/usr/include/libevocosm/state_machine.h is in libevocosm-dev 4.0.2-3.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 | /*
Evocosm is a C++ framework for implementing evolutionary algorithms.
Copyright 2011 Scott Robert Ladd. All rights reserved.
Evocosm is user-supported open source software. Its continued development is dependent
on financial support from the community. You can provide funding by visiting the Evocosm
website at:
http://www.coyotegulch.com
You may license Evocosm in one of two fashions:
1) Simplified BSD License (FreeBSD License)
Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.
THIS SOFTWARE IS PROVIDED BY SCOTT ROBERT LADD ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SCOTT ROBERT LADD OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those of the
authors and should not be interpreted as representing official policies, either expressed
or implied, of Scott Robert Ladd.
2) Closed-Source Proprietary License
If your project is a closed-source or proprietary project, the Simplified BSD License may
not be appropriate or desirable. In such cases, contact the Evocosm copyright holder to
arrange your purchase of an appropriate license.
The author can be contacted at:
scott.ladd@coyotegulch.com
scott.ladd@gmail.com
http:www.coyotegulch.com
*/
#if !defined(LIBEVOCOSM_FSM_H)
#define LIBEVOCOSM_FSM_H
// Standard C++ Library
#include <cstddef>
#include <vector>
#include <map>
#include <stack>
#include <stdexcept>
using namespace std;
// libevocosm
#include "evocommon.h"
#include "roulette.h"
#include "machine_tools.h"
namespace libevocosm
{
//! A finite state machine
/*!
The class defines an abstract finite state machine with parameterized
input and output types. A machine could take character inputs and return
integer outputs, for example.
While this class provides great flexibility in FSM design (given that inputs
and outputs can be almost any type of object), the class suffers from
performance problems, especially when used in a genetic algorithm, where
many, many objects are copied and created. In general, I've switched to
using the simple_fsm class, mapping integer inputs and outputs to object
tables where required.
\param InputT Input type
\param OutputT Output type
*/
template <typename InputT, typename OutputT>
class state_machine : protected globals, protected fsm_tools
{
public:
//! Exported input type
typedef InputT t_input;
//! Exported output type
typedef OutputT t_output;
//! Type of a transition
typedef typename std::pair<t_output, size_t> t_transition;
//! Mapping inputs to outputs and state transitions
typedef typename std::map<t_input, t_transition> t_input_map;
//! State table (the machine)
typedef typename std::vector<t_input_map> t_state_table;
//! Creation constructor
/*!
Creates a new finite state machine with a given number of states,
and input set and an output set.
\param a_size - Initial number of states in this machine
\param a_inputs - A list of input values
\param a_outputs - A list of output values
*/
state_machine(size_t a_size, const std::vector<t_input> & a_inputs, const std::vector<t_output> & a_outputs);
//! Construct via bisexual crossover
/*!
Creates a new state_machine by combining the states of two parent machines.
Each state in the child has an equal likelihood of being a copy
of the corresponding state in either a_parent1 or a_parent2. If
one parent has more states than the other, the child will also
have copies of the "extra" states taken from the longer parent.
\param a_parent1 - The first parent organism
\param a_parent2 - The second parent organism
*/
state_machine(const state_machine<InputT,OutputT> & a_parent1, const state_machine<InputT,OutputT> & a_parent2);
//! Copy constructor
/*!
Creates a new state_machine identical to an existing one.
\param a_source - Object to be copied
*/
state_machine(const state_machine<InputT,OutputT> & a_source);
//! Virtual destructor
/*!
Does nothing in the base class; exists to allow destruction of derived
class objects through base class (state_machine) pointers.
*/
virtual ~state_machine();
// Assignment
/*!
Sets an existing state_machine to duplicate another.
\param a_source - Object to be copied
*/
state_machine & operator = (const state_machine<InputT,OutputT> & a_source);
//! Mutation
/*!
Mutates a finite state machine object. The four mutations supported are:
- Change a random output symbol
- Change a random state transition
- Swap two randomly-selected states
- Randomly change the initial state
Why not store the input and output sets in the machine itself? That would
duplicate information across every machine of a given type, greatly
increasing the memory footprint of each state_machine. The same principle holds for
the mutation selector.
\param a_rate - Chance that any given state will mutate
\param a_inputs - A list of valid input states
\param a_outputs - A list of valid output states
\param a_selector - A mutation selector
*/
void mutate(double a_rate, const std::vector<t_input> & a_inputs, const std::vector<t_output> & a_outputs, mutation_selector & a_selector = g_default_selector);
//! Cause state transition
/*!
Based on an input symbol, this function changes the state of an state_machine and
returns an output symbol.
\param a_input - An input symbol
*/
t_output transition(const state_machine<InputT,OutputT>::t_input & a_input);
//! Reset to start-up state
/*!
Prepares the FSM to start running from its initial state.
*/
void reset();
//! Get a copy of the internal table
/*!
Returns a copy of the state transition table. Useful for reporting the "program"
stored in an state_machine.
\return A copy of the internal state transition table
*/
t_state_table get_table() const;
//! Get initial state
/*!
Returns the initial (start up) state.
\return The initial state
*/
size_t get_init_state() const;
//! Get current state
/*!
Returns the current (active) state.
\return The current state
*/
size_t get_current_state() const;
protected:
//! State table (the machine definition)
t_state_table m_state_table;
//! Number of states
size_t m_size;
//! Initial state
size_t m_init_state;
//! Current state
size_t m_current_state;
//! A static, default mutation selector
static mutation_selector g_default_selector;
private:
// create a state map
t_input_map create_input_map(const std::vector<t_input> & a_inputs, const std::vector<t_output> & a_outputs);
};
// Static initializer
template <typename InputT, typename OutputT>
typename state_machine<InputT,OutputT>::mutation_selector state_machine<InputT,OutputT>::g_default_selector;
// Creation constructor
template <typename InputT, typename OutputT>
state_machine<InputT,OutputT>::state_machine(size_t a_size, const std::vector<t_input> & a_inputs, const std::vector<t_output> & a_outputs)
: m_state_table(),
m_init_state(0),
m_current_state(0),
m_size(a_size)
{
// verify parameters
if ((a_size < 2) || (a_inputs.size() < 1) || (a_outputs.size() < 1))
throw std::runtime_error("invalid state_machine creation parameters");
for (size_t n = 0; n < m_size; ++n)
{
// add input map to state table
m_state_table.push_back(create_input_map(a_inputs,a_outputs));
}
// set initial state and start there
m_init_state = rand_index(m_size);
m_current_state = m_init_state;
}
// Construct via bisexual crossover
template <typename InputT, typename OutputT>
state_machine<InputT,OutputT>::state_machine(const state_machine<InputT,OutputT> & a_parent1, const state_machine<InputT,OutputT> & a_parent2)
: m_state_table(a_parent1.m_state_table),
m_init_state(0),
m_current_state(0),
m_size(0)
{
size_t n;
// don't do anything else if fsms differ is size
if (a_parent1.m_size != a_parent2.m_size)
return;
// replace states from those in second parent 50/50 chance
for (size_t n = 0; n < m_size; ++n)
{
if (g_random.get_real() > 0.5)
m_state_table[n] = a_parent2.m_state_table[n];
}
// calculate the size
m_size = m_state_table.size();
// randomize the initial state (looks like mom and dad but may act like either one!)
if (g_random.get_real() < 0.5)
m_init_state = a_parent1.m_init_state;
else
m_init_state = a_parent2.m_init_state;
// reset for start
m_current_state = m_init_state;
}
// Copy constructor
template <typename InputT, typename OutputT>
state_machine<InputT,OutputT>::state_machine(const state_machine<InputT,OutputT> & a_source)
: m_state_table(a_source.m_state_table),
m_init_state(a_source.m_init_state),
m_current_state(a_source.m_current_state),
m_size(a_source.m_size)
{
// nada
}
// Virtual destructor
template <typename InputT, typename OutputT>
state_machine<InputT,OutputT>::~state_machine()
{
// nada
}
// Assignment
template <typename InputT, typename OutputT>
state_machine<InputT,OutputT> & state_machine<InputT,OutputT>::operator = (const state_machine<InputT,OutputT> & a_source)
{
if (this != &a_source)
{
m_state_table = a_source.m_state_table;
m_init_state = a_source.m_init_state;
m_current_state = a_source.m_current_state;
m_size = a_source.m_size;
}
return *this;
}
// Mutation
template <typename InputT, typename OutputT>
void state_machine<InputT,OutputT>::mutate(double a_rate,
const std::vector<t_input> & a_inputs,
const std::vector<t_output> & a_outputs,
mutation_selector & a_selector)
{
if (g_random.get_real() < a_rate)
{
// pick a mutation
switch (a_selector.get_index())
{
case MUTATE_OUTPUT_SYMBOL:
{
// mutate output symbol
size_t state = rand_index(m_size);
size_t input = rand_index(a_inputs.size());
size_t output = rand_index(a_outputs.size());
m_state_table[state][a_inputs[input]].first = a_outputs[output];
break;
}
case MUTATE_TRANSITION:
{
// mutate state transition
size_t state = rand_index(m_size);
size_t input = rand_index(a_inputs.size());
size_t new_state = rand_index(m_size);
m_state_table[state][a_inputs[input]].second = new_state;
break;
}
case MUTATE_REPLACE_STATE:
{
// select state
size_t state = rand_index(m_size);
m_state_table[state] = create_input_map(a_inputs,a_outputs);
}
case MUTATE_SWAP_STATES:
{
// swap two states
size_t state1 = rand_index(m_size);
size_t state2;
do
state2 = rand_index(m_size);
while (state2 == state1);
t_input_map temp = m_state_table[state1];
m_state_table[state1] = m_state_table[state2];
m_state_table[state2] = temp;
break;
}
case MUTATE_INIT_STATE:
{
// change initial state
m_init_state = rand_index(m_size);
break;
}
}
}
// reset current state because init state may have changed
m_current_state = m_init_state;
}
// Cause state transition
template <typename InputT, typename OutputT>
typename state_machine<InputT,OutputT>::t_output state_machine<InputT,OutputT>::transition(const state_machine<InputT,OutputT>::t_input & a_input)
{
// get transition state
t_transition & trans = m_state_table[m_current_state][a_input];
// change to new state
m_current_state = trans.second;
// return output symbol
return trans.first;
}
// Reset to start-up state
template <typename InputT, typename OutputT>
inline void state_machine<InputT,OutputT>::reset()
{
m_current_state = m_init_state;
}
// Get a copy of the internal table
template <typename InputT, typename OutputT>
inline typename state_machine<InputT,OutputT>::t_state_table state_machine<InputT,OutputT>::get_table() const
{
return m_state_table;
}
// Get initial state
template <typename InputT, typename OutputT>
inline size_t state_machine<InputT,OutputT>::get_init_state() const
{
return m_init_state;
}
// Get current state
template <typename InputT, typename OutputT>
inline size_t state_machine<InputT,OutputT>::get_current_state() const
{
return m_current_state;
}
// create a state map
template <typename InputT, typename OutputT>
typename state_machine<InputT,OutputT>::t_input_map state_machine<InputT,OutputT>::create_input_map(const std::vector<t_input> & a_inputs, const std::vector<t_output> & a_outputs)
{
// maximum output index
size_t max_output = a_outputs.size();
// create an input map for this state
t_input_map input_map;
// for each input, define an output and a state transition
for (typename std::vector<t_input>::const_iterator input = a_inputs.begin(); input != a_inputs.end(); ++input)
{
// pick a random output symbol and new state
t_output out_symbol = a_outputs[rand_index(max_output)];
size_t new_state = rand_index(m_size);
// add transition data to map
input_map[*input] = std::make_pair(out_symbol,new_state);
}
return input_map;
}
};
#endif
|