x)[0][0]+(local)[2]*a0;                      \
          (M)[0][1] = (x)[1][1]-(x)[0][1]+(local)[2]*a1;                      \
          (M)[0][2] = (x)[1][2]-(x)[0][2]+(local)[2]*a2;                      \
          (M)[1][0] = (x)[2][0]-(x)[0][0]+(local)[2]*b0;                      \
          (M)[1][1] = (x)[2][1]-(x)[0][1]+(local)[2]*b1;                      \
          (M)[1][2] = (x)[2][2]-(x)[0][2]+(local)[2]*b2;                      \
          (M)[2][0] = (x)[3][0]-(x)[0][0]+(local)[0]*a0+(local)[1]*b0;        \
          (M)[2][1] = (x)[3][1]-(x)[0][1]+(local)[0]*a1+(local)[1]*b1;        \
          (M)[2][2] = (x)[3][2]-(x)[0][2]+(local)[0]*a2+(local)[1]*b2;}

#define TRANSFORMATION_OF_HEXAHEDRON(x,local,M)                           \
        { DOUBLE a,b,c,a0,a1,a2,a3;                                           \
          a = 1.0 - (local)[0];                                               \
          b = 1.0 - (local)[1];                                               \
          c = 1.0 - (local)[2];                                               \
      a0 = b * c;                                                         \
      a1 = (local)[1] * c;                                                \
      a2 = (local)[1] * (local)[2];                                       \
      a3 = b * (local)[2];                                                \
          (M)[0][0] = a0*((x)[1][0]-x[0][0])+a1*((x)[2][0]-(x)[3][0])         \
                    + a2*((x)[6][0]-x[7][0])+a3*((x)[5][0]-(x)[4][0]);        \
          (M)[0][1] = a0*((x)[1][1]-x[0][1])+a1*((x)[2][1]-(x)[3][1])         \
                    + a2*((x)[6][1]-x[7][1])+a3*((x)[5][1]-(x)[4][1]);        \
          (M)[0][2] = a0*((x)[1][2]-x[0][2])+a1*((x)[2][2]-(x)[3][2])         \
                    + a2*((x)[6][2]-x[7][2])+a3*((x)[5][2]-(x)[4][2]);        \
      a0 = a * c;                                                         \
      a1 = (local)[0] * c;                                                \
      a2 = (local)[0] * (local)[2];                                       \
      a3 = a * (local)[2];                                                \
          (M)[1][0] = a0*((x)[3][0]-x[0][0])+a1*((x)[2][0]-(x)[1][0])         \
                    + a2*((x)[6][0]-x[5][0])+a3*((x)[7][0]-(x)[4][0]);        \
          (M)[1][1] = a0*((x)[3][1]-x[0][1])+a1*((x)[2][1]-(x)[1][1])         \
                    + a2*((x)[6][1]-x[5][1])+a3*((x)[7][1]-(x)[4][1]);        \
          (M)[1][2] = a0*((x)[3][2]-x[0][2])+a1*((x)[2][2]-(x)[1][2])         \
                    + a2*((x)[6][2]-x[5][2])+a3*((x)[7][2]-(x)[4][2]);        \
      a0 = a * b;                                                         \
      a1 = (local)[0] * b;                                                \
      a2 = (local)[0] * (local)[1];                                       \
      a3 = a * (local)[1];                                                \
          (M)[2][0] = a0*((x)[4][0]-x[0][0])+a1*((x)[5][0]-(x)[1][0])         \
                    + a2*((x)[6][0]-x[2][0])+a3*((x)[7][0]-(x)[3][0]);        \
          (M)[2][1] = a0*((x)[4][1]-x[0][1])+a1*((x)[5][1]-(x)[1][1])         \
                    + a2*((x)[6][1]-x[2][1])+a3*((x)[7][1]-(x)[3][1]);        \
          (M)[2][2] = a0*((x)[4][2]-x[0][2])+a1*((x)[5][2]-(x)[1][2])         \
                    + a2*((x)[6][2]-x[2][2])+a3*((x)[7][2]-(x)[3][2]); }

#define TRANSFORMATION_3D(n,x,local,M)                                     \
 {if ((n) == 4)      {TRANSFORMATION_OF_TETRAHEDRON((x),(M));}          \
  else if ((n) == 5) {TRANSFORMATION_OF_PYRAMID((x),(local),(M));}      \
  else if ((n) == 6) {TRANSFORMATION_OF_PRISM((x),(local),(M));}        \
  else TRANSFORMATION_OF_HEXAHEDRON((x),(local),(M));}

#define SIDE_NORMAL_3D(n,i,x,normal)                                \
  { DOUBLE s; DOUBLE_VECTOR a,b;                                 \
        V3_SUBTRACT(x[CORNER_OF_SIDE_REF((n),(i),1)],                \
                x[CORNER_OF_SIDE_REF((n),(i),0)],a);             \
        V3_SUBTRACT(x[CORNER_OF_SIDE_REF((n),(i),2)],                \
                                x[CORNER_OF_SIDE_REF((n),(i),0)],b);             \
        V3_VECTOR_PRODUCT(a,b,(normal));                             \
        V3_EUKLIDNORM((normal),s);                                   \
        V3_SCALE(1.0/s,(normal));}


#ifdef __TWODIM__
#define LOCAL_TO_GLOBAL(n,x,local,global)                       LOCAL_TO_GLOBAL_2D(n,x,local,global)
#define AREA_OF_ELEMENT(n,x,area)                                       AREA_OF_ELEMENT_2D(n,x,area)
#define AREA_OF_REF(n,area)                                                     AREA_OF_REF_2D(n,area)
#define TRANSFORMATION(n,x,local,M)                                     TRANSFORMATION_2D(n,x,local,M)
#define SIDE_NORMAL(n,i,x,normal)                                       SIDE_NORMAL_2D(n,i,x,normal)
#endif /* __TWODIM__ */

#ifdef __THREEDIM__
#define TRANSFORMATION_BND(n,x,local,M)                         TRANSFORMATION_2D(n,x,local,M)
#define LOCAL_TO_GLOBAL_BND(n,x,local,global)           LOCAL_TO_GLOBAL_2D(n,x,local,global)
#define AREA_OF_ELEMENT_BND(n,x,area)                           AREA_OF_ELEMENT_2D(n,x,area)
#define AREA_OF_REF_BND(n,area)                                         AREA_OF_REF_2D(n,area)

#define LOCAL_TO_GLOBAL(n,x,local,global)                       LOCAL_TO_GLOBAL_3D(n,x,local,global)
#define AREA_OF_ELEMENT(n,x,area)                                       AREA_OF_ELEMENT_3D(n,x,area)
#define AREA_OF_REF(n,area)                                                     AREA_OF_REF_3D(n,area)
#define TRANSFORMATION(n,x,local,M)                                     TRANSFORMATION_3D(n,x,local,M)
#define SIDE_NORMAL(n,i,x,normal)                                       SIDE_NORMAL_3D(n,i,x,normal)
#endif /* __THREEDIM__ */

#define INVERSE_TRANSFORMATION(n,x,local,Jinv,Jdet)   \
{   DOUBLE_VECTOR J[DIM];                             \
    TRANSFORMATION((n),(x),(local),J);                \
        M_DIM_INVERT(J,(Jinv),(Jdet)); }

/****************************************************************************/
/*                                                                          */
/* data structures exported by the corresponding source file                */
/*                                                                          */
/****************************************************************************/

/****************************************************************************/
/*                                                                          */
/* definition of exported global variables                                  */
/*                                                                          */
/****************************************************************************/

/****************************************************************************/
/*                                                                          */
/* function declarations                                                    */
/*                                                                          */
/****************************************************************************/

DOUBLE   GN                   (INT n, INT i, const DOUBLE *ip_local);
INT      GNs                  (INT n, const DOUBLE *ip_local, DOUBLE *result);
INT      DimGNs               (INT dim, INT n, const DOUBLE *ip_local, DOUBLE *result);
INT      D_GN                 (INT n, INT i, const DOUBLE *ip_local, DOUBLE *derivative);
DOUBLE  *LMP                  (INT n);
INT      UG_GlobalToLocal     (INT n, const DOUBLE **Corners, const DOUBLE *EvalPoint, DOUBLE *LocalCoord);
INT      UG_GlobalToLocalBnd  (INT n, const DOUBLE **Corners,
                               const DOUBLE *EvalPoint, DOUBLE *LocalCoord);

INT LocalCornerCoordinates (INT dim, INT tag, INT corner, DOUBLE *result);
/*****************************************************************************
 * This function delivers the coordinates of the corners in the refernence
 * element.
 * Parameters are:
 * dim          space dimension, 2D can be called in 3D
 * tag                  identifies element type, i.e. 3=TRIANGLE, 4=QUADRILATERAL here
 * corner               number of the corner
 * result               array to place result
 */

INT InterpolateFEFunction (INT dim, INT tag, DOUBLE ip_local[DIM],
                DOUBLE nodal_values[MAX_CORNERS_OF_ELEM], DOUBLE *result);
/*****************************************************************************
 * This function interpolates  a finite element function given by
 * nodal values at some point in the interior of the element. The coordinates
 * of this point must be given in local coordinates.
 * Parameters are:
 * dim          space dimension, 2D can be called in 3D
 * tag                  identifies element type, i.e. 3=TRIANGLE, 4=QUADRILATERAL here
 * ip_local             local coordinates of interpolation point
 * nodal_values array of nodal values of function to interpolate
 * result               pointer where to place result (one DOUBLE value)
 */


INT LinearTrafo (INT dim, INT tag);
/*****************************************************************************
 * This function returns true if transformation from reference element
 * to an arbitrary element is linear. This can be used to avoid
 * recomputation of the Jacobian of the transformation.
 * Parameters are:
 * dim          space dimension, 2D can be called in 3D
 * tag                  identifies element type, i.e. 3=TRIANGLE, 4=QUADRILATERAL here
 */


INT JacobianInverse (INT dim, INT tag, DOUBLE co_global[MAX_CORNERS_OF_ELEM][DIM],
                DOUBLE ip_local[DIM], DOUBLE Jinv[DIM][DIM], DOUBLE *detJ);
/*****************************************************************************
 * Compute inverse of the jacobian of transformation of reference element
 * to some element given by global coordinates of corners. The determinant
 * of the jacobian (no its inverse!) is also provided as a result.
 * Parameters are:
 * dim          space dimension, 2D can be called in 3D
 * tag                  identifies element type, i.e. 3=TRIANGLE, 4=QUADRILATERAL here
 * co_global    global coordinates of the corners of the element
 * ip_local             local coordinates of interpolation point
 * Jinv                 place to store the inverse of jacobian
 * detJ                 place to store determinant
 */


INT GradientFEFunction (INT dim, INT tag, DOUBLE ip_local[DIM], DOUBLE Jinv[DIM][DIM],
                DOUBLE nodal_values[MAX_CORNERS_OF_ELEM], DOUBLE result[DIM]);
/*****************************************************************************
 * Compute gradient in global coordinates of some finite element function
 * given by nodal values at some point within the element.
 * Parameters are:
 * dim          space dimension, 2D can be called in 3D
 * tag                  identifies element type, i.e. 3=TRIANGLE, 4=QUADRILATERAL here
 * ip_local             local coordinates of interpolation point
 * Jinv                 inverse of jacobian of transformation computed by fct above
 * nodal_values array of nodal values of function to interpolate
 * result               pointer where to place result (a vector)
 */

INT SurfaceElement (INT dim, INT nc,
                    const DOUBLE co_global[MAX_CORNERS_OF_ELEM][DIM],
                    const DOUBLE ip_local[DIM], DOUBLE *result);

#ifdef __TWODIM__
DOUBLE  dNds (INT n, INT i, DOUBLE s, DOUBLE t);
DOUBLE  dNdt (INT n, INT i, DOUBLE s, DOUBLE t);

INT Derivatives     (INT n, const DOUBLE *px, const DOUBLE *py, DOUBLE ips, DOUBLE ipt, DOUBLE *dNdx, DOUBLE *dNdy, DOUBLE *detJ);
INT Gradients       (INT n, const DOUBLE **theCorners, DOUBLE ips, DOUBLE ipt, DOUBLE_VECTOR Gradient[MAX_CORNERS_OF_ELEM], DOUBLE *DetJ);

INT L2GDerivative2d (INT n, const DOUBLE **Corners, const DOUBLE_VECTOR EvalPoint, DOUBLE *Derivative);
#endif

#ifdef __THREEDIM__
INT GetSkewedUIP (const DOUBLE_VECTOR *theCorners, const DOUBLE_VECTOR LIP[MAX_EDGES_OF_ELEM], const DOUBLE_VECTOR conv[MAX_EDGES_OF_ELEM], DOUBLE_VECTOR LUIP[MAX_EDGES_OF_ELEM]);
DOUBLE  N                   (const INT i, const DOUBLE *LocalCoord);
INT     TetraDerivative     (ELEMENT *theElement, const DOUBLE **theCorners, DOUBLE_VECTOR theGradient[MAX_CORNERS_OF_ELEM]);
INT     TetraVolume         (const DOUBLE **theCorners, DOUBLE *volume);
INT     FV_TetInfo          (const DOUBLE **theCorners, DOUBLE_VECTOR Area[MAX_EDGES_OF_ELEM], DOUBLE_VECTOR GIP[MAX_EDGES_OF_ELEM]);
INT     Side_TetInfo            (DOUBLE **theCorners, INT side, DOUBLE_VECTOR Area, DOUBLE_VECTOR GIP[3]);
INT     TetraSideNormals    (ELEMENT *theElement, DOUBLE **theCorners, DOUBLE_VECTOR theNormals[MAX_SIDES_OF_ELEM]);
INT     TetMaxSideAngle     (ELEMENT *theElement, const DOUBLE **theCorners, DOUBLE *MaxAngle);
INT     TetAngleAndLength   (ELEMENT *theElement, const DOUBLE **theCorners, DOUBLE *Angle, DOUBLE *Length);
INT     FV_AliTetInfo       (const DOUBLE **CornerPoints, DOUBLE_VECTOR Area[6], DOUBLE_VECTOR conv, DOUBLE_VECTOR GIP[6], DOUBLE_VECTOR LIP[6]);
INT     FV_TetInfo_for_conv (ELEMENT *theElement, const DOUBLE **CornerPoints, DOUBLE_VECTOR Area[MAX_EDGES_OF_ELEM], DOUBLE_VECTOR GIP[MAX_EDGES_OF_ELEM], DOUBLE_VECTOR LUIP[MAX_EDGES_OF_ELEM], DOUBLE_VECTOR conv);
INT     GFUIP               (const DOUBLE **theCorners, const DOUBLE_VECTOR LIP[MAX_EDGES_OF_ELEM], DOUBLE_VECTOR conv[MAX_EDGES_OF_ELEM], DOUBLE_VECTOR LUIP[MAX_EDGES_OF_ELEM]);
INT     GCUIP               (const DOUBLE **theCorners, const DOUBLE_VECTOR LIP[MAX_EDGES_OF_ELEM], DOUBLE_VECTOR conv[MAX_EDGES_OF_ELEM], DOUBLE_VECTOR LUIP[MAX_EDGES_OF_ELEM]);
INT     COPYIP              (const DOUBLE **theCorners, const DOUBLE_VECTOR LIP[MAX_EDGES_OF_ELEM], DOUBLE_VECTOR conv[MAX_EDGES_OF_ELEM], DOUBLE_VECTOR LUIP[MAX_EDGES_OF_ELEM]);
#endif

END_UGDIM_NAMESPACE

#endif