This file is indexed.

/usr/include/fann_cpp.h is in libfann-dev 2.2.0+ds-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
#ifndef FANN_CPP_H_INCLUDED
#define FANN_CPP_H_INCLUDED

/*
 *
 *  Fast Artificial Neural Network (fann) C++ Wrapper
 *  Copyright (C) 2004-2006 created by freegoldbar (at) yahoo dot com
 *
 *  This wrapper is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Lesser General Public
 *  License as published by the Free Software Foundation; either
 *  version 2.1 of the License, or (at your option) any later version.
 *
 *  This wrapper is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  License along with this library; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

/*
 *  Title: FANN Wrapper for C++
 *
 *  Overview:
 *
 *  The Fann Wrapper for C++ provides two classes: <neural_net>
 *  and <training_data>. To use the wrapper include
 *  doublefann.h, floatfann.h or fixedfann.h before the
 *  fann_cpp.h header file. To get started see xor_sample.cpp
 *  in the examples directory. The license is LGPL. Copyright (C)
 *  2004-2006 created by <freegoldbar@yahoo.com>.
 *
 *  Note:  Notes and differences from C API
 *
 *  -  The Fann Wrapper for C++ is a minimal wrapper without use of
 *       templates or exception handling for efficient use in any environment.
 *       Benefits include stricter type checking, simpler memory
 *       management and possibly code completion in program editor.
 *  -  Method names are the same as the function names in the C
 *       API except the fann_ prefix has been removed. Enums in the
 *       namespace are similarly defined without the FANN_ prefix.
 *  -  The arguments to the methods are the same as the C API
 *       except that the struct fann *ann/struct fann_train_data *data
 *       arguments are encapsulated so they are not present in the
 *       method signatures or are translated into class references.
 *  -  The various create methods return a boolean set to true to
 *       indicate that the neural network was created, false otherwise.
 *       The same goes for the read_train_from_file method.
 *  -  The neural network and training data is automatically cleaned
 *       up in the destructors and create/read methods.
 *  -  To make the destructors virtual define USE_VIRTUAL_DESTRUCTOR
 *       before including the header file.
 *  -  Additional methods are available on the training_data class to
 *       give access to the underlying training data. They are get_input,
 *       get_output and set_train_data. Finally fann_duplicate_train_data
 *       has been replaced by a copy constructor.
 *
 *  Note: Changes
 *
 *  Version 2.2.0:
 *     - General update to fann C library 2.2.0 with support for new functionality
 *
 *  Version 2.1.0:
 *     - General update to fann C library 2.1.0 with support for new functionality
 *     - Due to changes in the C API the C++ API is not fully backward compatible:
 *        The create methods have changed names and parameters.
 *        The training callback function has different parameters and a set_callback.
 *        Some <training_data> methods have updated names.
 *        Get activation function and steepness is available for neurons, not layers.
 *     - Extensions are now part of fann so there is no fann_extensions.h
 *
 *  Version 1.2.0:
 *     - Changed char pointers to const std::string references
 *     - Added const_casts where the C API required it
 *     - Initialized enums from the C enums instead of numeric constants
 *     - Added a method set_train_data that copies and allocates training
 *     - data in a way that is compatible with the way the C API deallocates
 *     - the data thus making it possible to change training data.
 *     - The get_rprop_increase_factor method did not return its value
 *
 *  Version 1.0.0:
 *     - Initial version
 *
 */

#include <stdarg.h>
#include <string>

/* Namespace: FANN
    The FANN namespace groups the C++ wrapper definitions */
namespace FANN
{
    /* Enum: error_function_enum
	    Error function used during training.
    	
	    ERRORFUNC_LINEAR - Standard linear error function.
	    ERRORFUNC_TANH - Tanh error function, usually better 
		    but can require a lower learning rate. This error function agressively targets outputs that
		    differ much from the desired, while not targetting outputs that only differ a little that much.
		    This activation function is not recommended for cascade training and incremental training.

	    See also:
		    <neural_net::set_train_error_function>, <neural_net::get_train_error_function>
    */
    enum error_function_enum {
        ERRORFUNC_LINEAR = FANN_ERRORFUNC_LINEAR,
        ERRORFUNC_TANH
    };

    /* Enum: stop_function_enum
	    Stop criteria used during training.

	    STOPFUNC_MSE - Stop criteria is Mean Square Error (MSE) value.
	    STOPFUNC_BIT - Stop criteria is number of bits that fail. The number of bits; means the
		    number of output neurons which differ more than the bit fail limit 
		    (see <neural_net::get_bit_fail_limit>, <neural_net::set_bit_fail_limit>). 
		    The bits are counted in all of the training data, so this number can be higher than
		    the number of training data.

	    See also:
		    <neural_net::set_train_stop_function>, <neural_net::get_train_stop_function>
    */
    enum stop_function_enum
    {
	    STOPFUNC_MSE = FANN_STOPFUNC_MSE,
	    STOPFUNC_BIT
    };

    /* Enum: training_algorithm_enum
	    The Training algorithms used when training on <training_data> with functions like
	    <neural_net::train_on_data> or <neural_net::train_on_file>. The incremental training
        looks alters the weights after each time it is presented an input pattern, while batch
        only alters the weights once after it has been presented to all the patterns.

	    TRAIN_INCREMENTAL -  Standard backpropagation algorithm, where the weights are 
		    updated after each training pattern. This means that the weights are updated many 
		    times during a single epoch. For this reason some problems, will train very fast with 
		    this algorithm, while other more advanced problems will not train very well.
	    TRAIN_BATCH -  Standard backpropagation algorithm, where the weights are updated after 
		    calculating the mean square error for the whole training set. This means that the weights 
		    are only updated once during a epoch. For this reason some problems, will train slower with 
		    this algorithm. But since the mean square error is calculated more correctly than in 
		    incremental training, some problems will reach a better solutions with this algorithm.
	    TRAIN_RPROP - A more advanced batch training algorithm which achieves good results 
		    for many problems. The RPROP training algorithm is adaptive, and does therefore not 
		    use the learning_rate. Some other parameters can however be set to change the way the 
		    RPROP algorithm works, but it is only recommended for users with insight in how the RPROP 
		    training algorithm works. The RPROP training algorithm is described by 
		    [Riedmiller and Braun, 1993], but the actual learning algorithm used here is the 
		    iRPROP- training algorithm which is described by [Igel and Husken, 2000] which 
    	    is an variety of the standard RPROP training algorithm.
	    TRAIN_QUICKPROP - A more advanced batch training algorithm which achieves good results 
		    for many problems. The quickprop training algorithm uses the learning_rate parameter 
		    along with other more advanced parameters, but it is only recommended to change these 
		    advanced parameters, for users with insight in how the quickprop training algorithm works.
		    The quickprop training algorithm is described by [Fahlman, 1988].
    	
	    See also:
		    <neural_net::set_training_algorithm>, <neural_net::get_training_algorithm>
    */
    enum training_algorithm_enum {
        TRAIN_INCREMENTAL = FANN_TRAIN_INCREMENTAL,
        TRAIN_BATCH,
        TRAIN_RPROP,
        TRAIN_QUICKPROP,
	TRAIN_SARPROP
    };

    /* Enum: activation_function_enum
       
	    The activation functions used for the neurons during training. The activation functions
	    can either be defined for a group of neurons by <neural_net::set_activation_function_hidden>
        and <neural_net::set_activation_function_output> or it can be defined for a single neuron by
        <neural_net::set_activation_function>.

	    The steepness of an activation function is defined in the same way by 
	    <neural_net::set_activation_steepness_hidden>, <neural_net::set_activation_steepness_output>
        and <neural_net::set_activation_steepness>.
       
       The functions are described with functions where:
       * x is the input to the activation function,
       * y is the output,
       * s is the steepness and
       * d is the derivation.

       FANN_LINEAR - Linear activation function. 
         * span: -inf < y < inf
	     * y = x*s, d = 1*s
	     * Can NOT be used in fixed point.

       FANN_THRESHOLD - Threshold activation function.
	     * x < 0 -> y = 0, x >= 0 -> y = 1
	     * Can NOT be used during training.

       FANN_THRESHOLD_SYMMETRIC - Threshold activation function.
	     * x < 0 -> y = 0, x >= 0 -> y = 1
	     * Can NOT be used during training.

       FANN_SIGMOID - Sigmoid activation function.
	     * One of the most used activation functions.
	     * span: 0 < y < 1
	     * y = 1/(1 + exp(-2*s*x))
	     * d = 2*s*y*(1 - y)

       FANN_SIGMOID_STEPWISE - Stepwise linear approximation to sigmoid.
	     * Faster than sigmoid but a bit less precise.

       FANN_SIGMOID_SYMMETRIC - Symmetric sigmoid activation function, aka. tanh.
	     * One of the most used activation functions.
	     * span: -1 < y < 1
	     * y = tanh(s*x) = 2/(1 + exp(-2*s*x)) - 1
	     * d = s*(1-(y*y))

       FANN_SIGMOID_SYMMETRIC - Stepwise linear approximation to symmetric sigmoid.
	     * Faster than symmetric sigmoid but a bit less precise.

       FANN_GAUSSIAN - Gaussian activation function.
	     * 0 when x = -inf, 1 when x = 0 and 0 when x = inf
	     * span: 0 < y < 1
	     * y = exp(-x*s*x*s)
	     * d = -2*x*s*y*s

       FANN_GAUSSIAN_SYMMETRIC - Symmetric gaussian activation function.
	     * -1 when x = -inf, 1 when x = 0 and 0 when x = inf
	     * span: -1 < y < 1
	     * y = exp(-x*s*x*s)*2-1
	     * d = -2*x*s*(y+1)*s
    	 
       FANN_ELLIOT - Fast (sigmoid like) activation function defined by David Elliott
	     * span: 0 < y < 1
	     * y = ((x*s) / 2) / (1 + |x*s|) + 0.5
	     * d = s*1/(2*(1+|x*s|)*(1+|x*s|))
    	 
       FANN_ELLIOT_SYMMETRIC - Fast (symmetric sigmoid like) activation function defined by David Elliott
	     * span: -1 < y < 1   
	     * y = (x*s) / (1 + |x*s|)
	     * d = s*1/((1+|x*s|)*(1+|x*s|))

	    FANN_LINEAR_PIECE - Bounded linear activation function.
	     * span: 0 < y < 1
	     * y = x*s, d = 1*s
    	 
	    FANN_LINEAR_PIECE_SYMMETRIC - Bounded Linear activation function.
	     * span: -1 < y < 1
	     * y = x*s, d = 1*s
	
        FANN_SIN_SYMMETRIC - Periodical sinus activation function.
         * span: -1 <= y <= 1
         * y = sin(x*s)
         * d = s*cos(x*s)
         
        FANN_COS_SYMMETRIC - Periodical cosinus activation function.
         * span: -1 <= y <= 1
         * y = cos(x*s)
         * d = s*-sin(x*s)
    	 
	    See also:
		    <neural_net::set_activation_function_hidden>,
		    <neural_net::set_activation_function_output>
    */
    enum activation_function_enum {
        LINEAR = FANN_LINEAR,
        THRESHOLD,
        THRESHOLD_SYMMETRIC,
        SIGMOID,
        SIGMOID_STEPWISE,
        SIGMOID_SYMMETRIC,
        SIGMOID_SYMMETRIC_STEPWISE,
        GAUSSIAN,
        GAUSSIAN_SYMMETRIC,
        GAUSSIAN_STEPWISE,
        ELLIOT,
        ELLIOT_SYMMETRIC,
        LINEAR_PIECE,
        LINEAR_PIECE_SYMMETRIC,
	    SIN_SYMMETRIC,
	    COS_SYMMETRIC
    };

    /* Enum: network_type_enum

        Definition of network types used by <neural_net::get_network_type>

        LAYER - Each layer only has connections to the next layer
        SHORTCUT - Each layer has connections to all following layers

       See Also:
          <neural_net::get_network_type>, <fann_get_network_type>

       This enumeration appears in FANN >= 2.1.0
    */
    enum network_type_enum
    {
        LAYER = FANN_NETTYPE_LAYER,
        SHORTCUT
    };

    /* Type: connection

        Describes a connection between two neurons and its weight

        from_neuron - Unique number used to identify source neuron
        to_neuron - Unique number used to identify destination neuron
        weight - The numerical value of the weight

        See Also:
            <neural_net::get_connection_array>, <neural_net::set_weight_array>

       This structure appears in FANN >= 2.1.0
    */
    typedef struct fann_connection connection;

    /* Forward declaration of class neural_net and training_data */
    class neural_net;
    class training_data;

    /* Type: callback_type
       This callback function can be called during training when using <neural_net::train_on_data>, 
       <neural_net::train_on_file> or <neural_net::cascadetrain_on_data>.
    	
        >typedef int (*callback_type) (neural_net &net, training_data &train,
        >    unsigned int max_epochs, unsigned int epochs_between_reports,
        >    float desired_error, unsigned int epochs, void *user_data);
    	
	    The callback can be set by using <neural_net::set_callback> and is very usefull for doing custom 
	    things during training. It is recommended to use this function when implementing custom 
	    training procedures, or when visualizing the training in a GUI etc. The parameters which the
	    callback function takes is the parameters given to the <neural_net::train_on_data>, plus an epochs
	    parameter which tells how many epochs the training have taken so far.
    	
	    The callback function should return an integer, if the callback function returns -1, the training
	    will terminate.
    	
	    Example of a callback function that prints information to cout:
            >int print_callback(FANN::neural_net &net, FANN::training_data &train,
            >    unsigned int max_epochs, unsigned int epochs_between_reports,
            >    float desired_error, unsigned int epochs, void *user_data)
            >{
            >    cout << "Epochs     " << setw(8) << epochs << ". "
            >         << "Current Error: " << left << net.get_MSE() << right << endl;
            >    return 0;
            >}
    	
	    See also:
		    <neural_net::set_callback>, <fann_callback_type>
     */ 
    typedef int (*callback_type) (neural_net &net, training_data &train,
        unsigned int max_epochs, unsigned int epochs_between_reports,
        float desired_error, unsigned int epochs, void *user_data);

    /*************************************************************************/

    /* Class: training_data

        Encapsulation of a training data set <struct fann_train_data> and
        associated C API functions.
    */
    class training_data
    {
    public:
        /* Constructor: training_data
        
            Default constructor creates an empty neural net.
            Use <read_train_from_file>, <set_train_data> or <create_train_from_callback> to initialize.
        */
        training_data() : train_data(NULL)
        {
        }

        /* Constructor: training_data
        
            Copy constructor constructs a copy of the training data.
            Corresponds to the C API <fann_duplicate_train_data> function.
        */
        training_data(const training_data &data)
        {
            destroy_train();
            if (data.train_data != NULL)
            {
                train_data = fann_duplicate_train_data(data.train_data);
            }
        }

        /* Destructor: ~training_data

            Provides automatic cleanup of data.
            Define USE_VIRTUAL_DESTRUCTOR if you need the destructor to be virtual.

            See also:
                <destroy>
        */
#ifdef USE_VIRTUAL_DESTRUCTOR
        virtual
#endif
        ~training_data()
        {
            destroy_train();
        }

        /* Method: destroy
        
            Destructs the training data. Called automatically by the destructor.

            See also:
                <~training_data>
        */
        void destroy_train()
        {
            if (train_data != NULL)
            {
                fann_destroy_train(train_data);
                train_data = NULL;
            }
        }

        /* Method: read_train_from_file
           Reads a file that stores training data.
           
           The file must be formatted like:
           >num_train_data num_input num_output
           >inputdata seperated by space
           >outputdata seperated by space
           >
           >.
           >.
           >.
           >
           >inputdata seperated by space
           >outputdata seperated by space
           
           See also:
   	        <neural_net::train_on_data>, <save_train>, <fann_read_train_from_file>

            This function appears in FANN >= 1.0.0
        */ 
        bool read_train_from_file(const std::string &filename)
        {
            destroy_train();
            train_data = fann_read_train_from_file(filename.c_str());
            return (train_data != NULL);
        }

        /* Method: save_train
           
           Save the training structure to a file, with the format as specified in <read_train_from_file>

           Return:
           The function returns true on success and false on failure.
              
           See also:
   	        <read_train_from_file>, <save_train_to_fixed>, <fann_save_train>
        	
           This function appears in FANN >= 1.0.0.   	
         */ 
        bool save_train(const std::string &filename)
        {
            if (train_data == NULL)
            {
                return false;
            }
            if (fann_save_train(train_data, filename.c_str()) == -1)
            {
                return false;
            }
            return true;
        }

        /* Method: save_train_to_fixed
           
           Saves the training structure to a fixed point data file.
         
           This function is very usefull for testing the quality of a fixed point network.
           
           Return:
           The function returns true on success and false on failure.
           
           See also:
   	        <save_train>, <fann_save_train_to_fixed>

           This function appears in FANN >= 1.0.0.   	
         */ 
        bool save_train_to_fixed(const std::string &filename, unsigned int decimal_point)
        {
            if (train_data == NULL)
            {
                return false;
            }
            if (fann_save_train_to_fixed(train_data, filename.c_str(), decimal_point) == -1)
            {
                return false;
            }
            return true;
        }

        /* Method: shuffle_train_data
           
           Shuffles training data, randomizing the order. 
           This is recommended for incremental training, while it have no influence during batch training.
           
           This function appears in FANN >= 1.1.0.
         */ 
        void shuffle_train_data()
        {
            if (train_data != NULL)
            {
                fann_shuffle_train_data(train_data);
            }
        }

        /* Method: merge_train_data
           
           Merges the data into the data contained in the <training_data>.
           
           This function appears in FANN >= 1.1.0.
         */ 
        void merge_train_data(const training_data &data)
        {
            fann_train_data *new_data = fann_merge_train_data(train_data, data.train_data);
            if (new_data != NULL)
            {
                destroy_train();
                train_data = new_data;
            }
        }

        /* Method: length_train_data
           
           Returns the number of training patterns in the <training_data>.

           See also:
           <num_input_train_data>, <num_output_train_data>, <fann_length_train_data>

           This function appears in FANN >= 2.0.0.
         */ 
        unsigned int length_train_data()
        {
            if (train_data == NULL)
            {
                return 0;
            }
            else
            {
                return fann_length_train_data(train_data);
            }
        }

        /* Method: num_input_train_data

           Returns the number of inputs in each of the training patterns in the <training_data>.
           
           See also:
           <num_output_train_data>, <length_train_data>, <fann_num_input_train_data>

           This function appears in FANN >= 2.0.0.
         */ 
        unsigned int num_input_train_data()
        {
            if (train_data == NULL)
            {
                return 0;
            }
            else
            {
                return fann_num_input_train_data(train_data);
            }
        }

        /* Method: num_output_train_data
           
           Returns the number of outputs in each of the training patterns in the <struct fann_train_data>.
           
           See also:
           <num_input_train_data>, <length_train_data>, <fann_num_output_train_data>

           This function appears in FANN >= 2.0.0.
         */ 
        unsigned int num_output_train_data()
        {
            if (train_data == NULL)
            {
                return 0;
            }
            else
            {
                return fann_num_output_train_data(train_data);
            }
        }

        /* Grant access to the encapsulated data since many situations
            and applications creates the data from sources other than files
            or uses the training data for testing and related functions */

        /* Method: get_input
        
            Returns:
                A pointer to the array of input training data

            See also:
                <get_output>, <set_train_data>
        */
        fann_type **get_input()
        {
            if (train_data == NULL)
            {
                return NULL;
            }
            else
            {
                return train_data->input;
            }
        }

        /* Method: get_output
        
            Returns:
                A pointer to the array of output training data

            See also:
                <get_input>, <set_train_data>
        */
        fann_type **get_output()
        {
            if (train_data == NULL)
            {
                return NULL;
            }
            else
            {
                return train_data->output;
            }
        }

        /* Method: set_train_data

            Set the training data to the input and output data provided.

            A copy of the data is made so there are no restrictions on the
            allocation of the input/output data and the caller is responsible
            for the deallocation of the data pointed to by input and output.

           Parameters:
             num_data      - The number of training data
             num_input     - The number of inputs per training data
             num_output    - The number of ouputs per training data
             input      - The set of inputs (a pointer to an array of pointers to arrays of floating point data)
             output     - The set of desired outputs (a pointer to an array of pointers to arrays of floating point data)

            See also:
                <get_input>, <get_output>
        */
        void set_train_data(unsigned int num_data,
            unsigned int num_input, fann_type **input,
            unsigned int num_output, fann_type **output)
        {
            // Uses the allocation method used in fann
            struct fann_train_data *data =
                (struct fann_train_data *)malloc(sizeof(struct fann_train_data));
            data->input = (fann_type **)calloc(num_data, sizeof(fann_type *));
            data->output = (fann_type **)calloc(num_data, sizeof(fann_type *));

            data->num_data = num_data;
            data->num_input = num_input;
            data->num_output = num_output;

        	fann_type *data_input = (fann_type *)calloc(num_input*num_data, sizeof(fann_type));
        	fann_type *data_output = (fann_type *)calloc(num_output*num_data, sizeof(fann_type));

            for (unsigned int i = 0; i < num_data; ++i)
            {
                data->input[i] = data_input;
                data_input += num_input;
                for (unsigned int j = 0; j < num_input; ++j)
                {
                    data->input[i][j] = input[i][j];
                }
                data->output[i] = data_output;
		        data_output += num_output;
                for (unsigned int j = 0; j < num_output; ++j)
                {
                    data->output[i][j] = output[i][j];
                }
            }
            set_train_data(data);
        }

private:
        /* Set the training data to the struct fann_training_data pointer.
            The struct has to be allocated with malloc to be compatible
            with fann_destroy. */
        void set_train_data(struct fann_train_data *data)
        {
            destroy_train();
            train_data = data;
        }

public:
        /*********************************************************************/

        /* Method: create_train_from_callback
           Creates the training data struct from a user supplied function.
           As the training data are numerable (data 1, data 2...), the user must write
           a function that receives the number of the training data set (input,output)
           and returns the set.

           Parameters:
             num_data      - The number of training data
             num_input     - The number of inputs per training data
             num_output    - The number of ouputs per training data
             user_function - The user suplied function

           Parameters for the user function:
             num        - The number of the training data set
             num_input  - The number of inputs per training data
             num_output - The number of ouputs per training data
             input      - The set of inputs
             output     - The set of desired outputs
          
           See also:
             <training_data::read_train_from_file>, <neural_net::train_on_data>,
             <fann_create_train_from_callback>

            This function appears in FANN >= 2.1.0
        */ 
        void create_train_from_callback(unsigned int num_data,
                                                  unsigned int num_input,
                                                  unsigned int num_output,
                                                  void (FANN_API *user_function)( unsigned int,
                                                                         unsigned int,
                                                                         unsigned int,
                                                                         fann_type * ,
                                                                         fann_type * ))
        {
            destroy_train();
            train_data = fann_create_train_from_callback(num_data, num_input, num_output, user_function);
        }

        /* Method: scale_input_train_data
           
           Scales the inputs in the training data to the specified range.

           See also:
   	        <scale_output_train_data>, <scale_train_data>, <fann_scale_input_train_data>

           This function appears in FANN >= 2.0.0.
         */ 
        void scale_input_train_data(fann_type new_min, fann_type new_max)
        {
            if (train_data != NULL)
            {
                fann_scale_input_train_data(train_data, new_min, new_max);
            }
        }

        /* Method: scale_output_train_data
           
           Scales the outputs in the training data to the specified range.

           See also:
   	        <scale_input_train_data>, <scale_train_data>, <fann_scale_output_train_data>

           This function appears in FANN >= 2.0.0.
         */ 
        void scale_output_train_data(fann_type new_min, fann_type new_max)
        {
            if (train_data != NULL)
            {
                fann_scale_output_train_data(train_data, new_min, new_max);
            }
        }

        /* Method: scale_train_data
           
           Scales the inputs and outputs in the training data to the specified range.
           
           See also:
   	        <scale_output_train_data>, <scale_input_train_data>, <fann_scale_train_data>

           This function appears in FANN >= 2.0.0.
         */ 
        void scale_train_data(fann_type new_min, fann_type new_max)
        {
            if (train_data != NULL)
            {
                fann_scale_train_data(train_data, new_min, new_max);
            }
        }

        /* Method: subset_train_data
           
           Changes the training data to a subset, starting at position *pos* 
           and *length* elements forward. Use the copy constructor to work
           on a new copy of the training data.
           
            >FANN::training_data full_data_set;
            >full_data_set.read_train_from_file("somefile.train");
            >FANN::training_data *small_data_set = new FANN::training_data(full_data_set);
            >small_data_set->subset_train_data(0, 2); // Only use first two
            >// Use small_data_set ...
            >delete small_data_set;

           See also:
   	        <fann_subset_train_data>

           This function appears in FANN >= 2.0.0.
         */
        void subset_train_data(unsigned int pos, unsigned int length)
        {
            if (train_data != NULL)
            {
                struct fann_train_data *temp = fann_subset_train_data(train_data, pos, length);
                destroy_train();
                train_data = temp;
            }
        }

        /*********************************************************************/

    protected:
        /* The neural_net class has direct access to the training data */
        friend class neural_net;

        /* Pointer to the encapsulated training data */
        struct fann_train_data* train_data;
    };

    /*************************************************************************/

    /* Class: neural_net

        Encapsulation of a neural network <struct fann> and
        associated C API functions.
    */
    class neural_net
    {
    public:
        /* Constructor: neural_net
        
            Default constructor creates an empty neural net.
            Use one of the create functions to create the neural network.

            See also:
		        <create_standard>, <create_sparse>, <create_shortcut>,
		        <create_standard_array>, <create_sparse_array>, <create_shortcut_array>
        */
        neural_net() : ann(NULL)
        {
        }

	/* Constructor neural_net

	    Creates a copy the other neural_net.
            
	    See also:
	    		<copy_from_struct_fann>
        */
	neural_net(const neural_net& other)
	{
	    copy_from_struct_fann(other.ann);
	}
	
	/* Constructor: neural_net

	   Creates a copy the other neural_net.
	    
	   See also:
	    		<copy_from_struct_fann>
        */
	neural_net(struct fann* other)
	{
	    copy_from_struct_fann(other);
	}

	/* Method: copy_from_struct_fann
	   
	   Set the internal fann struct to a copy of other
	*/
	void copy_from_struct_fann(struct fann* other)
	{
	    destroy();
	    if (other != NULL)
		ann=fann_copy(other);
	}

        /* Destructor: ~neural_net

            Provides automatic cleanup of data.
            Define USE_VIRTUAL_DESTRUCTOR if you need the destructor to be virtual.

            See also:
                <destroy>
        */
#ifdef USE_VIRTUAL_DESTRUCTOR
        virtual
#endif
        ~neural_net()
        {
            destroy();
        }

        /* Method: destroy
        
            Destructs the entire network. Called automatically by the destructor.

            See also:
                <~neural_net>
        */
        void destroy()
        {
            if (ann != NULL)
            {
                user_context *user_data = static_cast<user_context *>(fann_get_user_data(ann));
                if (user_data != NULL)
                    delete user_data;

                fann_destroy(ann);
                ann = NULL;
            }
        }

        /* Method: create_standard
        	
	        Creates a standard fully connected backpropagation neural network.

	        There will be a bias neuron in each layer (except the output layer),
	        and this bias neuron will be connected to all neurons in the next layer.
	        When running the network, the bias nodes always emits 1.
        	
	        Parameters:
		        num_layers - The total number of layers including the input and the output layer.
		        ... - Integer values determining the number of neurons in each layer starting with the 
			        input layer and ending with the output layer.
        			
	        Returns:
		        Boolean true if the network was created, false otherwise.

            Example:
                >const unsigned int num_layers = 3;
                >const unsigned int num_input = 2;
                >const unsigned int num_hidden = 3;
                >const unsigned int num_output = 1;
                >
                >FANN::neural_net net;
                >net.create_standard(num_layers, num_input, num_hidden, num_output);

	        See also:
		        <create_standard_array>, <create_sparse>, <create_shortcut>,
		        <fann_create_standard_array>

	        This function appears in FANN >= 2.0.0.
        */ 
        bool create_standard(unsigned int num_layers, ...)
        {
            va_list layers;
            unsigned int arr[num_layers];

            va_start(layers, num_layers);
            for (unsigned int ii = 0; ii < num_layers; ii++)
                arr[ii] = va_arg(layers, unsigned int);
            bool status = create_standard_array(num_layers, arr);
            va_end(layers);
            return status;
        }

        /* Method: create_standard_array

           Just like <create_standard>, but with an array of layer sizes
           instead of individual parameters.

	        See also:
		        <create_standard>, <create_sparse>, <create_shortcut>,
		        <fann_create_standard>

	        This function appears in FANN >= 2.0.0.
        */ 
        bool create_standard_array(unsigned int num_layers, const unsigned int * layers)
        {
            destroy();
            ann = fann_create_standard_array(num_layers, layers);
            return (ann != NULL);
        }

        /* Method: create_sparse

	        Creates a standard backpropagation neural network, which is not fully connected.

	        Parameters:
		        connection_rate - The connection rate controls how many connections there will be in the
   			        network. If the connection rate is set to 1, the network will be fully
   			        connected, but if it is set to 0.5 only half of the connections will be set.
			        A connection rate of 1 will yield the same result as <fann_create_standard>
		        num_layers - The total number of layers including the input and the output layer.
		        ... - Integer values determining the number of neurons in each layer starting with the 
			        input layer and ending with the output layer.
        			
	        Returns:
		        Boolean true if the network was created, false otherwise.

	        See also:
		        <create_standard>, <create_sparse_array>, <create_shortcut>,
		        <fann_create_sparse>

	        This function appears in FANN >= 2.0.0.
        */
        bool create_sparse(float connection_rate, unsigned int num_layers, ...)
        {
            va_list layers;
            unsigned int arr[num_layers];

            va_start(layers, num_layers);
            for (unsigned int ii = 0; ii < num_layers; ii++)
                arr[ii] = va_arg(layers, unsigned int);
            bool status = create_sparse_array(connection_rate, num_layers, arr);
            va_end(layers);
            return status;
        }

        /* Method: create_sparse_array
           Just like <create_sparse>, but with an array of layer sizes
           instead of individual parameters.

           See <create_sparse> for a description of the parameters.

	        See also:
		        <create_standard>, <create_sparse>, <create_shortcut>,
		        <fann_create_sparse_array>

	        This function appears in FANN >= 2.0.0.
        */
        bool create_sparse_array(float connection_rate,
            unsigned int num_layers, const unsigned int * layers)
        {
            destroy();
            ann = fann_create_sparse_array(connection_rate, num_layers, layers);
            return (ann != NULL);
        }

        /* Method: create_shortcut

	        Creates a standard backpropagation neural network, which is not fully connected and which
	        also has shortcut connections.

 	        Shortcut connections are connections that skip layers. A fully connected network with shortcut 
	        connections, is a network where all neurons are connected to all neurons in later layers. 
	        Including direct connections from the input layer to the output layer.

	        See <create_standard> for a description of the parameters.

	        See also:
		        <create_standard>, <create_sparse>, <create_shortcut_array>,
		        <fann_create_shortcut>

	        This function appears in FANN >= 2.0.0.
        */ 
        bool create_shortcut(unsigned int num_layers, ...)
        {
            va_list layers;
            unsigned int arr[num_layers];

            va_start(layers, num_layers);
            for (unsigned int ii = 0; ii < num_layers; ii++)
                arr[ii] = va_arg(layers, unsigned int);
            bool status = create_shortcut_array(num_layers, arr);
            va_end(layers);
            return status;
        }

        /* Method: create_shortcut_array

           Just like <create_shortcut>, but with an array of layer sizes
           instead of individual parameters.

	        See <create_standard_array> for a description of the parameters.

	        See also:
		        <create_standard>, <create_sparse>, <create_shortcut>,
		        <fann_create_shortcut_array>

	        This function appears in FANN >= 2.0.0.
        */
        bool create_shortcut_array(unsigned int num_layers,
            const unsigned int * layers)
        {
            destroy();
            ann = fann_create_shortcut_array(num_layers, layers);
            return (ann != NULL);
        }

        /* Method: run

	        Will run input through the neural network, returning an array of outputs, the number of which being 
	        equal to the number of neurons in the output layer.

	        See also:
		        <test>, <fann_run>

	        This function appears in FANN >= 1.0.0.
        */ 
        fann_type* run(fann_type *input)
        {
            if (ann == NULL)
            {
                return NULL;
            }
            return fann_run(ann, input);
        }

        /* Method: randomize_weights

	        Give each connection a random weight between *min_weight* and *max_weight*
           
	        From the beginning the weights are random between -0.1 and 0.1.

	        See also:
		        <init_weights>, <fann_randomize_weights>

	        This function appears in FANN >= 1.0.0.
        */ 
        void randomize_weights(fann_type min_weight, fann_type max_weight)
        {
            if (ann != NULL)
            {
                fann_randomize_weights(ann, min_weight, max_weight);
            }
        }

        /* Method: init_weights

  	        Initialize the weights using Widrow + Nguyen's algorithm.
        	
 	        This function behaves similarly to fann_randomize_weights. It will use the algorithm developed 
	        by Derrick Nguyen and Bernard Widrow to set the weights in such a way 
	        as to speed up training. This technique is not always successful, and in some cases can be less 
	        efficient than a purely random initialization.

	        The algorithm requires access to the range of the input data (ie, largest and smallest input), 
	        and therefore accepts a second argument, data, which is the training data that will be used to 
	        train the network.

	        See also:
		        <randomize_weights>, <training_data::read_train_from_file>,
                <fann_init_weights>

	        This function appears in FANN >= 1.1.0.
        */ 
        void init_weights(const training_data &data)
        {
            if ((ann != NULL) && (data.train_data != NULL))
            {
                fann_init_weights(ann, data.train_data);
            }
        }

        /* Method: print_connections

	        Will print the connections of the ann in a compact matrix, for easy viewing of the internals 
	        of the ann.

	        The output from fann_print_connections on a small (2 2 1) network trained on the xor problem
	        >Layer / Neuron 012345
	        >L   1 / N    3 BBa...
	        >L   1 / N    4 BBA...
	        >L   1 / N    5 ......
	        >L   2 / N    6 ...BBA
	        >L   2 / N    7 ......
        		  
	        This network have five real neurons and two bias neurons. This gives a total of seven neurons 
	        named from 0 to 6. The connections between these neurons can be seen in the matrix. "." is a 
	        place where there is no connection, while a character tells how strong the connection is on a 
	        scale from a-z. The two real neurons in the hidden layer (neuron 3 and 4 in layer 1) has 
	        connection from the three neurons in the previous layer as is visible in the first two lines. 
	        The output neuron (6) has connections form the three neurons in the hidden layer 3 - 5 as is 
	        visible in the fourth line.

	        To simplify the matrix output neurons is not visible as neurons that connections can come from, 
	        and input and bias neurons are not visible as neurons that connections can go to.

	        This function appears in FANN >= 1.2.0.
        */ 
        void print_connections()
        {
            if (ann != NULL)
            {
                fann_print_connections(ann);
            }
        }

        /* Method: create_from_file
           
           Constructs a backpropagation neural network from a configuration file,
           which have been saved by <save>.
           
           See also:
   	        <save>, <save_to_fixed>, <fann_create_from_file>
           	
           This function appears in FANN >= 1.0.0.
         */
        bool create_from_file(const std::string &configuration_file)
        {
            destroy();
            ann = fann_create_from_file(configuration_file.c_str());
            return (ann != NULL);
        }

        /* Method: save

           Save the entire network to a configuration file.
           
           The configuration file contains all information about the neural network and enables 
           <create_from_file> to create an exact copy of the neural network and all of the
           parameters associated with the neural network.
           
           These two parameters (<set_callback>, <set_error_log>) are *NOT* saved 
           to the file because they cannot safely be ported to a different location. Also temporary
           parameters generated during training like <get_MSE> is not saved.
           
           Return:
           The function returns 0 on success and -1 on failure.
           
           See also:
            <create_from_file>, <save_to_fixed>, <fann_save>

           This function appears in FANN >= 1.0.0.
         */
        bool save(const std::string &configuration_file)
        {
            if (ann == NULL)
            {
                return false;
            }
            if (fann_save(ann, configuration_file.c_str()) == -1)
            {
                return false;
            }
            return true;
        }

        /* Method: save_to_fixed

           Saves the entire network to a configuration file.
           But it is saved in fixed point format no matter which
           format it is currently in.

           This is usefull for training a network in floating points,
           and then later executing it in fixed point.

           The function returns the bit position of the fix point, which
           can be used to find out how accurate the fixed point network will be.
           A high value indicates high precision, and a low value indicates low
           precision.

           A negative value indicates very low precision, and a very
           strong possibility for overflow.
           (the actual fix point will be set to 0, since a negative
           fix point does not make sence).

           Generally, a fix point lower than 6 is bad, and should be avoided.
           The best way to avoid this, is to have less connections to each neuron,
           or just less neurons in each layer.

           The fixed point use of this network is only intended for use on machines that
           have no floating point processor, like an iPAQ. On normal computers the floating
           point version is actually faster.

           See also:
            <create_from_file>, <save>, <fann_save_to_fixed>

           This function appears in FANN >= 1.0.0.
        */ 
        int save_to_fixed(const std::string &configuration_file)
        {
            int fixpoint = 0;
            if (ann != NULL)
            {
                fixpoint = fann_save_to_fixed(ann, configuration_file.c_str());
            }
            return fixpoint;
        }

#ifndef FIXEDFANN
        /* Method: train

           Train one iteration with a set of inputs, and a set of desired outputs.
           This training is always incremental training (see <FANN::training_algorithm_enum>),
           since only one pattern is presented.
           
           Parameters:
   	        ann - The neural network structure
   	        input - an array of inputs. This array must be exactly <fann_get_num_input> long.
   	        desired_output - an array of desired outputs. This array must be exactly <fann_get_num_output> long.
           	
   	        See also:
   		        <train_on_data>, <train_epoch>, <fann_train>
           	
   	        This function appears in FANN >= 1.0.0.
         */ 
        void train(fann_type *input, fann_type *desired_output)
        {
            if (ann != NULL)
            {
                fann_train(ann, input, desired_output);
            }
        }

        /* Method: train_epoch
            Train one epoch with a set of training data.
           
            Train one epoch with the training data stored in data. One epoch is where all of 
            the training data is considered exactly once.

	        This function returns the MSE error as it is calculated either before or during 
	        the actual training. This is not the actual MSE after the training epoch, but since 
	        calculating this will require to go through the entire training set once more, it is 
	        more than adequate to use this value during training.

	        The training algorithm used by this function is chosen by the <fann_set_training_algorithm> 
	        function.
        	
	        See also:
		        <train_on_data>, <test_data>, <fann_train_epoch>
        		
	        This function appears in FANN >= 1.2.0.
         */ 
        float train_epoch(const training_data &data)
        {
            float mse = 0.0f;
            if ((ann != NULL) && (data.train_data != NULL))
            {
                mse = fann_train_epoch(ann, data.train_data);
            }
            return mse;
        }

        /* Method: train_on_data

           Trains on an entire dataset, for a period of time. 
           
           This training uses the training algorithm chosen by <set_training_algorithm>,
           and the parameters set for these training algorithms.
           
           Parameters:
   		        ann - The neural network
   		        data - The data, which should be used during training
   		        max_epochs - The maximum number of epochs the training should continue
   		        epochs_between_reports - The number of epochs between printing a status report to stdout.
   			        A value of zero means no reports should be printed.
   		        desired_error - The desired <get_MSE> or <get_bit_fail>, depending on which stop function
   			        is chosen by <set_train_stop_function>.

	        Instead of printing out reports every epochs_between_reports, a callback function can be called 
	        (see <set_callback>).
        	
	        See also:
		        <train_on_file>, <train_epoch>, <fann_train_on_data>

	        This function appears in FANN >= 1.0.0.
        */ 
        void train_on_data(const training_data &data, unsigned int max_epochs,
            unsigned int epochs_between_reports, float desired_error)
        {
            if ((ann != NULL) && (data.train_data != NULL))
            {
                fann_train_on_data(ann, data.train_data, max_epochs,
                    epochs_between_reports, desired_error);
            }
        }

        /* Method: train_on_file
           
           Does the same as <train_on_data>, but reads the training data directly from a file.
           
           See also:
   		        <train_on_data>, <fann_train_on_file>

	        This function appears in FANN >= 1.0.0.
        */ 
        void train_on_file(const std::string &filename, unsigned int max_epochs,
            unsigned int epochs_between_reports, float desired_error)
        {
            if (ann != NULL)
            {
                fann_train_on_file(ann, filename.c_str(),
                    max_epochs, epochs_between_reports, desired_error);
            }
        }
#endif /* NOT FIXEDFANN */

        /* Method: test

           Test with a set of inputs, and a set of desired outputs.
           This operation updates the mean square error, but does not
           change the network in any way.
           
           See also:
   		        <test_data>, <train>, <fann_test>
           
           This function appears in FANN >= 1.0.0.
        */ 
        fann_type * test(fann_type *input, fann_type *desired_output)
        {
            fann_type * output = NULL;
            if (ann != NULL)
            {
                output = fann_test(ann, input, desired_output);
            }
            return output;
        }

        /* Method: test_data
          
           Test a set of training data and calculates the MSE for the training data. 
           
           This function updates the MSE and the bit fail values.
           
           See also:
 	        <test>, <get_MSE>, <get_bit_fail>, <fann_test_data>

	        This function appears in FANN >= 1.2.0.
         */ 
        float test_data(const training_data &data)
        {
            float mse = 0.0f;
            if ((ann != NULL) && (data.train_data != NULL))
            {
                mse = fann_test_data(ann, data.train_data);
            }
            return mse;
        }

        /* Method: get_MSE
           Reads the mean square error from the network.
           
           Reads the mean square error from the network. This value is calculated during 
           training or testing, and can therefore sometimes be a bit off if the weights 
           have been changed since the last calculation of the value.
           
           See also:
   	        <test_data>, <fann_get_MSE>

	        This function appears in FANN >= 1.1.0.
         */ 
        float get_MSE()
        {
            float mse = 0.0f;
            if (ann != NULL)
            {
                mse = fann_get_MSE(ann);
            }
            return mse;
        }

        /* Method: reset_MSE

           Resets the mean square error from the network.
   
           This function also resets the number of bits that fail.
           
           See also:
   	        <get_MSE>, <get_bit_fail_limit>, <fann_reset_MSE>
           
            This function appears in FANN >= 1.1.0
         */ 
        void reset_MSE()
        {
            if (ann != NULL)
            {
                fann_reset_MSE(ann);
            }
        }

        /* Method: set_callback
           
           Sets the callback function for use during training. The user_data is passed to
           the callback. It can point to arbitrary data that the callback might require and
           can be NULL if it is not used.
         	
           See <FANN::callback_type> for more information about the callback function.
           
           The default callback function simply prints out some status information.

           This function appears in FANN >= 2.0.0.
         */
        void set_callback(callback_type callback, void *user_data)
        {
            if (ann != NULL)
            {
                // Allocated data is also deleted in the destroy method called by the destructor
                user_context *user_instance = static_cast<user_context *>(fann_get_user_data(ann));
                if (user_instance != NULL)
                    delete user_instance;

                user_instance = new user_context();
                user_instance->user_callback = callback;
                user_instance->user_data = user_data;
                user_instance->net = this;
                fann_set_user_data(ann, user_instance);

                if (callback != NULL)
                    fann_set_callback(ann, &FANN::neural_net::internal_callback);
                else
                    fann_set_callback(ann, NULL);
            }
        }

        /* Method: print_parameters

  	        Prints all of the parameters and options of the neural network

            See also:
                <fann_print_parameters>

	        This function appears in FANN >= 1.2.0.
        */ 
        void print_parameters()
        {
            if (ann != NULL)
            {
                fann_print_parameters(ann);
            }
        }

        /* Method: get_training_algorithm

           Return the training algorithm as described by <FANN::training_algorithm_enum>.
           This training algorithm is used by <train_on_data> and associated functions.
           
           Note that this algorithm is also used during <cascadetrain_on_data>, although only
           FANN::TRAIN_RPROP and FANN::TRAIN_QUICKPROP is allowed during cascade training.
           
           The default training algorithm is FANN::TRAIN_RPROP.
           
           See also:
            <set_training_algorithm>, <FANN::training_algorithm_enum>,
            <fann_get_training_algorithm>

           This function appears in FANN >= 1.0.0.   	
         */ 
        training_algorithm_enum get_training_algorithm()
        {
            fann_train_enum training_algorithm = FANN_TRAIN_INCREMENTAL;
            if (ann != NULL)
            {
                training_algorithm = fann_get_training_algorithm(ann);
            }
            return static_cast<training_algorithm_enum>(training_algorithm);
        }

        /* Method: set_training_algorithm

           Set the training algorithm.
           
           More info available in <get_training_algorithm>

           This function appears in FANN >= 1.0.0.   	
         */ 
        void set_training_algorithm(training_algorithm_enum training_algorithm)
        {
            if (ann != NULL)
            {
                fann_set_training_algorithm(ann,
					static_cast<fann_train_enum>(training_algorithm));
            }
        }

        /* Method: get_learning_rate

           Return the learning rate.
           
           The learning rate is used to determine how aggressive training should be for some of the
           training algorithms (FANN::TRAIN_INCREMENTAL, FANN::TRAIN_BATCH, FANN::TRAIN_QUICKPROP).
           Do however note that it is not used in FANN::TRAIN_RPROP.
           
           The default learning rate is 0.7.
           
           See also:
   	        <set_learning_rate>, <set_training_algorithm>,
            <fann_get_learning_rate>
           
           This function appears in FANN >= 1.0.0.   	
         */ 
        float get_learning_rate()
        {
            float learning_rate = 0.0f;
            if (ann != NULL)
            {
                learning_rate = fann_get_learning_rate(ann);
            }
            return learning_rate;
        }

        /* Method: set_learning_rate

           Set the learning rate.
           
           More info available in <get_learning_rate>

           This function appears in FANN >= 1.0.0.   	
         */ 
        void set_learning_rate(float learning_rate)
        {
            if (ann != NULL)
            {
                fann_set_learning_rate(ann, learning_rate);
            }
        }

        /*************************************************************************************************************/

        /* Method: get_activation_function

           Get the activation function for neuron number *neuron* in layer number *layer*, 
           counting the input layer as layer 0. 
           
           It is not possible to get activation functions for the neurons in the input layer.
           
           Information about the individual activation functions is available at <FANN::activation_function_enum>.

           Returns:
            The activation function for the neuron or -1 if the neuron is not defined in the neural network.
           
           See also:
   	        <set_activation_function_layer>, <set_activation_function_hidden>,
   	        <set_activation_function_output>, <set_activation_steepness>,
            <set_activation_function>, <fann_get_activation_function>

           This function appears in FANN >= 2.1.0
         */ 
        activation_function_enum get_activation_function(int layer, int neuron)
        {
            unsigned int activation_function = 0;
            if (ann != NULL)
            {
                activation_function = fann_get_activation_function(ann, layer, neuron);
            }
            return static_cast<activation_function_enum>(activation_function);
        }

        /* Method: set_activation_function

           Set the activation function for neuron number *neuron* in layer number *layer*, 
           counting the input layer as layer 0. 
           
           It is not possible to set activation functions for the neurons in the input layer.
           
           When choosing an activation function it is important to note that the activation 
           functions have different range. FANN::SIGMOID is e.g. in the 0 - 1 range while 
           FANN::SIGMOID_SYMMETRIC is in the -1 - 1 range and FANN::LINEAR is unbound.
           
           Information about the individual activation functions is available at <FANN::activation_function_enum>.
           
           The default activation function is FANN::SIGMOID_STEPWISE.
           
           See also:
   	        <set_activation_function_layer>, <set_activation_function_hidden>,
   	        <set_activation_function_output>, <set_activation_steepness>,
            <get_activation_function>, <fann_set_activation_function>

           This function appears in FANN >= 2.0.0.
         */ 
        void set_activation_function(activation_function_enum activation_function, int layer, int neuron)
        {
            if (ann != NULL)
            {
                fann_set_activation_function(ann,
					static_cast<fann_activationfunc_enum>(activation_function), layer, neuron);
            }
        }

        /* Method: set_activation_function_layer

           Set the activation function for all the neurons in the layer number *layer*, 
           counting the input layer as layer 0. 
           
           It is not possible to set activation functions for the neurons in the input layer.

           See also:
   	        <set_activation_function>, <set_activation_function_hidden>,
   	        <set_activation_function_output>, <set_activation_steepness_layer>,
            <fann_set_activation_function_layer>

           This function appears in FANN >= 2.0.0.
         */ 
        void set_activation_function_layer(activation_function_enum activation_function, int layer)
        {
            if (ann != NULL)
            {
                fann_set_activation_function_layer(ann,
					static_cast<fann_activationfunc_enum>(activation_function), layer);
            }
        }

        /* Method: set_activation_function_hidden

           Set the activation function for all of the hidden layers.

           See also:
   	        <set_activation_function>, <set_activation_function_layer>,
   	        <set_activation_function_output>, <set_activation_steepness_hidden>,
            <fann_set_activation_function_hidden>

           This function appears in FANN >= 1.0.0.
         */ 
        void set_activation_function_hidden(activation_function_enum activation_function)
        {
            if (ann != NULL)
            {
                fann_set_activation_function_hidden(ann,
					static_cast<fann_activationfunc_enum>(activation_function));
            }
        }

        /* Method: set_activation_function_output

           Set the activation function for the output layer.

           See also:
   	        <set_activation_function>, <set_activation_function_layer>,
   	        <set_activation_function_hidden>, <set_activation_steepness_output>,
            <fann_set_activation_function_output>

           This function appears in FANN >= 1.0.0.
         */ 
        void set_activation_function_output(activation_function_enum activation_function)
        {
            if (ann != NULL)
            {
                fann_set_activation_function_output(ann,
					static_cast<fann_activationfunc_enum>(activation_function));
            }
        }

        /* Method: get_activation_steepness

           Get the activation steepness for neuron number *neuron* in layer number *layer*, 
           counting the input layer as layer 0. 
           
           It is not possible to get activation steepness for the neurons in the input layer.
           
           The steepness of an activation function says something about how fast the activation function 
           goes from the minimum to the maximum. A high value for the activation function will also
           give a more agressive training.
           
           When training neural networks where the output values should be at the extremes (usually 0 and 1, 
           depending on the activation function), a steep activation function can be used (e.g. 1.0).
           
           The default activation steepness is 0.5.
           
           Returns:
            The activation steepness for the neuron or -1 if the neuron is not defined in the neural network.
           
           See also:
   	        <set_activation_steepness_layer>, <set_activation_steepness_hidden>,
   	        <set_activation_steepness_output>, <set_activation_function>,
            <set_activation_steepness>, <fann_get_activation_steepness>

           This function appears in FANN >= 2.1.0
         */ 
        fann_type get_activation_steepness(int layer, int neuron)
        {
            fann_type activation_steepness = 0;
            if (ann != NULL)
            {
                activation_steepness = fann_get_activation_steepness(ann, layer, neuron);
            }
            return activation_steepness;
        }

        /* Method: set_activation_steepness

           Set the activation steepness for neuron number *neuron* in layer number *layer*, 
           counting the input layer as layer 0. 
           
           It is not possible to set activation steepness for the neurons in the input layer.
           
           The steepness of an activation function says something about how fast the activation function 
           goes from the minimum to the maximum. A high value for the activation function will also
           give a more agressive training.
           
           When training neural networks where the output values should be at the extremes (usually 0 and 1, 
           depending on the activation function), a steep activation function can be used (e.g. 1.0).
           
           The default activation steepness is 0.5.
           
           See also:
   	        <set_activation_steepness_layer>, <set_activation_steepness_hidden>,
   	        <set_activation_steepness_output>, <set_activation_function>,
            <get_activation_steepness>, <fann_set_activation_steepness>

           This function appears in FANN >= 2.0.0.
         */ 
        void set_activation_steepness(fann_type steepness, int layer, int neuron)
        {
            if (ann != NULL)
            {
                fann_set_activation_steepness(ann, steepness, layer, neuron);
            }
        }

        /* Method: set_activation_steepness_layer

           Set the activation steepness all of the neurons in layer number *layer*, 
           counting the input layer as layer 0. 
           
           It is not possible to set activation steepness for the neurons in the input layer.
           
           See also:
   	        <set_activation_steepness>, <set_activation_steepness_hidden>,
   	        <set_activation_steepness_output>, <set_activation_function_layer>,
            <fann_set_activation_steepness_layer>

           This function appears in FANN >= 2.0.0.
         */ 
        void set_activation_steepness_layer(fann_type steepness, int layer)
        {
            if (ann != NULL)
            {
                fann_set_activation_steepness_layer(ann, steepness, layer);
            }
        }

        /* Method: set_activation_steepness_hidden

           Set the steepness of the activation steepness in all of the hidden layers.

           See also:
   	        <set_activation_steepness>, <set_activation_steepness_layer>,
   	        <set_activation_steepness_output>, <set_activation_function_hidden>,
            <fann_set_activation_steepness_hidden>

           This function appears in FANN >= 1.2.0.
         */ 
        void set_activation_steepness_hidden(fann_type steepness)
        {
            if (ann != NULL)
            {
                fann_set_activation_steepness_hidden(ann, steepness);
            }
        }

        /* Method: set_activation_steepness_output

           Set the steepness of the activation steepness in the output layer.

           See also:
   	        <set_activation_steepness>, <set_activation_steepness_layer>,
   	        <set_activation_steepness_hidden>, <set_activation_function_output>,
            <fann_set_activation_steepness_output>

           This function appears in FANN >= 1.2.0.
         */ 
        void set_activation_steepness_output(fann_type steepness)
        {
            if (ann != NULL)
            {
                fann_set_activation_steepness_output(ann, steepness);
            }
        }

        /*************************************************************************************************************/

        /* Method: get_train_error_function

           Returns the error function used during training.

           The error functions is described further in <FANN::error_function_enum>
           
           The default error function is FANN::ERRORFUNC_TANH
           
           See also:
   	        <set_train_error_function>, <fann_get_train_error_function>
              
           This function appears in FANN >= 1.2.0.
          */ 
        error_function_enum get_train_error_function()
        {
            fann_errorfunc_enum train_error_function = FANN_ERRORFUNC_LINEAR;
            if (ann != NULL)
            {
                train_error_function = fann_get_train_error_function(ann);
            }
            return static_cast<error_function_enum>(train_error_function);
        }

        /* Method: set_train_error_function

           Set the error function used during training.
           
           The error functions is described further in <FANN::error_function_enum>
           
           See also:
   	        <get_train_error_function>, <fann_set_train_error_function>
              
           This function appears in FANN >= 1.2.0.
         */ 
        void set_train_error_function(error_function_enum train_error_function)
        {
            if (ann != NULL)
            {
                fann_set_train_error_function(ann,
					static_cast<fann_errorfunc_enum>(train_error_function));
            }
        }

        /* Method: get_quickprop_decay

           The decay is a small negative valued number which is the factor that the weights 
           should become smaller in each iteration during quickprop training. This is used 
           to make sure that the weights do not become too high during training.
           
           The default decay is -0.0001.
           
           See also:
   	        <set_quickprop_decay>, <fann_get_quickprop_decay>

           This function appears in FANN >= 1.2.0.
         */
        float get_quickprop_decay()
        {
            float quickprop_decay = 0.0f;
            if (ann != NULL)
            {
                quickprop_decay = fann_get_quickprop_decay(ann);
            }
            return quickprop_decay;
        }

        /* Method: set_quickprop_decay
           
           Sets the quickprop decay factor.
           
           See also:
   	        <get_quickprop_decay>, <fann_set_quickprop_decay>

           This function appears in FANN >= 1.2.0.
        */ 
        void set_quickprop_decay(float quickprop_decay)
        {
            if (ann != NULL)
            {
                fann_set_quickprop_decay(ann, quickprop_decay);
            }
        }

        /* Method: get_quickprop_mu

           The mu factor is used to increase and decrease the step-size during quickprop training. 
           The mu factor should always be above 1, since it would otherwise decrease the step-size 
           when it was suppose to increase it.
           
           The default mu factor is 1.75. 
           
           See also:
   	        <set_quickprop_mu>, <fann_get_quickprop_mu>

           This function appears in FANN >= 1.2.0.
        */ 
        float get_quickprop_mu()
        {
            float quickprop_mu = 0.0f;
            if (ann != NULL)
            {
                quickprop_mu = fann_get_quickprop_mu(ann);
            }
            return quickprop_mu;
        }

        /* Method: set_quickprop_mu

            Sets the quickprop mu factor.
           
           See also:
   	        <get_quickprop_mu>, <fann_set_quickprop_mu>

           This function appears in FANN >= 1.2.0.
        */ 
        void set_quickprop_mu(float quickprop_mu)
        {
            if (ann != NULL)
            {
                fann_set_quickprop_mu(ann, quickprop_mu);
            }
        }

        /* Method: get_rprop_increase_factor

           The increase factor is a value larger than 1, which is used to 
           increase the step-size during RPROP training.

           The default increase factor is 1.2.
           
           See also:
   	        <set_rprop_increase_factor>, <fann_get_rprop_increase_factor>

           This function appears in FANN >= 1.2.0.
        */ 
        float get_rprop_increase_factor()
        {
            float factor = 0.0f;
            if (ann != NULL)
            {
                factor = fann_get_rprop_increase_factor(ann);
            }
            return factor;
        }

        /* Method: set_rprop_increase_factor

           The increase factor used during RPROP training.

           See also:
   	        <get_rprop_increase_factor>, <fann_set_rprop_increase_factor>

           This function appears in FANN >= 1.2.0.
        */ 
        void set_rprop_increase_factor(float rprop_increase_factor)
        {
            if (ann != NULL)
            {
                fann_set_rprop_increase_factor(ann, rprop_increase_factor);
            }
        }

        /* Method: get_rprop_decrease_factor

           The decrease factor is a value smaller than 1, which is used to decrease the step-size during RPROP training.

           The default decrease factor is 0.5.

           See also:
            <set_rprop_decrease_factor>, <fann_get_rprop_decrease_factor>

           This function appears in FANN >= 1.2.0.
        */ 
        float get_rprop_decrease_factor()
        {
            float factor = 0.0f;
            if (ann != NULL)
            {
                factor = fann_get_rprop_decrease_factor(ann);
            }
            return factor;
        }

        /* Method: set_rprop_decrease_factor

           The decrease factor is a value smaller than 1, which is used to decrease the step-size during RPROP training.

           See also:
            <get_rprop_decrease_factor>, <fann_set_rprop_decrease_factor>

           This function appears in FANN >= 1.2.0.
        */
        void set_rprop_decrease_factor(float rprop_decrease_factor)
        {
            if (ann != NULL)
            {
                fann_set_rprop_decrease_factor(ann, rprop_decrease_factor);
            }
        }

        /* Method: get_rprop_delta_zero

           The initial step-size is a small positive number determining how small the initial step-size may be.

           The default value delta zero is 0.1.

           See also:
   	        <set_rprop_delta_zero>, <fann_get_rprop_delta_zero>
           	
           This function appears in FANN >= 2.1.0.
        */ 
        float get_rprop_delta_zero()
        {
            float delta = 0.0f;
            if (ann != NULL)
            {
                delta = fann_get_rprop_delta_zero(ann);
            }
            return delta;
        }

        /* Method: set_rprop_delta_zero

           The initial step-size is a small positive number determining how small the initial step-size may be.

           See also:
   	        <get_rprop_delta_zero>, <fann_set_rprop_delta_zero>
           	
           This function appears in FANN >= 2.1.0.
        */ 
        void set_rprop_delta_zero(float rprop_delta_zero)
        {
            if (ann != NULL)
            {
                fann_set_rprop_delta_zero(ann, rprop_delta_zero);
            }
        }
        /* Method: get_rprop_delta_min

           The minimum step-size is a small positive number determining how small the minimum step-size may be.

           The default value delta min is 0.0.

           See also:
   	        <set_rprop_delta_min>, <fann_get_rprop_delta_min>
           	
           This function appears in FANN >= 1.2.0.
        */ 
        float get_rprop_delta_min()
        {
            float delta = 0.0f;
            if (ann != NULL)
            {
                delta = fann_get_rprop_delta_min(ann);
            }
            return delta;
        }

        /* Method: set_rprop_delta_min

           The minimum step-size is a small positive number determining how small the minimum step-size may be.

           See also:
   	        <get_rprop_delta_min>, <fann_set_rprop_delta_min>
           	
           This function appears in FANN >= 1.2.0.
        */ 
        void set_rprop_delta_min(float rprop_delta_min)
        {
            if (ann != NULL)
            {
                fann_set_rprop_delta_min(ann, rprop_delta_min);
            }
        }

        /* Method: get_rprop_delta_max

           The maximum step-size is a positive number determining how large the maximum step-size may be.

           The default delta max is 50.0.

           See also:
   	        <set_rprop_delta_max>, <get_rprop_delta_min>, <fann_get_rprop_delta_max>

           This function appears in FANN >= 1.2.0.
        */ 
        float get_rprop_delta_max()
        {
            float delta = 0.0f;
            if (ann != NULL)
            {
                delta = fann_get_rprop_delta_max(ann);
            }
            return delta;
        }

        /* Method: set_rprop_delta_max

           The maximum step-size is a positive number determining how large the maximum step-size may be.

           See also:
   	        <get_rprop_delta_max>, <get_rprop_delta_min>, <fann_set_rprop_delta_max>

           This function appears in FANN >= 1.2.0.
        */
        void set_rprop_delta_max(float rprop_delta_max)
        {
            if (ann != NULL)
            {
                fann_set_rprop_delta_max(ann, rprop_delta_max);
            }
        }

        /* Method: get_sarprop_weight_decay_shift

           The sarprop weight decay shift.

           The default delta max is -6.644.

           See also:
   	        <set_sarprop_weight_decay_shift>, <fann get_sarprop_weight_decay_shift>

           This function appears in FANN >= 2.1.0.
        */ 
        float get_sarprop_weight_decay_shift()
        {
            float res = 0.0f;
            if (ann != NULL)
            {
                res = fann_get_rprop_delta_max(ann);
            }
            return res;
        }

        /* Method: set_sarprop_weight_decay_shift

           Set the sarprop weight decay shift.

	        This function appears in FANN >= 2.1.0.
           
	    See also:
   	        <get_sarprop_weight_decay_shift>, <fann_set_sarprop_weight_decay_shift>
        */ 
        void set_sarprop_weight_decay_shift(float sarprop_weight_decay_shift)
        {
            if (ann != NULL)
            {
                fann_set_sarprop_weight_decay_shift(ann, sarprop_weight_decay_shift);
            }
        }

        /* Method: get_sarprop_step_error_threshold_factor

           The sarprop step error threshold factor.

           The default delta max is 0.1.

           See also:
   	        <set_sarprop_step_error_threshold_factor>, <fann get_sarprop_step_error_threshold_factor>

           This function appears in FANN >= 2.1.0.
        */ 
        float get_sarprop_step_error_threshold_factor()
        {
            float res = 0.0f;
            if (ann != NULL)
            {
                res = fann_get_rprop_delta_max(ann);
            }
            return res;
        }

        /* Method: set_sarprop_step_error_threshold_factor

           Set the sarprop step error threshold factor.

	        This function appears in FANN >= 2.1.0.
           
	    See also:
   	        <get_sarprop_step_error_threshold_factor>, <fann_set_sarprop_step_error_threshold_factor>
        */ 
        void set_sarprop_step_error_threshold_factor(float sarprop_step_error_threshold_factor)
        {
            if (ann != NULL)
            {
                fann_set_sarprop_step_error_threshold_factor(ann, sarprop_step_error_threshold_factor);
            }
        }

        /* Method: get_sarprop_step_error_shift

           The get sarprop step error shift.

           The default delta max is 1.385.

           See also:
   	        <set_sarprop_step_error_shift>, <fann get_sarprop_step_error_shift>

           This function appears in FANN >= 2.1.0.
        */ 
        float get_sarprop_step_error_shift()
        {
            float res = 0.0f;
            if (ann != NULL)
            {
                res = fann_get_rprop_delta_max(ann);
            }
            return res;
        }

        /* Method: set_sarprop_step_error_shift

           Set the sarprop step error shift.

	        This function appears in FANN >= 2.1.0.
           
	    See also:
   	        <get_sarprop_step_error_shift>, <fann_set_sarprop_step_error_shift>
        */ 
        void set_sarprop_step_error_shift(float sarprop_step_error_shift)
        {
            if (ann != NULL)
            {
                fann_set_sarprop_step_error_shift(ann, sarprop_step_error_shift);
            }
        }
        
	/* Method: get_sarprop_temperature

           The sarprop weight decay shift.

           The default delta max is 0.015.

           See also:
   	        <set_sarprop_temperature>, <fann get_sarprop_temperature>

           This function appears in FANN >= 2.1.0.
        */ 
        float get_sarprop_temperature()
        {
            float res = 0.0f;
            if (ann != NULL)
            {
                res = fann_get_rprop_delta_max(ann);
            }
            return res;
        }

        /* Method: set_sarprop_temperature

           Set the sarprop_temperature.

	        This function appears in FANN >= 2.1.0.
           
	    See also:
   	        <get_sarprop_temperature>, <fann_set_sarprop_temperature>
        */ 
        void set_sarprop_temperature(float sarprop_temperature)
        {
            if (ann != NULL)
            {
                fann_set_sarprop_temperature(ann, sarprop_temperature);
            }
        }


        /* Method: get_num_input

           Get the number of input neurons.

	        This function appears in FANN >= 1.0.0.
        */ 
        unsigned int get_num_input()
        {
            unsigned int num_input = 0;
            if (ann != NULL)
            {
                num_input = fann_get_num_input(ann);
            }
            return num_input;
        }

        /* Method: get_num_output

           Get the number of output neurons.

	        This function appears in FANN >= 1.0.0.
        */ 
        unsigned int get_num_output()
        {
            unsigned int num_output = 0;
            if (ann != NULL)
            {
                num_output = fann_get_num_output(ann);
            }
            return num_output;
        }

        /* Method: get_total_neurons

           Get the total number of neurons in the entire network. This number does also include the 
	        bias neurons, so a 2-4-2 network has 2+4+2 +2(bias) = 10 neurons.

	        This function appears in FANN >= 1.0.0.
        */ 
        unsigned int get_total_neurons()
        {
            if (ann == NULL)
            {
                return 0;
            }
            return fann_get_total_neurons(ann);
        }

        /* Method: get_total_connections

           Get the total number of connections in the entire network.

	        This function appears in FANN >= 1.0.0.
        */ 
        unsigned int get_total_connections()
        {
            if (ann == NULL)
            {
                return 0;
            }
            return fann_get_total_connections(ann);
        }

#ifdef FIXEDFANN
        /* Method: get_decimal_point

	        Returns the position of the decimal point in the ann.

	        This function is only available when the ANN is in fixed point mode.

	        The decimal point is described in greater detail in the tutorial <Fixed Point Usage>.

	        See also:
		        <Fixed Point Usage>, <get_multiplier>, <save_to_fixed>,
                <training_data::save_train_to_fixed>, <fann_get_decimal_point>

	        This function appears in FANN >= 1.0.0.
        */ 
        unsigned int get_decimal_point()
        {
            if (ann == NULL)
            {
                return 0;
            }
            return fann_get_decimal_point(ann);
        }

        /* Method: get_multiplier

            Returns the multiplier that fix point data is multiplied with.

	        This function is only available when the ANN is in fixed point mode.

	        The multiplier is the used to convert between floating point and fixed point notation. 
	        A floating point number is multiplied with the multiplier in order to get the fixed point
	        number and visa versa.

	        The multiplier is described in greater detail in the tutorial <Fixed Point Usage>.

	        See also:
		        <Fixed Point Usage>, <get_decimal_point>, <save_to_fixed>,
                <training_data::save_train_to_fixed>, <fann_get_multiplier>

	        This function appears in FANN >= 1.0.0.
        */ 
        unsigned int get_multiplier()
        {
            if (ann == NULL)
            {
                return 0;
            }
            return fann_get_multiplier(ann);
        }
#endif /* FIXEDFANN */

        /*********************************************************************/

        /* Method: get_network_type

            Get the type of neural network it was created as.

	        Returns:
                The neural network type from enum <FANN::network_type_enum>

            See Also:
                <fann_get_network_type>

           This function appears in FANN >= 2.1.0
        */
        network_type_enum get_network_type()
        {
            fann_nettype_enum network_type = FANN_NETTYPE_LAYER;
            if (ann != NULL)
            {
                network_type = fann_get_network_type(ann);
            }
            return static_cast<network_type_enum>(network_type);
        }

        /* Method: get_connection_rate

            Get the connection rate used when the network was created

	        Returns:
                The connection rate

            See also:
                <fann_get_connection_rate>

           This function appears in FANN >= 2.1.0
        */
        float get_connection_rate()
        {
            if (ann == NULL)
            {
                return 0;
            }
            return fann_get_connection_rate(ann);
        }

        /* Method: get_num_layers

            Get the number of layers in the network

	        Returns:
		        The number of layers in the neural network

            See also:
                <fann_get_num_layers>

           This function appears in FANN >= 2.1.0
        */
        unsigned int get_num_layers()
        {
            if (ann == NULL)
            {
                return 0;
            }
            return fann_get_num_layers(ann);
        }

        /* Method: get_layer_array

            Get the number of neurons in each layer in the network.

            Bias is not included so the layers match the create methods.

            The layers array must be preallocated to at least
            sizeof(unsigned int) * get_num_layers() long.

            See also:
                <fann_get_layer_array>

           This function appears in FANN >= 2.1.0
        */
        void get_layer_array(unsigned int *layers)
        {
            if (ann != NULL)
            {
                fann_get_layer_array(ann, layers);
            }
        }

        /* Method: get_bias_array

            Get the number of bias in each layer in the network.

            The bias array must be preallocated to at least
            sizeof(unsigned int) * get_num_layers() long.

            See also:
                <fann_get_bias_array>

            This function appears in FANN >= 2.1.0
        */
        void get_bias_array(unsigned int *bias)
        {
            if (ann != NULL)
            {
                fann_get_bias_array(ann, bias);
            }
        }

        /* Method: get_connection_array

            Get the connections in the network.

            The connections array must be preallocated to at least
            sizeof(struct fann_connection) * get_total_connections() long.

            See also:
                <fann_get_connection_array>

           This function appears in FANN >= 2.1.0
        */
        void get_connection_array(connection *connections)
        {
            if (ann != NULL)
            {
                fann_get_connection_array(ann, connections);
            }
        }

        /* Method: set_weight_array

            Set connections in the network.

            Only the weights can be changed, connections and weights are ignored
            if they do not already exist in the network.

            The array must have sizeof(struct fann_connection) * num_connections size.

            See also:
                <fann_set_weight_array>

           This function appears in FANN >= 2.1.0
        */
        void set_weight_array(connection *connections, unsigned int num_connections)
        {
            if (ann != NULL)
            {
                fann_set_weight_array(ann, connections, num_connections);
            }
        }

        /* Method: set_weight

            Set a connection in the network.

            Only the weights can be changed. The connection/weight is
            ignored if it does not already exist in the network.

            See also:
                <fann_set_weight>

           This function appears in FANN >= 2.1.0
        */
        void set_weight(unsigned int from_neuron, unsigned int to_neuron, fann_type weight)
        {
            if (ann != NULL)
            {
                fann_set_weight(ann, from_neuron, to_neuron, weight);
            }
        }

        /*********************************************************************/

        /* Method: get_learning_momentum

           Get the learning momentum.
           
           The learning momentum can be used to speed up FANN::TRAIN_INCREMENTAL training.
           A too high momentum will however not benefit training. Setting momentum to 0 will
           be the same as not using the momentum parameter. The recommended value of this parameter
           is between 0.0 and 1.0.

           The default momentum is 0.
           
           See also:
           <set_learning_momentum>, <set_training_algorithm>

           This function appears in FANN >= 2.0.0.   	
         */ 
        float get_learning_momentum()
        {
            float learning_momentum = 0.0f;
            if (ann != NULL)
            {
                learning_momentum = fann_get_learning_momentum(ann);
            }
            return learning_momentum;
        }

        /* Method: set_learning_momentum

           Set the learning momentum.

           More info available in <get_learning_momentum>

           This function appears in FANN >= 2.0.0.   	
         */ 
        void set_learning_momentum(float learning_momentum)
        {
            if (ann != NULL)
            {
                fann_set_learning_momentum(ann, learning_momentum);
            }
        }

        /* Method: get_train_stop_function

           Returns the the stop function used during training.
           
           The stop function is described further in <FANN::stop_function_enum>
           
           The default stop function is FANN::STOPFUNC_MSE
           
           See also:
   	        <get_train_stop_function>, <get_bit_fail_limit>
              
           This function appears in FANN >= 2.0.0.
         */ 
        stop_function_enum get_train_stop_function()
        {
            enum fann_stopfunc_enum stopfunc = FANN_STOPFUNC_MSE;
            if (ann != NULL)
            {
                stopfunc = fann_get_train_stop_function(ann);
            }
            return static_cast<stop_function_enum>(stopfunc);
        }

        /* Method: set_train_stop_function

           Set the stop function used during training.

           The stop function is described further in <FANN::stop_function_enum>
           
           See also:
   	        <get_train_stop_function>
              
           This function appears in FANN >= 2.0.0.
         */ 
        void set_train_stop_function(stop_function_enum train_stop_function)
        {
            if (ann != NULL)
            {
                fann_set_train_stop_function(ann,
                    static_cast<enum fann_stopfunc_enum>(train_stop_function));
            }
        }

        /* Method: get_bit_fail_limit

           Returns the bit fail limit used during training.
           
           The bit fail limit is used during training when the <FANN::stop_function_enum> is set to FANN_STOPFUNC_BIT.

           The limit is the maximum accepted difference between the desired output and the actual output during
           training. Each output that diverges more than this limit is counted as an error bit.
           This difference is divided by two when dealing with symmetric activation functions,
           so that symmetric and not symmetric activation functions can use the same limit.
           
           The default bit fail limit is 0.35.
           
           See also:
   	        <set_bit_fail_limit>
           
           This function appears in FANN >= 2.0.0.
         */ 
        fann_type get_bit_fail_limit()
        {
            fann_type bit_fail_limit = 0.0f;

            if (ann != NULL)
            {
                bit_fail_limit = fann_get_bit_fail_limit(ann);
            }
            return bit_fail_limit;
        }

        /* Method: set_bit_fail_limit

           Set the bit fail limit used during training.
          
           See also:
   	        <get_bit_fail_limit>
           
           This function appears in FANN >= 2.0.0.
         */
        void set_bit_fail_limit(fann_type bit_fail_limit)
        {
            if (ann != NULL)
            {
                fann_set_bit_fail_limit(ann, bit_fail_limit);
            }
        }

        /* Method: get_bit_fail
        	
	        The number of fail bits; means the number of output neurons which differ more 
	        than the bit fail limit (see <get_bit_fail_limit>, <set_bit_fail_limit>). 
	        The bits are counted in all of the training data, so this number can be higher than
	        the number of training data.
        	
	        This value is reset by <reset_MSE> and updated by all the same functions which also
	        updates the MSE value (e.g. <test_data>, <train_epoch>)
        	
	        See also:
		        <FANN::stop_function_enum>, <get_MSE>

	        This function appears in FANN >= 2.0.0
        */
        unsigned int get_bit_fail()
        {
            unsigned int bit_fail = 0;
            if (ann != NULL)
            {
                bit_fail = fann_get_bit_fail(ann);
            }
            return bit_fail;
        }

        /*********************************************************************/

        /* Method: cascadetrain_on_data

           Trains on an entire dataset, for a period of time using the Cascade2 training algorithm.
           This algorithm adds neurons to the neural network while training, which means that it
           needs to start with an ANN without any hidden layers. The neural network should also use
           shortcut connections, so <create_shortcut> should be used to create the ANN like this:
           >net.create_shortcut(2, train_data.num_input_train_data(), train_data.num_output_train_data());
           
           This training uses the parameters set using the set_cascade_..., but it also uses another
           training algorithm as it's internal training algorithm. This algorithm can be set to either
           FANN::TRAIN_RPROP or FANN::TRAIN_QUICKPROP by <set_training_algorithm>, and the parameters 
           set for these training algorithms will also affect the cascade training.
           
           Parameters:
   		        data - The data, which should be used during training
   		        max_neuron - The maximum number of neurons to be added to neural network
   		        neurons_between_reports - The number of neurons between printing a status report to stdout.
   			        A value of zero means no reports should be printed.
   		        desired_error - The desired <fann_get_MSE> or <fann_get_bit_fail>, depending on which stop function
   			        is chosen by <fann_set_train_stop_function>.

	        Instead of printing out reports every neurons_between_reports, a callback function can be called 
	        (see <set_callback>).
        	
	        See also:
		        <train_on_data>, <cascadetrain_on_file>, <fann_cascadetrain_on_data>

	        This function appears in FANN >= 2.0.0. 
        */
        void cascadetrain_on_data(const training_data &data, unsigned int max_neurons,
            unsigned int neurons_between_reports, float desired_error)
        {
            if ((ann != NULL) && (data.train_data != NULL))
            {
                fann_cascadetrain_on_data(ann, data.train_data, max_neurons,
                    neurons_between_reports, desired_error);
            }
        }

        /* Method: cascadetrain_on_file
           
           Does the same as <cascadetrain_on_data>, but reads the training data directly from a file.
           
           See also:
   		        <fann_cascadetrain_on_data>, <fann_cascadetrain_on_file>

	        This function appears in FANN >= 2.0.0.
        */ 
        void cascadetrain_on_file(const std::string &filename, unsigned int max_neurons,
            unsigned int neurons_between_reports, float desired_error)
        {
            if (ann != NULL)
            {
                fann_cascadetrain_on_file(ann, filename.c_str(),
                    max_neurons, neurons_between_reports, desired_error);
            }
        }

        /* Method: get_cascade_output_change_fraction

           The cascade output change fraction is a number between 0 and 1 determining how large a fraction
           the <get_MSE> value should change within <get_cascade_output_stagnation_epochs> during
           training of the output connections, in order for the training not to stagnate. If the training 
           stagnates, the training of the output connections will be ended and new candidates will be prepared.
           
           This means:
           If the MSE does not change by a fraction of <get_cascade_output_change_fraction> during a 
           period of <get_cascade_output_stagnation_epochs>, the training of the output connections
           is stopped because the training has stagnated.

           If the cascade output change fraction is low, the output connections will be trained more and if the
           fraction is high they will be trained less.
           
           The default cascade output change fraction is 0.01, which is equalent to a 1% change in MSE.

           See also:
   		        <set_cascade_output_change_fraction>, <get_MSE>,
                <get_cascade_output_stagnation_epochs>, <fann_get_cascade_output_change_fraction>

	        This function appears in FANN >= 2.0.0.
         */
        float get_cascade_output_change_fraction()
        {
            float change_fraction = 0.0f;
            if (ann != NULL)
            {
                change_fraction = fann_get_cascade_output_change_fraction(ann);
            }
            return change_fraction;
        }

        /* Method: set_cascade_output_change_fraction

           Sets the cascade output change fraction.
           
           See also:
   		        <get_cascade_output_change_fraction>, <fann_set_cascade_output_change_fraction>

	        This function appears in FANN >= 2.0.0.
         */
        void set_cascade_output_change_fraction(float cascade_output_change_fraction)
        {
            if (ann != NULL)
            {
                fann_set_cascade_output_change_fraction(ann, cascade_output_change_fraction);
            }
        }

        /* Method: get_cascade_output_stagnation_epochs

           The number of cascade output stagnation epochs determines the number of epochs training is allowed to
           continue without changing the MSE by a fraction of <get_cascade_output_change_fraction>.
           
           See more info about this parameter in <get_cascade_output_change_fraction>.
           
           The default number of cascade output stagnation epochs is 12.

           See also:
   		        <set_cascade_output_stagnation_epochs>, <get_cascade_output_change_fraction>,
                <fann_get_cascade_output_stagnation_epochs>

	        This function appears in FANN >= 2.0.0.
         */
        unsigned int get_cascade_output_stagnation_epochs()
        {
            unsigned int stagnation_epochs = 0;
            if (ann != NULL)
            {
                stagnation_epochs = fann_get_cascade_output_stagnation_epochs(ann);
            }
            return stagnation_epochs;
        }

        /* Method: set_cascade_output_stagnation_epochs

           Sets the number of cascade output stagnation epochs.
           
           See also:
   		        <get_cascade_output_stagnation_epochs>, <fann_set_cascade_output_stagnation_epochs>

	        This function appears in FANN >= 2.0.0.
         */
        void set_cascade_output_stagnation_epochs(unsigned int cascade_output_stagnation_epochs)
        {
            if (ann != NULL)
            {
                fann_set_cascade_output_stagnation_epochs(ann, cascade_output_stagnation_epochs);
            }
        }

        /* Method: get_cascade_candidate_change_fraction

           The cascade candidate change fraction is a number between 0 and 1 determining how large a fraction
           the <get_MSE> value should change within <get_cascade_candidate_stagnation_epochs> during
           training of the candidate neurons, in order for the training not to stagnate. If the training 
           stagnates, the training of the candidate neurons will be ended and the best candidate will be selected.
           
           This means:
           If the MSE does not change by a fraction of <get_cascade_candidate_change_fraction> during a 
           period of <get_cascade_candidate_stagnation_epochs>, the training of the candidate neurons
           is stopped because the training has stagnated.

           If the cascade candidate change fraction is low, the candidate neurons will be trained more and if the
           fraction is high they will be trained less.
           
           The default cascade candidate change fraction is 0.01, which is equalent to a 1% change in MSE.

           See also:
   		        <set_cascade_candidate_change_fraction>, <get_MSE>,
                <get_cascade_candidate_stagnation_epochs>, <fann_get_cascade_candidate_change_fraction>

	        This function appears in FANN >= 2.0.0.
         */
        float get_cascade_candidate_change_fraction()
        {
            float change_fraction = 0.0f;
            if (ann != NULL)
            {
                change_fraction = fann_get_cascade_candidate_change_fraction(ann);
            }
            return change_fraction;
        }

        /* Method: set_cascade_candidate_change_fraction

           Sets the cascade candidate change fraction.
           
           See also:
   		        <get_cascade_candidate_change_fraction>,
                <fann_set_cascade_candidate_change_fraction>

	        This function appears in FANN >= 2.0.0.
         */
        void set_cascade_candidate_change_fraction(float cascade_candidate_change_fraction)
        {
            if (ann != NULL)
            {
                fann_set_cascade_candidate_change_fraction(ann, cascade_candidate_change_fraction);
            }
        }

        /* Method: get_cascade_candidate_stagnation_epochs

           The number of cascade candidate stagnation epochs determines the number of epochs training is allowed to
           continue without changing the MSE by a fraction of <get_cascade_candidate_change_fraction>.
           
           See more info about this parameter in <get_cascade_candidate_change_fraction>.

           The default number of cascade candidate stagnation epochs is 12.

           See also:
   		        <set_cascade_candidate_stagnation_epochs>, <get_cascade_candidate_change_fraction>,
                <fann_get_cascade_candidate_stagnation_epochs>

	        This function appears in FANN >= 2.0.0.
         */
        unsigned int get_cascade_candidate_stagnation_epochs()
        {
            unsigned int stagnation_epochs = 0;
            if (ann != NULL)
            {
                stagnation_epochs = fann_get_cascade_candidate_stagnation_epochs(ann);
            }
            return stagnation_epochs;
        }

        /* Method: set_cascade_candidate_stagnation_epochs

           Sets the number of cascade candidate stagnation epochs.
           
           See also:
   		        <get_cascade_candidate_stagnation_epochs>,
                <fann_set_cascade_candidate_stagnation_epochs>

	        This function appears in FANN >= 2.0.0.
         */
        void set_cascade_candidate_stagnation_epochs(unsigned int cascade_candidate_stagnation_epochs)
        {
            if (ann != NULL)
            {
                fann_set_cascade_candidate_stagnation_epochs(ann, cascade_candidate_stagnation_epochs);
            }
        }

        /* Method: get_cascade_weight_multiplier

           The weight multiplier is a parameter which is used to multiply the weights from the candidate neuron
           before adding the neuron to the neural network. This parameter is usually between 0 and 1, and is used
           to make the training a bit less aggressive.

           The default weight multiplier is 0.4

           See also:
   		        <set_cascade_weight_multiplier>, <fann_get_cascade_weight_multiplier>

	        This function appears in FANN >= 2.0.0.
         */
        fann_type get_cascade_weight_multiplier()
        {
            fann_type weight_multiplier = 0;
            if (ann != NULL)
            {
                weight_multiplier = fann_get_cascade_weight_multiplier(ann);
            }
            return weight_multiplier;
        }

        /* Method: set_cascade_weight_multiplier
           
           Sets the weight multiplier.
           
           See also:
   		        <get_cascade_weight_multiplier>, <fann_set_cascade_weight_multiplier>

	        This function appears in FANN >= 2.0.0.
         */
        void set_cascade_weight_multiplier(fann_type cascade_weight_multiplier)
        {
            if (ann != NULL)
            {
                fann_set_cascade_weight_multiplier(ann, cascade_weight_multiplier);
            }
        }

        /* Method: get_cascade_candidate_limit

           The candidate limit is a limit for how much the candidate neuron may be trained.
           The limit is a limit on the proportion between the MSE and candidate score.
           
           Set this to a lower value to avoid overfitting and to a higher if overfitting is
           not a problem.
           
           The default candidate limit is 1000.0

           See also:
   		        <set_cascade_candidate_limit>, <fann_get_cascade_candidate_limit>

	        This function appears in FANN >= 2.0.0.
         */
        fann_type get_cascade_candidate_limit()
        {
            fann_type candidate_limit = 0;
            if (ann != NULL)
            {
                candidate_limit = fann_get_cascade_candidate_limit(ann);
            }
            return candidate_limit;
        }

        /* Method: set_cascade_candidate_limit

           Sets the candidate limit.
          
           See also:
   		        <get_cascade_candidate_limit>, <fann_set_cascade_candidate_limit>

	        This function appears in FANN >= 2.0.0.
         */
        void set_cascade_candidate_limit(fann_type cascade_candidate_limit)
        {
            if (ann != NULL)
            {
                fann_set_cascade_candidate_limit(ann, cascade_candidate_limit);
            }
        }

        /* Method: get_cascade_max_out_epochs

           The maximum out epochs determines the maximum number of epochs the output connections
           may be trained after adding a new candidate neuron.
           
           The default max out epochs is 150

           See also:
   		        <set_cascade_max_out_epochs>, <fann_get_cascade_max_out_epochs>

	        This function appears in FANN >= 2.0.0.
         */
        unsigned int get_cascade_max_out_epochs()
        {
            unsigned int max_out_epochs = 0;
            if (ann != NULL)
            {
                max_out_epochs = fann_get_cascade_max_out_epochs(ann);
            }
            return max_out_epochs;
        }

        /* Method: set_cascade_max_out_epochs

           Sets the maximum out epochs.

           See also:
   		        <get_cascade_max_out_epochs>, <fann_set_cascade_max_out_epochs>

	        This function appears in FANN >= 2.0.0.
         */
        void set_cascade_max_out_epochs(unsigned int cascade_max_out_epochs)
        {
            if (ann != NULL)
            {
                fann_set_cascade_max_out_epochs(ann, cascade_max_out_epochs);
            }
        }

        /* Method: get_cascade_max_cand_epochs

           The maximum candidate epochs determines the maximum number of epochs the input 
           connections to the candidates may be trained before adding a new candidate neuron.
           
           The default max candidate epochs is 150

           See also:
   		        <set_cascade_max_cand_epochs>, <fann_get_cascade_max_cand_epochs>

	        This function appears in FANN >= 2.0.0.
         */
        unsigned int get_cascade_max_cand_epochs()
        {
            unsigned int max_cand_epochs = 0;
            if (ann != NULL)
            {
                max_cand_epochs = fann_get_cascade_max_cand_epochs(ann);
            }
            return max_cand_epochs;
        }

        /* Method: set_cascade_max_cand_epochs

           Sets the max candidate epochs.
          
           See also:
   		        <get_cascade_max_cand_epochs>, <fann_set_cascade_max_cand_epochs>

	        This function appears in FANN >= 2.0.0.
         */
        void set_cascade_max_cand_epochs(unsigned int cascade_max_cand_epochs)
        {
            if (ann != NULL)
            {
                fann_set_cascade_max_cand_epochs(ann, cascade_max_cand_epochs);
            }
        }

        /* Method: get_cascade_num_candidates

           The number of candidates used during training (calculated by multiplying <get_cascade_activation_functions_count>,
           <get_cascade_activation_steepnesses_count> and <get_cascade_num_candidate_groups>). 

           The actual candidates is defined by the <get_cascade_activation_functions> and 
           <get_cascade_activation_steepnesses> arrays. These arrays define the activation functions 
           and activation steepnesses used for the candidate neurons. If there are 2 activation functions
           in the activation function array and 3 steepnesses in the steepness array, then there will be 
           2x3=6 different candidates which will be trained. These 6 different candidates can be copied into
           several candidate groups, where the only difference between these groups is the initial weights.
           If the number of groups is set to 2, then the number of candidate neurons will be 2x3x2=12. The 
           number of candidate groups is defined by <set_cascade_num_candidate_groups>.

           The default number of candidates is 6x4x2 = 48

           See also:
   		        <get_cascade_activation_functions>, <get_cascade_activation_functions_count>, 
   		        <get_cascade_activation_steepnesses>, <get_cascade_activation_steepnesses_count>,
   		        <get_cascade_num_candidate_groups>, <fann_get_cascade_num_candidates>

	        This function appears in FANN >= 2.0.0.
         */ 
        unsigned int get_cascade_num_candidates()
        {
            unsigned int num_candidates = 0;
            if (ann != NULL)
            {
                num_candidates = fann_get_cascade_num_candidates(ann);
            }
            return num_candidates;
        }

        /* Method: get_cascade_activation_functions_count

           The number of activation functions in the <get_cascade_activation_functions> array.

           The default number of activation functions is 6.

           See also:
   		        <get_cascade_activation_functions>, <set_cascade_activation_functions>,
                <fann_get_cascade_activation_functions_count>

	        This function appears in FANN >= 2.0.0.
         */
        unsigned int get_cascade_activation_functions_count()
        {
            unsigned int activation_functions_count = 0;
            if (ann != NULL)
            {
                activation_functions_count = fann_get_cascade_activation_functions_count(ann);
            }
            return activation_functions_count;
        }

        /* Method: get_cascade_activation_functions

           The cascade activation functions array is an array of the different activation functions used by
           the candidates. 
           
           See <get_cascade_num_candidates> for a description of which candidate neurons will be 
           generated by this array.
           
           See also:
   		        <get_cascade_activation_functions_count>, <set_cascade_activation_functions>,
   		        <FANN::activation_function_enum>

	        This function appears in FANN >= 2.0.0.
         */
        activation_function_enum * get_cascade_activation_functions()
        {
            enum fann_activationfunc_enum *activation_functions = NULL;
            if (ann != NULL)
            {
                activation_functions = fann_get_cascade_activation_functions(ann);
            }
            return reinterpret_cast<activation_function_enum *>(activation_functions);
        }

        /* Method: set_cascade_activation_functions

           Sets the array of cascade candidate activation functions. The array must be just as long
           as defined by the count.

           See <get_cascade_num_candidates> for a description of which candidate neurons will be 
           generated by this array.

           See also:
   		        <get_cascade_activation_steepnesses_count>, <get_cascade_activation_steepnesses>,
                <fann_set_cascade_activation_functions>

	        This function appears in FANN >= 2.0.0.
         */
        void set_cascade_activation_functions(activation_function_enum *cascade_activation_functions,
            unsigned int cascade_activation_functions_count)
        {
            if (ann != NULL)
            {
                fann_set_cascade_activation_functions(ann,
                    reinterpret_cast<enum fann_activationfunc_enum *>(cascade_activation_functions),
                    cascade_activation_functions_count);
            }
        }

        /* Method: get_cascade_activation_steepnesses_count

           The number of activation steepnesses in the <get_cascade_activation_functions> array.

           The default number of activation steepnesses is 4.

           See also:
   		        <get_cascade_activation_steepnesses>, <set_cascade_activation_functions>,
                <fann_get_cascade_activation_steepnesses_count>

	        This function appears in FANN >= 2.0.0.
         */
        unsigned int get_cascade_activation_steepnesses_count()
        {
            unsigned int activation_steepness_count = 0;
            if (ann != NULL)
            {
                activation_steepness_count = fann_get_cascade_activation_steepnesses_count(ann);
            }
            return activation_steepness_count;
        }

        /* Method: get_cascade_activation_steepnesses

           The cascade activation steepnesses array is an array of the different activation functions used by
           the candidates.

           See <get_cascade_num_candidates> for a description of which candidate neurons will be 
           generated by this array.

           The default activation steepnesses is {0.25, 0.50, 0.75, 1.00}

           See also:
   		        <set_cascade_activation_steepnesses>, <get_cascade_activation_steepnesses_count>,
                <fann_get_cascade_activation_steepnesses>

	        This function appears in FANN >= 2.0.0.
         */
        fann_type *get_cascade_activation_steepnesses()
        {
            fann_type *activation_steepnesses = NULL;
            if (ann != NULL)
            {
                activation_steepnesses = fann_get_cascade_activation_steepnesses(ann);
            }
            return activation_steepnesses;
        }																

        /* Method: set_cascade_activation_steepnesses

           Sets the array of cascade candidate activation steepnesses. The array must be just as long
           as defined by the count.

           See <get_cascade_num_candidates> for a description of which candidate neurons will be 
           generated by this array.

           See also:
   		        <get_cascade_activation_steepnesses>, <get_cascade_activation_steepnesses_count>,
                <fann_set_cascade_activation_steepnesses>

	        This function appears in FANN >= 2.0.0.
         */
        void set_cascade_activation_steepnesses(fann_type *cascade_activation_steepnesses,
            unsigned int cascade_activation_steepnesses_count)
        {
            if (ann != NULL)
            {
                fann_set_cascade_activation_steepnesses(ann,
                    cascade_activation_steepnesses, cascade_activation_steepnesses_count);
            }
        }

        /* Method: get_cascade_num_candidate_groups

           The number of candidate groups is the number of groups of identical candidates which will be used
           during training.
           
           This number can be used to have more candidates without having to define new parameters for the candidates.
           
           See <get_cascade_num_candidates> for a description of which candidate neurons will be 
           generated by this parameter.
           
           The default number of candidate groups is 2

           See also:
   		        <set_cascade_num_candidate_groups>, <fann_get_cascade_num_candidate_groups>

	        This function appears in FANN >= 2.0.0.
         */
        unsigned int get_cascade_num_candidate_groups()
        {
            unsigned int num_candidate_groups = 0;
            if (ann != NULL)
            {
                num_candidate_groups = fann_get_cascade_num_candidate_groups(ann);
            }
            return num_candidate_groups;
        }

        /* Method: set_cascade_num_candidate_groups

           Sets the number of candidate groups.

           See also:
   		        <get_cascade_num_candidate_groups>, <fann_set_cascade_num_candidate_groups>

	        This function appears in FANN >= 2.0.0.
         */
        void set_cascade_num_candidate_groups(unsigned int cascade_num_candidate_groups)
        {
            if (ann != NULL)
            {
                fann_set_cascade_num_candidate_groups(ann, cascade_num_candidate_groups);
            }
        }

        /*********************************************************************/

#ifndef FIXEDFANN
        /* Method: scale_train

           Scale input and output data based on previously calculated parameters.

           See also:
   		        <descale_train>, <fann_scale_train>

	        This function appears in FANN >= 2.1.0.
         */
        void scale_train(training_data &data)
        {
            if (ann != NULL)
            {
                fann_scale_train(ann, data.train_data);
            }
        }

        /* Method: descale_train

           Descale input and output data based on previously calculated parameters.

           See also:
   		        <scale_train>, <fann_descale_train>

	        This function appears in FANN >= 2.1.0.
         */
        void descale_train(training_data &data)
        {
            if (ann != NULL)
            {
                fann_descale_train(ann, data.train_data);
            }
        }

        /* Method: set_input_scaling_params

           Calculate scaling parameters for future use based on training data.

           See also:
   		        <set_output_scaling_params>, <fann_set_input_scaling_params>

	        This function appears in FANN >= 2.1.0.
         */
        bool set_input_scaling_params(const training_data &data, float new_input_min, float new_input_max)
        {
            bool status = false;
            if (ann != NULL)
            {
                status = (fann_set_input_scaling_params(ann, data.train_data, new_input_min, new_input_max) != -1);
            }
            return status;
        }

        /* Method: set_output_scaling_params

           Calculate scaling parameters for future use based on training data.

           See also:
   		        <set_input_scaling_params>, <fann_set_output_scaling_params>

	        This function appears in FANN >= 2.1.0.
         */
        bool set_output_scaling_params(const training_data &data, float new_output_min, float new_output_max)
        {
            bool status = false;
            if (ann != NULL)
            {
                status = (fann_set_output_scaling_params(ann, data.train_data, new_output_min, new_output_max) != -1);
            }
            return status;
        }

        /* Method: set_scaling_params

           Calculate scaling parameters for future use based on training data.

           See also:
   		        <clear_scaling_params>, <fann_set_scaling_params>

	        This function appears in FANN >= 2.1.0.
         */
        bool set_scaling_params(const training_data &data,
	        float new_input_min, float new_input_max, float new_output_min, float new_output_max)
        {
            bool status = false;
            if (ann != NULL)
            {
                status = (fann_set_scaling_params(ann, data.train_data,
                    new_input_min, new_input_max, new_output_min, new_output_max) != -1);
            }
            return status;
        }

        /* Method: clear_scaling_params

           Clears scaling parameters.

           See also:
   		        <set_scaling_params>, <fann_clear_scaling_params>

	        This function appears in FANN >= 2.1.0.
         */
        bool clear_scaling_params()
        {
            bool status = false;
            if (ann != NULL)
            {
                status = (fann_clear_scaling_params(ann) != -1);
            }
            return status;
        }

        /* Method: scale_input

           Scale data in input vector before feed it to ann based on previously calculated parameters.

           See also:
   		        <descale_input>, <scale_output>, <fann_scale_input>

	        This function appears in FANN >= 2.1.0.
         */
        void scale_input(fann_type *input_vector)
        {
            if (ann != NULL)
            {
                fann_scale_input(ann, input_vector );
            }
        }

        /* Method: scale_output

           Scale data in output vector before feed it to ann based on previously calculated parameters.

           See also:
   		        <descale_output>, <scale_input>, <fann_scale_output>

	        This function appears in FANN >= 2.1.0.
         */
        void scale_output(fann_type *output_vector)
        {
            if (ann != NULL)
            {
                fann_scale_output(ann, output_vector );
            }
        }

        /* Method: descale_input

           Scale data in input vector after get it from ann based on previously calculated parameters.

           See also:
   		        <scale_input>, <descale_output>, <fann_descale_input>

	        This function appears in FANN >= 2.1.0.
         */
        void descale_input(fann_type *input_vector)
        {
            if (ann != NULL)
            {
                fann_descale_input(ann, input_vector );
            }
        }

        /* Method: descale_output

           Scale data in output vector after get it from ann based on previously calculated parameters.

           See also:
   		        <scale_output>, <descale_input>, <fann_descale_output>

	        This function appears in FANN >= 2.1.0.
         */
        void descale_output(fann_type *output_vector)
        {
            if (ann != NULL)
            {
                fann_descale_output(ann, output_vector );
            }
        }

#endif /* FIXEDFANN */

        /*********************************************************************/

        /* Method: set_error_log

           Change where errors are logged to.
           
           If log_file is NULL, no errors will be printed.
           
           If neural_net is empty i.e. ann is NULL, the default log will be set.
           The default log is the log used when creating a neural_net.
           This default log will also be the default for all new structs
           that are created.
           
           The default behavior is to log them to stderr.
           
           See also:
                <struct fann_error>, <fann_set_error_log>
           
           This function appears in FANN >= 1.1.0.   
         */ 
        void set_error_log(FILE *log_file)
        {
            fann_set_error_log(reinterpret_cast<struct fann_error *>(ann), log_file);
        }

        /* Method: get_errno

           Returns the last error number.
           
           See also:
            <fann_errno_enum>, <fann_reset_errno>, <fann_get_errno>
            
           This function appears in FANN >= 1.1.0.   
         */ 
        unsigned int get_errno()
        {
            return fann_get_errno(reinterpret_cast<struct fann_error *>(ann));
        }

        /* Method: reset_errno

           Resets the last error number.
           
           This function appears in FANN >= 1.1.0.   
         */ 
        void reset_errno()
        {
            fann_reset_errno(reinterpret_cast<struct fann_error *>(ann));
        }

        /* Method: reset_errstr

           Resets the last error string.

           This function appears in FANN >= 1.1.0.   
         */ 
        void reset_errstr()
        {
            fann_reset_errstr(reinterpret_cast<struct fann_error *>(ann));
        }

        /* Method: get_errstr

           Returns the last errstr.
          
           This function calls <fann_reset_errno> and <fann_reset_errstr>

           This function appears in FANN >= 1.1.0.   
         */ 
        std::string get_errstr()
        {
            return std::string(fann_get_errstr(reinterpret_cast<struct fann_error *>(ann)));
        }

        /* Method: print_error

           Prints the last error to stderr.

           This function appears in FANN >= 1.1.0.   
         */ 
        void print_error()
        {
            fann_print_error(reinterpret_cast<struct fann_error *>(ann));
        }

        /*********************************************************************/

    private:
        // Structure used by set_callback to hold information about a user callback
        typedef struct user_context_type
        {
            callback_type user_callback; // Pointer to user callback function
            void *user_data; // Arbitrary data pointer passed to the callback
            neural_net *net; // This pointer for the neural network
        } user_context;

        // Internal callback used to convert from pointers to class references
        static int FANN_API internal_callback(struct fann *ann, struct fann_train_data *train, 
            unsigned int max_epochs, unsigned int epochs_between_reports, float desired_error, unsigned int epochs)
        {
            user_context *user_data = static_cast<user_context *>(fann_get_user_data(ann));
            if (user_data != NULL)
            {
                FANN::training_data data;
                data.train_data = train;

                int result = (*user_data->user_callback)(*user_data->net,
                    data, max_epochs, epochs_between_reports, desired_error, epochs, user_data);

                data.train_data = NULL; // Prevent automatic cleanup
                return result;
            }
            else
            {
                return -1; // This should not occur except if out of memory
            }
        }
    protected:
        // Pointer the encapsulated fann neural net structure
        struct fann *ann;
    };

    /*************************************************************************/
}

#endif /* FANN_CPP_H_INCLUDED */