/usr/include/libevocosm/fuzzy_machine.h is in libevocosm-dev 4.0.2-3.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 | /*
Evocosm is a C++ framework for implementing evolutionary algorithms.
Copyright 2011 Scott Robert Ladd. All rights reserved.
Evocosm is user-supported open source software. Its continued development is dependent
on financial support from the community. You can provide funding by visiting the Evocosm
website at:
http://www.coyotegulch.com
You may license Evocosm in one of two fashions:
1) Simplified BSD License (FreeBSD License)
Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.
THIS SOFTWARE IS PROVIDED BY SCOTT ROBERT LADD ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SCOTT ROBERT LADD OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those of the
authors and should not be interpreted as representing official policies, either expressed
or implied, of Scott Robert Ladd.
2) Closed-Source Proprietary License
If your project is a closed-source or proprietary project, the Simplified BSD License may
not be appropriate or desirable. In such cases, contact the Evocosm copyright holder to
arrange your purchase of an appropriate license.
The author can be contacted at:
scott.ladd@coyotegulch.com
scott.ladd@gmail.com
http:www.coyotegulch.com
*/
#if !defined(LIBEVOCOSM_FUZZY_MACHINE_H)
#define LIBEVOCOSM_FUZZY_MACHINE_H
// Standard C++ Library
#include <cstddef>
#include <stack>
#include <stdexcept>
#ifdef DEBUG
#include <iostream>
#include <iomanip>
#endif
using namespace std;
// libevocosm
#include "evocommon.h"
#include "machine_tools.h"
namespace libevocosm
{
//! A finite state machine
/*!
The class defines an abstract fuzzy state machine that uses integer
input and output types.
<p>
A fuzzy state machine differs from a finite state machine in the selection
of state transitions and outputs. In a finite state machine, each input
maps to specific output and state transitions for a given current state.
The fuzzy state machine contains probability maps for outputs and inputs;
for any given state an input, there is a probability that any valid output
could be returned, for example.
\param InSize Number of input states
\param OutSize Number of output states
*/
template <size_t InSize, size_t OutSize>
class fuzzy_machine : protected globals, protected machine_tools
{
public:
//! Defines a transition and output state pair
struct tranout_t
{
//! The state to be transitioned to
roulette_wheel m_new_state;
//! The output value
roulette_wheel m_output;
//! Creation Constructor
tranout_t(double * state_weights, size_t num_states, double * output_weights)
: m_new_state(state_weights, num_states),
m_output(output_weights, OutSize)
{
// nada
}
//! Copy constructor
tranout_t(const tranout_t & source)
: m_new_state(source.m_new_state),
m_output(source.m_output)
{
// nada
}
//! Assignment
tranout_t & operator = (const tranout_t & source)
{
m_new_state = source.m_new_state;
m_output = source.m_output;
return *this;
}
};
//! Creation constructor
/*!
Creates a new finite state machine with a given number of states. The four weight values
define the range of weights assigned to outputs and state transitions; the actual
roulette tables are randomized in the range (base,base+range).
\param a_size - Initial number of states in this machine
\param a_output_base - Minimum (base) value for an output roulette wheel weight
\param a_output_range - Range for an output roulette wheel weight
\param a_state_base - Minimum (base) value for a new roulette wheel weight
\param a_state_range - Range for a new state roulette wheel weight
*/
fuzzy_machine(size_t a_size,
double a_output_base,
double a_output_range,
double a_state_base,
double a_state_range);
//! Creation constructor
/*!
Creates a new finite state machine with a given number of states.
\param a_size - Initial number of states in this machine
*/
fuzzy_machine(size_t a_size);
//! Construct via bisexual crossover
/*!
Creates a new fuzzy_machine by combining the states of two parent machines.
\param a_parent1 - The first parent organism
\param a_parent2 - The second parent organism
*/
fuzzy_machine(const fuzzy_machine<InSize,OutSize> & a_parent1, const fuzzy_machine<InSize,OutSize> & a_parent2);
//! Copy constructor
/*!
Creates a new fuzzy_machine identical to an existing one.
\param a_source - Object to be copied
*/
fuzzy_machine(const fuzzy_machine<InSize,OutSize> & a_source);
//! Virtual destructor
/*!
Does nothing in the base class; exists to allow destruction of derived
class objects through base class (fuzzy_machine) pointers.
*/
virtual ~fuzzy_machine();
// Assignment
/*!
Sets an existing fuzzy_machine to duplicate another.
\param a_source - Object to be copied
\return Reference to target object
*/
fuzzy_machine & operator = (const fuzzy_machine<InSize,OutSize> & a_source);
//! Mutation
/*!
Mutates a finite state machine object. The four mutations supported are:
- Change a random output symbol
- Change a random state transition
- Swap two randomly-selected states
- Randomly change the initial state
Why not store the input and output sets in the machine itself? That would
duplicate information across every machine of a given type, greatly
increasing the memory footprint of each fuzzy_machine. The same principle holds for
the mutation selector.
\param a_rate - Chance that any given state will mutate
*/
void mutate(double a_rate);
//! Set a mutation weight
/*!
Sets the weight value associated with a specific mutation; this changes the
relative chance of this mutation happening.
\param a_type - ID of the weight to be changed
\param a_weight - New weight to be assigned
*/
static void set_mutation_weight(mutation_id a_type, double a_weight);
//! Cause state transition
/*!
Based on an input symbol, this function changes the state of an fuzzy_machine and
returns an output symbol.
\param a_input - An input symbol
\return Output value resulting from transition
*/
size_t transition(size_t a_input);
//! Reset to start-up state
/*!
Prepares the FSM to start running from its initial state.
*/
void reset();
//! Get size
/*!
Returns the size of a fuzzy_machine.
\return The size, in number of states
*/
size_t size() const;
//! Get a transition from the internal state table.
/*!
Get a transition from the internal state table.
\param a_state - Target state
\param a_input - State information to return
\return A transition from the internal state table.
*/
const tranout_t & get_transition(size_t a_state, size_t a_input) const;
//! Get number of input states
/*!
Returns the number of input states
\return The number of input states
*/
size_t num_input_states() const;
//! Get number of output states
/*!
Returns the number of output states
\return The number of output states
*/
size_t num_output_states() const;
//! Get initial state
/*!
Returns the initial (start up) state.
\return The initial state
*/
size_t init_state() const;
//! Get current state
/*!
Returns the current (active) state.
\return The current state
*/
size_t current_state() const;
//! Get current transition table
/*!
Returns the state transition table pointer.
This is a very dangerous function, as it gives unrestricted access
to the transition table that defines a machine. Given the complexity
of fuzzy state machines, I implemented this function for debugging
purposes; it is not intended as a tool for directly altering the
transition table.
/return Pointer to the transition table for the target machine
*/
tranout_t *** state_table()
{
return m_state_table;
}
#ifdef DEBUG
void dump(const char * description, ostream & a_stream = cerr) const;
#endif
private:
// release resources
void release();
// deep copy
void deep_copy(const fuzzy_machine<InSize,OutSize> & a_source);
protected:
//! State table (the machine definition)
tranout_t *** m_state_table;
//! Number of states
size_t m_size;
//! Initial state
size_t m_init_state;
//! Current state
size_t m_current_state;
//! base value for output weights
double m_output_base;
//! range for output weights
double m_output_range;
//! base value for state weights
double m_state_base;
//! range for state weights
double m_state_range;
//! Global mutation selector
static mutation_selector g_selector;
};
// Static initializer
template <size_t InSize, size_t OutSize>
typename fuzzy_machine<InSize,OutSize>::mutation_selector fuzzy_machine<InSize,OutSize>::g_selector;
// release resources
template <size_t InSize, size_t OutSize>
void fuzzy_machine<InSize,OutSize>::release()
{
for (size_t s = 0; s < m_size; ++s)
{
for (size_t i = 0; i < InSize; ++i)
delete m_state_table[s][i];
delete [] m_state_table[s];
}
delete [] m_state_table;
}
// deep copy
template <size_t InSize, size_t OutSize>
void fuzzy_machine<InSize,OutSize>::deep_copy(const fuzzy_machine<InSize,OutSize> & a_source)
{
// allocate state table
m_state_table = new tranout_t ** [m_size];
for (size_t s = 0; s < m_size; ++s)
{
// allocate an array corresponding to inputs
m_state_table[s] = new tranout_t * [InSize];
// set transition values
for (size_t i = 0; i < InSize; ++i)
m_state_table[s][i] = new tranout_t(*(a_source.m_state_table[s][i]));
}
}
// Creation constructor
template <size_t InSize, size_t OutSize>
fuzzy_machine<InSize,OutSize>::fuzzy_machine(size_t a_size,
double a_output_base,
double a_output_range,
double a_state_base,
double a_state_range)
: m_state_table(NULL),
m_size(a_size),
m_init_state(0),
m_current_state(0),
m_output_base(a_output_base),
m_output_range(a_output_range),
m_state_base(a_state_base),
m_state_range(a_state_range)
{
// verify parameters
if (m_size < 2)
throw std::runtime_error("invalid fuzzy_machine creation parameters");
// allocate state table
m_state_table = new tranout_t ** [m_size];
// tables of weights for roulette wheels
double * output_weights = new double[OutSize];
double * state_weights = new double[m_size];
for (size_t s = 0; s < m_size; ++s)
{
// allocate an array corresponding to inputs
m_state_table[s] = new tranout_t * [InSize];
for (size_t i = 0; i < InSize; ++i)
{
// define weights
size_t n;
for (n = 0; n < OutSize; ++n)
output_weights[n] = g_random.get_real() * a_output_range + a_output_base;
for (n = 0; n < m_size; ++n)
state_weights[n] = g_random.get_real() * a_state_range + a_state_base;
// set transition values
m_state_table[s][i] = new tranout_t(state_weights,m_size,output_weights);
}
}
delete [] output_weights;
delete [] state_weights;
// set initial state and start there
m_init_state = rand_index(m_size);
m_current_state = m_init_state;
}
// Creation constructor
template <size_t InSize, size_t OutSize>
fuzzy_machine<InSize,OutSize>::fuzzy_machine(size_t a_size)
: m_state_table(NULL),
m_size(a_size),
m_init_state(0),
m_current_state(0),
m_output_base(1.0),
m_output_range(100.0),
m_state_base(1.0),
m_state_range(100.0)
{
// verify parameters
if (m_size < 2)
throw std::runtime_error("invalid fuzzy_machine creation parameters");
// allocate state table
m_state_table = new tranout_t ** [m_size];
// tables of weights for roulette wheels
double * output_weights = new double[OutSize];
double * state_weights = new double[m_size];
for (size_t s = 0; s < m_size; ++s)
{
// allocate an array corresponding to inputs
m_state_table[s] = new tranout_t * [InSize];
for (size_t i = 0; i < InSize; ++i)
{
// define weights
size_t n;
for (n = 0; n < OutSize; ++n)
output_weights[n] = 1.0;
output_weights[rand_index(OutSize)] = 100.0;
for (n = 0; n < m_size; ++n)
state_weights[n] = 1.0;
state_weights[rand_index(m_size)] = 100.0;
// set transition values
m_state_table[s][i] = new tranout_t(state_weights,m_size,output_weights);
}
}
delete [] output_weights;
delete [] state_weights;
// set initial state and start there
m_init_state = rand_index(m_size);
m_current_state = m_init_state;
}
// Construct via bisexual crossover
template <size_t InSize, size_t OutSize>
fuzzy_machine<InSize,OutSize>::fuzzy_machine(const fuzzy_machine<InSize,OutSize> & a_parent1, const fuzzy_machine<InSize,OutSize> & a_parent2)
: m_state_table(NULL),
m_size(a_parent1.m_size),
m_init_state(0),
m_current_state(0),
m_output_base(a_parent1.m_output_base),
m_output_range(a_parent1.m_output_range),
m_state_base(a_parent1.m_state_base),
m_state_range(a_parent1.m_state_range)
{
#ifdef DEBUG
cerr << "\n<< crossover operation >>\n";
a_parent1.dump("PARENT1");
a_parent2.dump("PARENT2");
#endif
// copy first parent
deep_copy(a_parent1);
// don't do anything else if fsms differ is size
if ((a_parent1.m_size != a_parent2.m_size) || (&a_parent1 == &a_parent2))
return;
// pick a crossover point
size_t x = rand_index(m_size);
#ifdef DEBUG
cerr << "crossover at " << x << "\n";
#endif
for (size_t n = x; n < m_size; ++n)
{
// set transition values
for (size_t i = 0; i < InSize; ++i)
{
delete m_state_table[n][i];
m_state_table[n][i] = new tranout_t(*a_parent2.m_state_table[n][i]);
}
}
// randomize the initial state (looks like mom and dad but may act like either one!)
if (g_random.get_real() < 0.5)
m_init_state = a_parent1.m_init_state;
else
m_init_state = a_parent2.m_init_state;
// reset for start
m_current_state = m_init_state;
#ifdef DEBUG
dump("CHILD");
#endif
}
// Copy constructor
template <size_t InSize, size_t OutSize>
fuzzy_machine<InSize,OutSize>::fuzzy_machine(const fuzzy_machine<InSize,OutSize> & a_source)
: m_state_table(NULL),
m_size(a_source.m_size),
m_init_state(a_source.m_init_state),
m_current_state(a_source.m_current_state),
m_output_base(a_source.m_output_base),
m_output_range(a_source.m_output_range),
m_state_base(a_source.m_state_base),
m_state_range(a_source.m_state_range)
{
// copy first parent
deep_copy(a_source);
}
// Virtual destructor
template <size_t InSize, size_t OutSize>
fuzzy_machine<InSize,OutSize>::~fuzzy_machine()
{
release();
}
// Assignment
template <size_t InSize, size_t OutSize>
fuzzy_machine<InSize,OutSize> & fuzzy_machine<InSize,OutSize>::operator = (const fuzzy_machine<InSize,OutSize> & a_source)
{
// release resources
release();
// set values
m_init_state = a_source.m_init_state;
m_current_state = a_source.m_current_state;
m_size = a_source.m_size;
m_output_base = a_source.m_output_base;
m_output_range = a_source.m_output_range;
m_state_base = a_source.m_state_base;
m_state_range = a_source.m_state_range;
// copy source
deep_copy(a_source);
return *this;
}
//! Set a mutation weight
template <size_t InSize, size_t OutSize>
inline void fuzzy_machine<InSize,OutSize>::set_mutation_weight(mutation_id a_type, double a_weight)
{
g_selector.set_weight(a_type,a_weight);
}
// Mutation
template <size_t InSize, size_t OutSize>
void fuzzy_machine<InSize,OutSize>::mutate(double a_rate)
{
// the number of chances for mutation is based on the number of states in the machine;
// larger machines thus encounter more mutations
#ifdef DEBUG
cerr << "\n<< mutation operation >>\n";
dump("BEFORE");
#endif
for (size_t n = 0; n < m_size; ++n)
{
if (g_random.get_real() < a_rate)
{
// pick a mutation
switch (g_selector.get_index())
{
case MUTATE_OUTPUT_SYMBOL:
{
// mutate output symbol
size_t state = rand_index(m_size);
size_t input = rand_index(InSize);
size_t index = rand_index(OutSize);
#ifdef DEBUG
cerr << "MUTATE_OUTPUT_SYMBOL, state " << state << ", input " << input << ", index " << index << "\n";
#endif
double new_weight = m_output_base + m_output_range * g_random.get_real();
m_state_table[state][input]->m_output.set_weight(index,new_weight);
break;
}
case MUTATE_TRANSITION:
{
// mutate state transition
size_t state = rand_index(m_size);
size_t input = rand_index(InSize);
size_t index = rand_index(m_size);
#ifdef DEBUG
cerr << "MUTATE_TRANSITION, state " << state << ", input " << input << ", index " << index << "\n";
#endif
double new_weight = m_state_base + m_state_range * g_random.get_real();
m_state_table[state][input]->m_new_state.set_weight(index,new_weight);
break;
}
case MUTATE_REPLACE_STATE:
{
// select mutated state
size_t state = rand_index(m_size);
#ifdef DEBUG
cerr << "REPLACE_STATE, state " << state << "\n";
#endif
// allocate an array corresponding to inputs
delete [] m_state_table[state];
m_state_table[state] = new tranout_t * [InSize];
// tables of weights for roulette wheels
double * output_weights = new double[OutSize];
double * state_weights = new double[m_size];
for (size_t i = 0; i < InSize; ++i)
{
// define weights
size_t n;
for (n = 0; n < OutSize; ++n)
output_weights[n] = 1.0;
output_weights[rand_index(OutSize)] = 100.0;
for (n = 0; n < m_size; ++n)
state_weights[n] = 1.0;
state_weights[rand_index(m_size)] = 100.0;
// set transition values
m_state_table[state][i] = new tranout_t(state_weights,m_size,output_weights);
}
delete [] output_weights;
delete [] state_weights;
break;
}
case MUTATE_SWAP_STATES:
{
// swap two states (by swapping pointers)
size_t state1 = rand_index(m_size);
size_t state2;
do
state2 = static_cast<size_t>(rand_index(m_size));
while (state2 == state1);
#ifdef DEBUG
cerr << "MUTATE_SWAP_STATES, " << state1 << " with " << state2 << "\n";
#endif
for (size_t i = 0; i < InSize; ++i)
{
tranout_t * temp = m_state_table[state1][i];
m_state_table[state1][i] = m_state_table[state2][i];
m_state_table[state2][i] = temp;
}
break;
}
case MUTATE_INIT_STATE:
{
// change initial state
#ifdef DEBUG
cerr << "MUTATE_INIT_STATE\n";
#endif
m_init_state = rand_index(m_size);
break;
}
#ifdef DEBUG
default:
cerr << "UNKNOWN MUTATION!\n";
#endif
}
}
}
// reset current state because init state may have changed
m_current_state = m_init_state;
#ifdef DEBUG
dump("AFTER");
#endif
}
// Cause state transition
template <size_t InSize, size_t OutSize>
inline size_t fuzzy_machine<InSize,OutSize>::transition(size_t a_input)
{
// get output symbol for given input for current state
size_t output = m_state_table[m_current_state][a_input]->m_output.get_index();
// change to new state
m_current_state = m_state_table[m_current_state][a_input]->m_new_state.get_index();
// return output symbol
return output;
}
// Reset to start-up state
template <size_t InSize, size_t OutSize>
inline void fuzzy_machine<InSize,OutSize>::reset()
{
m_current_state = m_init_state;
}
// Get size
template <size_t InSize, size_t OutSize>
inline size_t fuzzy_machine<InSize,OutSize>::size() const
{
return m_size;
}
// Get a copy of the internal table
template <size_t InSize, size_t OutSize>
inline const typename fuzzy_machine<InSize,OutSize>::tranout_t & fuzzy_machine<InSize,OutSize>::get_transition(size_t a_state, size_t a_input) const
{
return *m_state_table[a_state][a_input];
}
// Get number of input states
template <size_t InSize, size_t OutSize>
inline size_t fuzzy_machine<InSize,OutSize>::num_input_states() const
{
return InSize;
}
// Get number of output states
template <size_t InSize, size_t OutSize>
inline size_t fuzzy_machine<InSize,OutSize>::num_output_states() const
{
return OutSize;
}
// Get initial state
template <size_t InSize, size_t OutSize>
inline size_t fuzzy_machine<InSize,OutSize>::init_state() const
{
return m_init_state;
}
// Get current state
template <size_t InSize, size_t OutSize>
inline size_t fuzzy_machine<InSize,OutSize>::current_state() const
{
return m_current_state;
}
#ifdef DEBUG
template <size_t InSize, size_t OutSize>
void fuzzy_machine<InSize,OutSize>::dump(const char * description, ostream & a_stream) const
{
a_stream << "----------\nDumping machine " << description << " (" << hex << this
<< ")\ninitial state = " << m_init_state
<< "\ncurrent state = " << m_current_state << "\n\n";
for (size_t s = 0; s < m_size; ++s)
{
a_stream << "state " << s;
for (size_t i = 0; i < InSize; ++i)
{
size_t n;
a_stream << "\n output weights:";
for (n = 0; n < OutSize; ++n)
a_stream << " " << m_state_table[s][i]->m_output.get_weight(n);
a_stream << "\n state weights:";
for (n = 0; n < m_size; ++n)
a_stream << " " << m_state_table[s][i]->m_new_state.get_weight(n);
a_stream << endl;
}
}
a_stream << "----------" << endl;
}
#endif
};
#endif
|