This file is indexed.

/usr/include/libevocosm/function_optimizer.h is in libevocosm-dev 4.0.2-3.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
/*
    Evocosm is a C++ framework for implementing evolutionary algorithms.

    Copyright 2011 Scott Robert Ladd. All rights reserved.

    Evocosm is user-supported open source software. Its continued development is dependent
    on financial support from the community. You can provide funding by visiting the Evocosm
    website at:

        http://www.coyotegulch.com

    You may license Evocosm in one of two fashions:

    1) Simplified BSD License (FreeBSD License)

    Redistribution and use in source and binary forms, with or without modification, are
    permitted provided that the following conditions are met:

    1.  Redistributions of source code must retain the above copyright notice, this list of
        conditions and the following disclaimer.

    2.  Redistributions in binary form must reproduce the above copyright notice, this list
        of conditions and the following disclaimer in the documentation and/or other materials
        provided with the distribution.

    THIS SOFTWARE IS PROVIDED BY SCOTT ROBERT LADD ``AS IS'' AND ANY EXPRESS OR IMPLIED
    WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
    FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SCOTT ROBERT LADD OR
    CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
    ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
    ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

    The views and conclusions contained in the software and documentation are those of the
    authors and should not be interpreted as representing official policies, either expressed
    or implied, of Scott Robert Ladd.

    2) Closed-Source Proprietary License

    If your project is a closed-source or proprietary project, the Simplified BSD License may
    not be appropriate or desirable. In such cases, contact the Evocosm copyright holder to
    arrange your purchase of an appropriate license.

    The author can be contacted at:

          scott.ladd@coyotegulch.com
          scott.ladd@gmail.com
          http:www.coyotegulch.com
*/

#if !defined(EVOCOSM_FUNCTION_OPTIMIZER_H)
#define EVOCOSM_FUNCTION_OPTIMIZER_H

#include <vector>
#include <stdexcept>
#include <limits>

// other elements of Evocosm
#include "evocosm.h"
#include "evoreal.h"

// OpenMP support, if requested
#if defined(_OPENMP)
#include <omp.h>
#endif

namespace libevocosm
{
    //! Global things used by all optimizer classes
    /*!
        I put all cross-class, shared items into a single base class; this
        encapsulates global data, and also show why multiple inheritance
        is a useful tool.
    */
    class fopt_global
    {
    protected:
        //! Definition of a function type
        /*!
            This is the type of function being optimized. <i><b>The inner nature
            of this function is not defined by this optimizer.</b></i> A t_function
            can be anything -- a simple numerical formula or a simulation. For
            example: Consider a set of arguments that describe the shape of a wing,
            and a function that tests shapes in a simulated wind tunnel, the
            fitness representing "lift".
        */
        typedef vector<double> t_function(vector<double> a_args);

        //! Provides mutation and crossover services for doubles
        static evoreal g_evoreal;
    };

    //! A potential solution to the problem at hand
    /*!
        To support a wide variety of applications, I defined a function solution
        as a vector of doubles. This allows functions of any dimension to be
        optimized (within platform limits, of course). Note that the solution
        begins with an empty vector; this is because the number of elements and
        their initialization is application specific. Initialization of the genes
        takes place in the constructor for function_optimizer through a pointer
        to a user-supplied function.
    */
    class function_solution : public organism< vector<double> >, protected fopt_global
    {
    public:
        /*!
            Value is the actual computed value of this solution, which may or may not
            correspond directly to fitness. For example, when minimizing a function,
            the lowest value may correspond to the highest fitness. Generally, this is
            a display property.
        */
        double value;

    protected:
        /*! used to cast base class pointer to concrete class */
        virtual void child_copy(const organism & a_source)
        {
            value = dynamic_cast<const function_solution &>(a_source).value;
        }

    private:
        double m_minarg;
        double m_maxarg;
        double m_extent;

    public:
        //! Default contructor
        /*!
            Creates an empty solution.
        */
        function_solution()
          : organism< vector<double> >(),
            value(0.0),
            m_minarg(-1.0),
            m_maxarg(1.0),
            m_extent(2.0)
        {
            // nada
        }

        //! Creation constructor
        /*!
            Creates a new solution with an empty vector.
        */
        function_solution(int a_nargs, double a_minarg, double a_maxarg)
          : organism< vector<double> >(), value(0.0)
        {
            double base;
            double extent;

            if (a_maxarg < a_minarg)
            {
                double temp = a_maxarg;
                a_maxarg = a_minarg;
                a_minarg = a_maxarg;
            }

            m_minarg = a_minarg;
            m_maxarg = a_maxarg;
            m_extent = a_maxarg - a_minarg;

            // values fall in the range [-1,1]
            for (size_t n = 0; n < a_nargs; ++n)
                genes.push_back(g_random.get_real() * m_extent + a_minarg);
        }

        //! Construct from raw genes
        /*!
            Constructs a new function solution from a set of genes
        */
        function_solution(const vector<double> & a_source)
          : organism< vector<double> >(a_source), value(0.0)
        {
            // nada
        }

        //! Construct from base class
        /*!
            Constructs a function solution from a base-class object.
            \param a_source - The source object
        */
        function_solution(const organism< vector<double> > & a_source)
          : organism< vector<double> >(a_source), value(0.0)
        {
            // nada
        }

        //! Copy constructor
        /*!
            Duplicates an existing object.
            \param a_source - The source object
        */
        function_solution(const function_solution & a_source)
          : organism< vector<double> >(a_source),
            value(a_source.value),
            m_minarg(a_source.m_minarg),
            m_maxarg(a_source.m_maxarg),
            m_extent(a_source.m_extent)
        {
            // nada
        }

        //! Virtual destructor
        /*!
            Satisfies the requirements of the base class; does nothing
        */
        virtual ~function_solution()
        {
            // nada
        }

        //! Assignment operator
        /*!
            Assigns the state of one solution to another.
            \param a_source - The source object
            \return A reference to <i>this</i>
        */
        function_solution & operator = (const function_solution & a_source)
        {
            organism< vector<double> >::operator = (a_source);
            value = a_source.value;
            m_minarg = a_source.m_minarg;
            m_maxarg = a_source.m_maxarg;
            m_extent = a_source.m_extent;
            return *this;
        }

        //! Comparison operator for algorithms
        /*!
            Returns true if the target object is greater than a_source. While the
            operator may be "less than", what it really meands for algorithms is
            "comes before" -- and I want the highest fitness to come first.
            \param a_right - Right hand argument for less than operator
            \return <b>true</b> if this organismsfitness if greater than <code>a_right.fitness</code>; <b>false</b> otherwise
        */
        virtual bool operator < (const organism< vector<double> > & a_right) const
        {
            return (fitness > a_right.fitness);
        }
    };

    //! Mutates solutions
    /*!
        Implements chance-based mutation of solutions.
    */
    class function_mutator : public mutator<function_solution>, protected fopt_global
    {
    public:
        //! Creation constructor
        /*!
            Creates a new mutator with a given mutation rate.
        */
        function_mutator(double a_mutation_rate)
          : m_mutation_rate(a_mutation_rate)
        {
            // adjust mutation rate if necessary
            if (m_mutation_rate > 1.0)
                m_mutation_rate = 1.0;
            else if (m_mutation_rate < 0.0)
                m_mutation_rate = 0.0;
        }

        //! Copy constructor
        /*!
            Duplicates an existing object.
            \param a_source - The source object
        */
        function_mutator(const function_mutator & a_source)
            : m_mutation_rate(a_source.m_mutation_rate)
        {
            // nada
        }

        //! Virtual destructor
        /*!
            Satisfies the requirements of the base class; does nothing at this time.
        */
        virtual ~function_mutator()
        {
            // nada
        }

        //! Assignment operator
        /*!
            Assigns the state of one object to another.
            \param a_source - The source object
            \return A reference to <i>this</i>
        */
        function_mutator & operator = (const function_mutator & a_source)
        {
            m_mutation_rate = a_source.m_mutation_rate;
            return *this;
        }

        //! Gets the mutation rate
        /*!
            Returns the mutation rate set for this mutator.
            \return Mutation rate
        */
        double mutation_rate() const
        {
            return m_mutation_rate;
        }

        //! Performs mutations
        /*!
            Mutates a solution using the facilities provided by g_evoreal.
            \param a_population - Solutions to be mutated
        */
        void mutate(vector<function_solution> & a_population);

    private:
        // rate of mutation
        double m_mutation_rate;
    };

    //! Implements reproduction
    /*!
        Handles reproduction for solutions.
    */
    class function_reproducer : public reproducer<function_solution>, protected fopt_global
    {
    public:
        //! Creation constructor
        /*!
            Creates a new reproducer with a given crossover rate.
        */
        function_reproducer(double p_crossover_rate = 1.0)
            : m_crossover_rate(p_crossover_rate)
        {
            // adjust crossover rate if necessary
            if (m_crossover_rate > 1.0)
                m_crossover_rate = 1.0;
            else if (m_crossover_rate < 0.0)
                m_crossover_rate = 0.0;
        }

        //! Copy constructor
        /*!
            Duplicates an existing object.
            \param a_source - The source object
        */
        function_reproducer(const function_reproducer & a_source)
            : m_crossover_rate(a_source.m_crossover_rate)
        {
            // nada
        }

        //! Virtual destructor
        /*!
            Satisfies the requirements of the base class; does nothing at this time.
        */
        virtual ~function_reproducer()
        {
            // nada
        }

        //! Assignment operator
        /*!
            Assigns the state of one object to another.
            \param a_source - The source object
            \return A reference to <i>this</i>
        */
        function_reproducer & operator = (const function_reproducer & a_source)
        {
            m_crossover_rate = a_source.m_crossover_rate;
            return *this;
        }

        //! Gets the crossover rate
        /*!
            Returns the crossover rate set for this reproducer.
            \return Crossover rate
        */
        double crossover_rate() const
        {
            return m_crossover_rate;
        }

        //! Reproduction for solutions
        /*!
            Breeds new solutions, by cloning or the combination of elements from parent organisms. By
            default, the crossover rate is 1.0 (100%), meaning that all children stem from crossover
            between two parents. The crossover is implemented on a argument-by-argument basis; in other
            words, crossover occurs between corresponding elements of the parent solutions.
            \param a_population - A population of solutions
            \param p_limit - Maximum number of children
            \return A vector containing new "child" chromosomes
        */
        virtual vector<function_solution> breed(const vector<function_solution> & a_population, size_t p_limit);

    private:
        // crossover chance
        double m_crossover_rate;
    };

    //! Defines the test for a population of solutions
    /*!
        A "fitness" landscape defines the environment in which an organism
        competes for survival. In the case of function optimization, the
        "test" is (obviously!) a function.
    */
    class function_landscape : public landscape<function_solution>, protected fopt_global
    {
    public:
        //! Creation constructor
        /*!
            Creates a new landscape with a given fitness function.
            \param a_function function to be tested
            \param a_listener a listener for events during testing
        */
        function_landscape(t_function * a_function, listener<function_solution> & a_listener)
          : landscape<function_solution>(a_listener),
            m_function(a_function)
        {
            // nada
        }

        //! Copy constructor
        function_landscape(const function_landscape & a_source)
          : landscape<function_solution>(a_source),
            m_function(a_source.m_function)
        {
            // nada
        }

        //! Assignment
        function_landscape & operator = (const function_landscape & a_source)
        {
            landscape<function_solution>::operator = (a_source);
            m_function = a_source.m_function;
            return *this;
        }

        //! Virtual destructor
        /*!
            Satisfies the requirements of the base class; does nothing at this time.
        */
        ~function_landscape()
        {
            // nada
        }

        //! Performs fitness testing
        /*!
            Tests a single chromosome for fitness by calling the fitness function provided
            in the constructor.
            \param a_organism the organism to be tested by the landscape.
            \param a_verbose should this test produce lots of output?
            \return Computed fitness for this organism
        */
        virtual double test(function_solution & a_organism, bool a_verbose = false) const
        {
            vector<double> z = m_function(a_organism.genes);
            a_organism.value   = z[0];
            a_organism.fitness = z[1];
            return a_organism.fitness;
        }

    private:
        // fitness function pointer
        t_function * m_function;
    };

    //! Reports the state of a population of solutions
    /*!
        A simple analyzer for diaplying information about the populations
        as it evolves.
    */
    class function_analyzer : public analyzer<function_solution>
    {
    private:
        function_solution m_prev_best;
        size_t m_count;

    public:
        //! Constructor
        /*!
            Creates a new analyzer object
            \param a_listener - a listener for events
        */
        function_analyzer(listener<function_solution> & a_listener, size_t max_iterations)
            : analyzer<function_solution>(a_listener, max_iterations),
              m_prev_best(function_solution()),
              m_count(0)
        {
            // nada
        }

        //! Reports on a population
        /*!
            The report method can do almost anything. In most case, it will display
            the "best" chromosome, draw a progress graph, or notify the user that
            another generation has passed. The return value tells an evocosm whether
            to continue evolution (changes in the population) or not.
            \param a_population - A population of organisms
            \param a_iteration - Iteration count for this report
            \param a_fitness - Assigned the fitness value; implementation-defined
            \return <b>true</b> if the evocosm should evolve the population more; <b>false</b> if no evolution is required.
        */
        virtual bool analyze(const vector<function_solution> & a_population,
                             size_t a_iteration,
                             double & a_fitness);
    };

    //! An listener implementation that ignores all events
    /*!
        This listener displays information about events to stdout
        (standard ouput).
    */
    class function_listener : public null_listener<function_solution>
    {
    public:
        //! Ping that a generation begins
        /*!
            Ping that processing a generation begins.
            \param a_iteration One-based number of the generation begun
        */
        virtual void ping_generation_begin(size_t a_iteration);

        //! Ping that a generation ends
        /*!
            Ping that processing a generation has ended.
            \param a_population population for which processing has ended
            \param a_iteration One-based number of the generation ended
        */
        virtual void ping_generation_end(const vector<function_solution> & a_population, size_t a_iteration);
    };

    //! A generic function optimizer
    /*!
        Using instances of the other classes, this class binds together the pieces to
        create a complete function optimizer. A user of this class defines two functions
        -- a solution initializer and a fitness test -- that define the target problem.
    */
    class function_optimizer : protected fopt_global, protected function_listener
    {
    private:
        // objects that define the characteristics of the genetic algorithm
        vector<function_solution>             m_population;
        function_landscape                    m_landscape;
        function_mutator                      m_mutator;
        function_reproducer                   m_reproducer;
        linear_norm_scaler<function_solution> m_scaler;
        elitism_selector<function_solution>   m_selector;
        function_analyzer                     m_analyzer;

        // the evocosm binds it all together
        evocosm<function_solution> * m_evocosm;

        // number of iterations to run
        const size_t m_iterations;

    public:
        //! Constructor
        /*!
            Creates a new function_optimizer with the given set of parameters.
            \param a_function - Address of the function to be optimized.
            \param a_nargs - number of arguments per solution
            \param a_minarg - minimum argument value
            \param a_maxarg - maximum argument value
            \param a_norgs - The size of the solution population.
            \param a_mutation_rate - Mutation rate in the range [0,1].
            \param a_iterations - Number of iterations to perform when doing a run.
        */
        function_optimizer(t_function * a_function,
                           size_t       a_nargs,
                           double       a_minarg,
                           double       a_maxarg,
                           size_t       a_norgs,
                           double       a_mutation_rate,
                           size_t       a_iterations);

        //! Destructor
        /*!
            Cleans up resources by removing allocated objects.
        */
        virtual ~function_optimizer();

        //! Performs optimization
        /*!
            This is where the work gets done; run iterates the number of times specificed when creating
            this function_optimizer, reporting via a function_analyzer object on the progress of
            optimization.
        */
        void run();
    };

};

#endif