This file is indexed.

/usr/include/libevocosm/state_machine.h is in libevocosm-dev 4.0.2-3.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
/*
    Evocosm is a C++ framework for implementing evolutionary algorithms.

    Copyright 2011 Scott Robert Ladd. All rights reserved.

    Evocosm is user-supported open source software. Its continued development is dependent
    on financial support from the community. You can provide funding by visiting the Evocosm
    website at:

        http://www.coyotegulch.com

    You may license Evocosm in one of two fashions:

    1) Simplified BSD License (FreeBSD License)

    Redistribution and use in source and binary forms, with or without modification, are
    permitted provided that the following conditions are met:

    1.  Redistributions of source code must retain the above copyright notice, this list of
        conditions and the following disclaimer.

    2.  Redistributions in binary form must reproduce the above copyright notice, this list
        of conditions and the following disclaimer in the documentation and/or other materials
        provided with the distribution.

    THIS SOFTWARE IS PROVIDED BY SCOTT ROBERT LADD ``AS IS'' AND ANY EXPRESS OR IMPLIED
    WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
    FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SCOTT ROBERT LADD OR
    CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
    ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
    ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

    The views and conclusions contained in the software and documentation are those of the
    authors and should not be interpreted as representing official policies, either expressed
    or implied, of Scott Robert Ladd.

    2) Closed-Source Proprietary License

    If your project is a closed-source or proprietary project, the Simplified BSD License may
    not be appropriate or desirable. In such cases, contact the Evocosm copyright holder to
    arrange your purchase of an appropriate license.

    The author can be contacted at:

          scott.ladd@coyotegulch.com
          scott.ladd@gmail.com
          http:www.coyotegulch.com
*/

#if !defined(LIBEVOCOSM_FSM_H)
#define LIBEVOCOSM_FSM_H

// Standard C++ Library
#include <cstddef>
#include <vector>
#include <map>
#include <stack>
#include <stdexcept>
using namespace std;

// libevocosm
#include "evocommon.h"
#include "roulette.h"
#include "machine_tools.h"

namespace libevocosm
{
    //! A finite state machine
    /*!
        The class defines an abstract finite state machine with parameterized
        input and output types. A machine could take character inputs and return
        integer outputs, for example.

        While this class provides great flexibility in FSM design (given that inputs
        and outputs can be almost any type of object), the class suffers from
        performance problems, especially when used in a genetic algorithm, where
        many, many objects are copied and created. In general, I've switched to
        using the simple_fsm class, mapping integer inputs and outputs to object
        tables where required.
        \param InputT Input type
        \param OutputT Output type
    */
    template <typename InputT, typename OutputT>
    class state_machine : protected globals, protected fsm_tools
    {
    public:
        //! Exported input type
        typedef InputT  t_input;

        //! Exported output type
        typedef OutputT t_output;

        //! Type of a transition
        typedef typename std::pair<t_output, size_t> t_transition;

        //! Mapping inputs to outputs and state transitions
        typedef typename std::map<t_input, t_transition> t_input_map;

        //! State table (the machine)
        typedef typename std::vector<t_input_map> t_state_table;

        //! Creation constructor
        /*!
            Creates a new finite state machine with a given number of states,
            and input set and an output set.
            \param a_size - Initial number of states in this machine
            \param a_inputs - A list of input values
            \param a_outputs - A list of output values
        */
        state_machine(size_t a_size, const std::vector<t_input> & a_inputs, const std::vector<t_output> & a_outputs);

        //! Construct via bisexual crossover
        /*!
            Creates a new state_machine by combining the states of two parent machines.
            Each state in the child has an equal likelihood of being a copy
            of the corresponding state in either a_parent1 or a_parent2. If
            one parent has more states than the other, the child will also
            have copies of the "extra" states taken from the longer parent.
            \param a_parent1 - The first parent organism
            \param a_parent2 - The second parent organism
        */
        state_machine(const state_machine<InputT,OutputT> & a_parent1, const state_machine<InputT,OutputT> & a_parent2);

        //! Copy constructor
        /*!
            Creates a new state_machine identical to an existing one.
            \param a_source - Object to be copied
        */
        state_machine(const state_machine<InputT,OutputT> & a_source);

        //! Virtual destructor
        /*!
            Does nothing in the base class; exists to allow destruction of derived
            class objects through base class (state_machine) pointers.
        */
        virtual ~state_machine();

        //  Assignment
        /*!
            Sets an existing state_machine to duplicate another.
            \param a_source - Object to be copied
        */
        state_machine & operator = (const state_machine<InputT,OutputT> & a_source);

        //!  Mutation
        /*!
            Mutates a finite state machine object. The four mutations supported are:
            - Change a random output symbol
            - Change a random state transition
            - Swap two randomly-selected states
            - Randomly change the initial state
            Why not store the input and output sets in the machine itself? That would
            duplicate information across every machine of a given type, greatly
            increasing the memory footprint of each state_machine. The same principle holds for
            the mutation selector.
            \param a_rate - Chance that any given state will mutate
            \param a_inputs - A list of valid input states
            \param a_outputs - A list of valid output states
            \param a_selector - A mutation selector
        */
        void mutate(double a_rate, const std::vector<t_input> & a_inputs, const std::vector<t_output> & a_outputs, mutation_selector & a_selector = g_default_selector);

        //! Cause state transition
        /*!
            Based on an input symbol, this function changes the state of an state_machine and
            returns an output symbol.
            \param a_input - An input symbol
        */
        t_output transition(const state_machine<InputT,OutputT>::t_input & a_input);

        //! Reset to start-up state
        /*!
            Prepares the FSM to start running from its initial state.
        */
        void reset();

        //! Get a copy of the internal table
        /*!
            Returns a copy of the state transition table. Useful for reporting the "program"
            stored in an state_machine.
            \return A copy of the internal state transition table
        */
        t_state_table get_table() const;

        //! Get initial state
        /*!
            Returns the initial (start up) state.
            \return The initial state
        */
        size_t get_init_state() const;

        //! Get current state
        /*!
            Returns the current (active) state.
            \return The current state
        */
        size_t get_current_state() const;

    protected:
        //!  State table (the machine definition)
        t_state_table m_state_table;

        //!  Number of states
        size_t m_size;

        //!  Initial state
        size_t m_init_state;

        //!  Current state
        size_t m_current_state;

        //!  A static, default mutation selector
        static mutation_selector g_default_selector;

    private:
        // create a state map
        t_input_map create_input_map(const std::vector<t_input> & a_inputs, const std::vector<t_output> & a_outputs);
    };

    //  Static initializer
    template <typename InputT, typename OutputT>
    typename state_machine<InputT,OutputT>::mutation_selector state_machine<InputT,OutputT>::g_default_selector;

    //  Creation constructor
    template <typename InputT, typename OutputT>
    state_machine<InputT,OutputT>::state_machine(size_t a_size, const std::vector<t_input> & a_inputs, const std::vector<t_output> & a_outputs)
      : m_state_table(),
        m_init_state(0),
        m_current_state(0),
        m_size(a_size)
    {
        // verify parameters
        if ((a_size < 2) || (a_inputs.size() < 1) || (a_outputs.size() < 1))
            throw std::runtime_error("invalid state_machine creation parameters");

        for (size_t n = 0; n < m_size; ++n)
        {
            // add input map to state table
            m_state_table.push_back(create_input_map(a_inputs,a_outputs));
        }

        // set initial state and start there
        m_init_state = rand_index(m_size);
        m_current_state = m_init_state;
    }

    //  Construct via bisexual crossover
    template <typename InputT, typename OutputT>
    state_machine<InputT,OutputT>::state_machine(const state_machine<InputT,OutputT> & a_parent1, const state_machine<InputT,OutputT> & a_parent2)
      : m_state_table(a_parent1.m_state_table),
        m_init_state(0),
        m_current_state(0),
        m_size(0)
    {
        size_t n;

        // don't do anything else if fsms differ is size
        if (a_parent1.m_size != a_parent2.m_size)
            return;

        // replace states from those in second parent 50/50 chance
        for (size_t n = 0; n < m_size; ++n)
        {
            if (g_random.get_real() > 0.5)
                m_state_table[n] = a_parent2.m_state_table[n];
        }

        // calculate the size
        m_size = m_state_table.size();

        // randomize the initial state (looks like mom and dad but may act like either one!)
        if (g_random.get_real() < 0.5)
            m_init_state = a_parent1.m_init_state;
        else
            m_init_state = a_parent2.m_init_state;

        // reset for start
        m_current_state = m_init_state;
    }

    //  Copy constructor
    template <typename InputT, typename OutputT>
    state_machine<InputT,OutputT>::state_machine(const state_machine<InputT,OutputT> & a_source)
      : m_state_table(a_source.m_state_table),
        m_init_state(a_source.m_init_state),
        m_current_state(a_source.m_current_state),
        m_size(a_source.m_size)
    {
        // nada
    }

    //  Virtual destructor
    template <typename InputT, typename OutputT>
    state_machine<InputT,OutputT>::~state_machine()
    {
        // nada
    }

    //  Assignment
    template <typename InputT, typename OutputT>
    state_machine<InputT,OutputT> & state_machine<InputT,OutputT>::operator = (const state_machine<InputT,OutputT> & a_source)
    {
        if (this != &a_source)
        {
            m_state_table   = a_source.m_state_table;
            m_init_state    = a_source.m_init_state;
            m_current_state = a_source.m_current_state;
            m_size          = a_source.m_size;
        }

        return *this;
    }

    //  Mutation
    template <typename InputT, typename OutputT>
    void state_machine<InputT,OutputT>::mutate(double a_rate,
                                     const std::vector<t_input> & a_inputs,
                                     const std::vector<t_output> & a_outputs,
                                     mutation_selector & a_selector)
    {
        if (g_random.get_real() < a_rate)
        {
            // pick a mutation
            switch (a_selector.get_index())
            {
                case MUTATE_OUTPUT_SYMBOL:
                {
                    // mutate output symbol
                    size_t state  = rand_index(m_size);
                    size_t input  = rand_index(a_inputs.size());
                    size_t output = rand_index(a_outputs.size());
                    m_state_table[state][a_inputs[input]].first = a_outputs[output];
                    break;
                }
                case MUTATE_TRANSITION:
                {
                    // mutate state transition
                    size_t state  = rand_index(m_size);
                    size_t input  = rand_index(a_inputs.size());
                    size_t new_state = rand_index(m_size);
                    m_state_table[state][a_inputs[input]].second = new_state;
                    break;
                }
                case MUTATE_REPLACE_STATE:
                {
                    // select state
                    size_t state  = rand_index(m_size);
                    m_state_table[state] = create_input_map(a_inputs,a_outputs);
                }
                case MUTATE_SWAP_STATES:
                {
                    // swap two states
                    size_t state1 = rand_index(m_size);
                    size_t state2;

                    do
                        state2 = rand_index(m_size);
                    while (state2 == state1);

                    t_input_map temp = m_state_table[state1];
                    m_state_table[state1] = m_state_table[state2];
                    m_state_table[state2] = temp;
                    break;
                }
                case MUTATE_INIT_STATE:
                {
                    // change initial state
                    m_init_state  = rand_index(m_size);
                    break;
                }
            }
        }

        // reset current state because init state may have changed
        m_current_state = m_init_state;
    }

    //  Cause state transition
    template <typename InputT, typename OutputT>
    typename state_machine<InputT,OutputT>::t_output state_machine<InputT,OutputT>::transition(const state_machine<InputT,OutputT>::t_input & a_input)
    {
        // get transition state
        t_transition & trans = m_state_table[m_current_state][a_input];

        // change to new state
        m_current_state = trans.second;

        // return output symbol
        return trans.first;
    }

    //  Reset to start-up state
    template <typename InputT, typename OutputT>
    inline void state_machine<InputT,OutputT>::reset()
    {
        m_current_state = m_init_state;
    }

    //  Get a copy of the internal table
    template <typename InputT, typename OutputT>
    inline typename state_machine<InputT,OutputT>::t_state_table state_machine<InputT,OutputT>::get_table() const
    {
        return m_state_table;
    }

    //  Get initial state
    template <typename InputT, typename OutputT>
    inline size_t state_machine<InputT,OutputT>::get_init_state() const
    {
        return m_init_state;
    }

    //  Get current state
    template <typename InputT, typename OutputT>
    inline size_t state_machine<InputT,OutputT>::get_current_state() const
    {
        return m_current_state;
    }

    // create a state map
    template <typename InputT, typename OutputT>
    typename state_machine<InputT,OutputT>::t_input_map state_machine<InputT,OutputT>::create_input_map(const std::vector<t_input> & a_inputs, const std::vector<t_output> & a_outputs)
    {
        // maximum output index
        size_t max_output = a_outputs.size();

        // create an input map for this state
        t_input_map input_map;

        // for each input, define an output and a state transition
        for (typename std::vector<t_input>::const_iterator input = a_inputs.begin(); input != a_inputs.end(); ++input)
        {
            // pick a random output symbol and new state
            t_output out_symbol = a_outputs[rand_index(max_output)];
            size_t   new_state  = rand_index(m_size);

            // add transition data to map
            input_map[*input] = std::make_pair(out_symbol,new_state);
        }

        return input_map;
    }
};

#endif