/usr/include/fann_cpp.h is in libfann-dev 2.2.0+ds-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 | #ifndef FANN_CPP_H_INCLUDED
#define FANN_CPP_H_INCLUDED
/*
*
* Fast Artificial Neural Network (fann) C++ Wrapper
* Copyright (C) 2004-2006 created by freegoldbar (at) yahoo dot com
*
* This wrapper is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This wrapper is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
/*
* Title: FANN Wrapper for C++
*
* Overview:
*
* The Fann Wrapper for C++ provides two classes: <neural_net>
* and <training_data>. To use the wrapper include
* doublefann.h, floatfann.h or fixedfann.h before the
* fann_cpp.h header file. To get started see xor_sample.cpp
* in the examples directory. The license is LGPL. Copyright (C)
* 2004-2006 created by <freegoldbar@yahoo.com>.
*
* Note: Notes and differences from C API
*
* - The Fann Wrapper for C++ is a minimal wrapper without use of
* templates or exception handling for efficient use in any environment.
* Benefits include stricter type checking, simpler memory
* management and possibly code completion in program editor.
* - Method names are the same as the function names in the C
* API except the fann_ prefix has been removed. Enums in the
* namespace are similarly defined without the FANN_ prefix.
* - The arguments to the methods are the same as the C API
* except that the struct fann *ann/struct fann_train_data *data
* arguments are encapsulated so they are not present in the
* method signatures or are translated into class references.
* - The various create methods return a boolean set to true to
* indicate that the neural network was created, false otherwise.
* The same goes for the read_train_from_file method.
* - The neural network and training data is automatically cleaned
* up in the destructors and create/read methods.
* - To make the destructors virtual define USE_VIRTUAL_DESTRUCTOR
* before including the header file.
* - Additional methods are available on the training_data class to
* give access to the underlying training data. They are get_input,
* get_output and set_train_data. Finally fann_duplicate_train_data
* has been replaced by a copy constructor.
*
* Note: Changes
*
* Version 2.2.0:
* - General update to fann C library 2.2.0 with support for new functionality
*
* Version 2.1.0:
* - General update to fann C library 2.1.0 with support for new functionality
* - Due to changes in the C API the C++ API is not fully backward compatible:
* The create methods have changed names and parameters.
* The training callback function has different parameters and a set_callback.
* Some <training_data> methods have updated names.
* Get activation function and steepness is available for neurons, not layers.
* - Extensions are now part of fann so there is no fann_extensions.h
*
* Version 1.2.0:
* - Changed char pointers to const std::string references
* - Added const_casts where the C API required it
* - Initialized enums from the C enums instead of numeric constants
* - Added a method set_train_data that copies and allocates training
* - data in a way that is compatible with the way the C API deallocates
* - the data thus making it possible to change training data.
* - The get_rprop_increase_factor method did not return its value
*
* Version 1.0.0:
* - Initial version
*
*/
#include <stdarg.h>
#include <string>
/* Namespace: FANN
The FANN namespace groups the C++ wrapper definitions */
namespace FANN
{
/* Enum: error_function_enum
Error function used during training.
ERRORFUNC_LINEAR - Standard linear error function.
ERRORFUNC_TANH - Tanh error function, usually better
but can require a lower learning rate. This error function agressively targets outputs that
differ much from the desired, while not targetting outputs that only differ a little that much.
This activation function is not recommended for cascade training and incremental training.
See also:
<neural_net::set_train_error_function>, <neural_net::get_train_error_function>
*/
enum error_function_enum {
ERRORFUNC_LINEAR = FANN_ERRORFUNC_LINEAR,
ERRORFUNC_TANH
};
/* Enum: stop_function_enum
Stop criteria used during training.
STOPFUNC_MSE - Stop criteria is Mean Square Error (MSE) value.
STOPFUNC_BIT - Stop criteria is number of bits that fail. The number of bits; means the
number of output neurons which differ more than the bit fail limit
(see <neural_net::get_bit_fail_limit>, <neural_net::set_bit_fail_limit>).
The bits are counted in all of the training data, so this number can be higher than
the number of training data.
See also:
<neural_net::set_train_stop_function>, <neural_net::get_train_stop_function>
*/
enum stop_function_enum
{
STOPFUNC_MSE = FANN_STOPFUNC_MSE,
STOPFUNC_BIT
};
/* Enum: training_algorithm_enum
The Training algorithms used when training on <training_data> with functions like
<neural_net::train_on_data> or <neural_net::train_on_file>. The incremental training
looks alters the weights after each time it is presented an input pattern, while batch
only alters the weights once after it has been presented to all the patterns.
TRAIN_INCREMENTAL - Standard backpropagation algorithm, where the weights are
updated after each training pattern. This means that the weights are updated many
times during a single epoch. For this reason some problems, will train very fast with
this algorithm, while other more advanced problems will not train very well.
TRAIN_BATCH - Standard backpropagation algorithm, where the weights are updated after
calculating the mean square error for the whole training set. This means that the weights
are only updated once during a epoch. For this reason some problems, will train slower with
this algorithm. But since the mean square error is calculated more correctly than in
incremental training, some problems will reach a better solutions with this algorithm.
TRAIN_RPROP - A more advanced batch training algorithm which achieves good results
for many problems. The RPROP training algorithm is adaptive, and does therefore not
use the learning_rate. Some other parameters can however be set to change the way the
RPROP algorithm works, but it is only recommended for users with insight in how the RPROP
training algorithm works. The RPROP training algorithm is described by
[Riedmiller and Braun, 1993], but the actual learning algorithm used here is the
iRPROP- training algorithm which is described by [Igel and Husken, 2000] which
is an variety of the standard RPROP training algorithm.
TRAIN_QUICKPROP - A more advanced batch training algorithm which achieves good results
for many problems. The quickprop training algorithm uses the learning_rate parameter
along with other more advanced parameters, but it is only recommended to change these
advanced parameters, for users with insight in how the quickprop training algorithm works.
The quickprop training algorithm is described by [Fahlman, 1988].
See also:
<neural_net::set_training_algorithm>, <neural_net::get_training_algorithm>
*/
enum training_algorithm_enum {
TRAIN_INCREMENTAL = FANN_TRAIN_INCREMENTAL,
TRAIN_BATCH,
TRAIN_RPROP,
TRAIN_QUICKPROP,
TRAIN_SARPROP
};
/* Enum: activation_function_enum
The activation functions used for the neurons during training. The activation functions
can either be defined for a group of neurons by <neural_net::set_activation_function_hidden>
and <neural_net::set_activation_function_output> or it can be defined for a single neuron by
<neural_net::set_activation_function>.
The steepness of an activation function is defined in the same way by
<neural_net::set_activation_steepness_hidden>, <neural_net::set_activation_steepness_output>
and <neural_net::set_activation_steepness>.
The functions are described with functions where:
* x is the input to the activation function,
* y is the output,
* s is the steepness and
* d is the derivation.
FANN_LINEAR - Linear activation function.
* span: -inf < y < inf
* y = x*s, d = 1*s
* Can NOT be used in fixed point.
FANN_THRESHOLD - Threshold activation function.
* x < 0 -> y = 0, x >= 0 -> y = 1
* Can NOT be used during training.
FANN_THRESHOLD_SYMMETRIC - Threshold activation function.
* x < 0 -> y = 0, x >= 0 -> y = 1
* Can NOT be used during training.
FANN_SIGMOID - Sigmoid activation function.
* One of the most used activation functions.
* span: 0 < y < 1
* y = 1/(1 + exp(-2*s*x))
* d = 2*s*y*(1 - y)
FANN_SIGMOID_STEPWISE - Stepwise linear approximation to sigmoid.
* Faster than sigmoid but a bit less precise.
FANN_SIGMOID_SYMMETRIC - Symmetric sigmoid activation function, aka. tanh.
* One of the most used activation functions.
* span: -1 < y < 1
* y = tanh(s*x) = 2/(1 + exp(-2*s*x)) - 1
* d = s*(1-(y*y))
FANN_SIGMOID_SYMMETRIC - Stepwise linear approximation to symmetric sigmoid.
* Faster than symmetric sigmoid but a bit less precise.
FANN_GAUSSIAN - Gaussian activation function.
* 0 when x = -inf, 1 when x = 0 and 0 when x = inf
* span: 0 < y < 1
* y = exp(-x*s*x*s)
* d = -2*x*s*y*s
FANN_GAUSSIAN_SYMMETRIC - Symmetric gaussian activation function.
* -1 when x = -inf, 1 when x = 0 and 0 when x = inf
* span: -1 < y < 1
* y = exp(-x*s*x*s)*2-1
* d = -2*x*s*(y+1)*s
FANN_ELLIOT - Fast (sigmoid like) activation function defined by David Elliott
* span: 0 < y < 1
* y = ((x*s) / 2) / (1 + |x*s|) + 0.5
* d = s*1/(2*(1+|x*s|)*(1+|x*s|))
FANN_ELLIOT_SYMMETRIC - Fast (symmetric sigmoid like) activation function defined by David Elliott
* span: -1 < y < 1
* y = (x*s) / (1 + |x*s|)
* d = s*1/((1+|x*s|)*(1+|x*s|))
FANN_LINEAR_PIECE - Bounded linear activation function.
* span: 0 < y < 1
* y = x*s, d = 1*s
FANN_LINEAR_PIECE_SYMMETRIC - Bounded Linear activation function.
* span: -1 < y < 1
* y = x*s, d = 1*s
FANN_SIN_SYMMETRIC - Periodical sinus activation function.
* span: -1 <= y <= 1
* y = sin(x*s)
* d = s*cos(x*s)
FANN_COS_SYMMETRIC - Periodical cosinus activation function.
* span: -1 <= y <= 1
* y = cos(x*s)
* d = s*-sin(x*s)
See also:
<neural_net::set_activation_function_hidden>,
<neural_net::set_activation_function_output>
*/
enum activation_function_enum {
LINEAR = FANN_LINEAR,
THRESHOLD,
THRESHOLD_SYMMETRIC,
SIGMOID,
SIGMOID_STEPWISE,
SIGMOID_SYMMETRIC,
SIGMOID_SYMMETRIC_STEPWISE,
GAUSSIAN,
GAUSSIAN_SYMMETRIC,
GAUSSIAN_STEPWISE,
ELLIOT,
ELLIOT_SYMMETRIC,
LINEAR_PIECE,
LINEAR_PIECE_SYMMETRIC,
SIN_SYMMETRIC,
COS_SYMMETRIC
};
/* Enum: network_type_enum
Definition of network types used by <neural_net::get_network_type>
LAYER - Each layer only has connections to the next layer
SHORTCUT - Each layer has connections to all following layers
See Also:
<neural_net::get_network_type>, <fann_get_network_type>
This enumeration appears in FANN >= 2.1.0
*/
enum network_type_enum
{
LAYER = FANN_NETTYPE_LAYER,
SHORTCUT
};
/* Type: connection
Describes a connection between two neurons and its weight
from_neuron - Unique number used to identify source neuron
to_neuron - Unique number used to identify destination neuron
weight - The numerical value of the weight
See Also:
<neural_net::get_connection_array>, <neural_net::set_weight_array>
This structure appears in FANN >= 2.1.0
*/
typedef struct fann_connection connection;
/* Forward declaration of class neural_net and training_data */
class neural_net;
class training_data;
/* Type: callback_type
This callback function can be called during training when using <neural_net::train_on_data>,
<neural_net::train_on_file> or <neural_net::cascadetrain_on_data>.
>typedef int (*callback_type) (neural_net &net, training_data &train,
> unsigned int max_epochs, unsigned int epochs_between_reports,
> float desired_error, unsigned int epochs, void *user_data);
The callback can be set by using <neural_net::set_callback> and is very usefull for doing custom
things during training. It is recommended to use this function when implementing custom
training procedures, or when visualizing the training in a GUI etc. The parameters which the
callback function takes is the parameters given to the <neural_net::train_on_data>, plus an epochs
parameter which tells how many epochs the training have taken so far.
The callback function should return an integer, if the callback function returns -1, the training
will terminate.
Example of a callback function that prints information to cout:
>int print_callback(FANN::neural_net &net, FANN::training_data &train,
> unsigned int max_epochs, unsigned int epochs_between_reports,
> float desired_error, unsigned int epochs, void *user_data)
>{
> cout << "Epochs " << setw(8) << epochs << ". "
> << "Current Error: " << left << net.get_MSE() << right << endl;
> return 0;
>}
See also:
<neural_net::set_callback>, <fann_callback_type>
*/
typedef int (*callback_type) (neural_net &net, training_data &train,
unsigned int max_epochs, unsigned int epochs_between_reports,
float desired_error, unsigned int epochs, void *user_data);
/*************************************************************************/
/* Class: training_data
Encapsulation of a training data set <struct fann_train_data> and
associated C API functions.
*/
class training_data
{
public:
/* Constructor: training_data
Default constructor creates an empty neural net.
Use <read_train_from_file>, <set_train_data> or <create_train_from_callback> to initialize.
*/
training_data() : train_data(NULL)
{
}
/* Constructor: training_data
Copy constructor constructs a copy of the training data.
Corresponds to the C API <fann_duplicate_train_data> function.
*/
training_data(const training_data &data)
{
destroy_train();
if (data.train_data != NULL)
{
train_data = fann_duplicate_train_data(data.train_data);
}
}
/* Destructor: ~training_data
Provides automatic cleanup of data.
Define USE_VIRTUAL_DESTRUCTOR if you need the destructor to be virtual.
See also:
<destroy>
*/
#ifdef USE_VIRTUAL_DESTRUCTOR
virtual
#endif
~training_data()
{
destroy_train();
}
/* Method: destroy
Destructs the training data. Called automatically by the destructor.
See also:
<~training_data>
*/
void destroy_train()
{
if (train_data != NULL)
{
fann_destroy_train(train_data);
train_data = NULL;
}
}
/* Method: read_train_from_file
Reads a file that stores training data.
The file must be formatted like:
>num_train_data num_input num_output
>inputdata seperated by space
>outputdata seperated by space
>
>.
>.
>.
>
>inputdata seperated by space
>outputdata seperated by space
See also:
<neural_net::train_on_data>, <save_train>, <fann_read_train_from_file>
This function appears in FANN >= 1.0.0
*/
bool read_train_from_file(const std::string &filename)
{
destroy_train();
train_data = fann_read_train_from_file(filename.c_str());
return (train_data != NULL);
}
/* Method: save_train
Save the training structure to a file, with the format as specified in <read_train_from_file>
Return:
The function returns true on success and false on failure.
See also:
<read_train_from_file>, <save_train_to_fixed>, <fann_save_train>
This function appears in FANN >= 1.0.0.
*/
bool save_train(const std::string &filename)
{
if (train_data == NULL)
{
return false;
}
if (fann_save_train(train_data, filename.c_str()) == -1)
{
return false;
}
return true;
}
/* Method: save_train_to_fixed
Saves the training structure to a fixed point data file.
This function is very usefull for testing the quality of a fixed point network.
Return:
The function returns true on success and false on failure.
See also:
<save_train>, <fann_save_train_to_fixed>
This function appears in FANN >= 1.0.0.
*/
bool save_train_to_fixed(const std::string &filename, unsigned int decimal_point)
{
if (train_data == NULL)
{
return false;
}
if (fann_save_train_to_fixed(train_data, filename.c_str(), decimal_point) == -1)
{
return false;
}
return true;
}
/* Method: shuffle_train_data
Shuffles training data, randomizing the order.
This is recommended for incremental training, while it have no influence during batch training.
This function appears in FANN >= 1.1.0.
*/
void shuffle_train_data()
{
if (train_data != NULL)
{
fann_shuffle_train_data(train_data);
}
}
/* Method: merge_train_data
Merges the data into the data contained in the <training_data>.
This function appears in FANN >= 1.1.0.
*/
void merge_train_data(const training_data &data)
{
fann_train_data *new_data = fann_merge_train_data(train_data, data.train_data);
if (new_data != NULL)
{
destroy_train();
train_data = new_data;
}
}
/* Method: length_train_data
Returns the number of training patterns in the <training_data>.
See also:
<num_input_train_data>, <num_output_train_data>, <fann_length_train_data>
This function appears in FANN >= 2.0.0.
*/
unsigned int length_train_data()
{
if (train_data == NULL)
{
return 0;
}
else
{
return fann_length_train_data(train_data);
}
}
/* Method: num_input_train_data
Returns the number of inputs in each of the training patterns in the <training_data>.
See also:
<num_output_train_data>, <length_train_data>, <fann_num_input_train_data>
This function appears in FANN >= 2.0.0.
*/
unsigned int num_input_train_data()
{
if (train_data == NULL)
{
return 0;
}
else
{
return fann_num_input_train_data(train_data);
}
}
/* Method: num_output_train_data
Returns the number of outputs in each of the training patterns in the <struct fann_train_data>.
See also:
<num_input_train_data>, <length_train_data>, <fann_num_output_train_data>
This function appears in FANN >= 2.0.0.
*/
unsigned int num_output_train_data()
{
if (train_data == NULL)
{
return 0;
}
else
{
return fann_num_output_train_data(train_data);
}
}
/* Grant access to the encapsulated data since many situations
and applications creates the data from sources other than files
or uses the training data for testing and related functions */
/* Method: get_input
Returns:
A pointer to the array of input training data
See also:
<get_output>, <set_train_data>
*/
fann_type **get_input()
{
if (train_data == NULL)
{
return NULL;
}
else
{
return train_data->input;
}
}
/* Method: get_output
Returns:
A pointer to the array of output training data
See also:
<get_input>, <set_train_data>
*/
fann_type **get_output()
{
if (train_data == NULL)
{
return NULL;
}
else
{
return train_data->output;
}
}
/* Method: set_train_data
Set the training data to the input and output data provided.
A copy of the data is made so there are no restrictions on the
allocation of the input/output data and the caller is responsible
for the deallocation of the data pointed to by input and output.
Parameters:
num_data - The number of training data
num_input - The number of inputs per training data
num_output - The number of ouputs per training data
input - The set of inputs (a pointer to an array of pointers to arrays of floating point data)
output - The set of desired outputs (a pointer to an array of pointers to arrays of floating point data)
See also:
<get_input>, <get_output>
*/
void set_train_data(unsigned int num_data,
unsigned int num_input, fann_type **input,
unsigned int num_output, fann_type **output)
{
// Uses the allocation method used in fann
struct fann_train_data *data =
(struct fann_train_data *)malloc(sizeof(struct fann_train_data));
data->input = (fann_type **)calloc(num_data, sizeof(fann_type *));
data->output = (fann_type **)calloc(num_data, sizeof(fann_type *));
data->num_data = num_data;
data->num_input = num_input;
data->num_output = num_output;
fann_type *data_input = (fann_type *)calloc(num_input*num_data, sizeof(fann_type));
fann_type *data_output = (fann_type *)calloc(num_output*num_data, sizeof(fann_type));
for (unsigned int i = 0; i < num_data; ++i)
{
data->input[i] = data_input;
data_input += num_input;
for (unsigned int j = 0; j < num_input; ++j)
{
data->input[i][j] = input[i][j];
}
data->output[i] = data_output;
data_output += num_output;
for (unsigned int j = 0; j < num_output; ++j)
{
data->output[i][j] = output[i][j];
}
}
set_train_data(data);
}
private:
/* Set the training data to the struct fann_training_data pointer.
The struct has to be allocated with malloc to be compatible
with fann_destroy. */
void set_train_data(struct fann_train_data *data)
{
destroy_train();
train_data = data;
}
public:
/*********************************************************************/
/* Method: create_train_from_callback
Creates the training data struct from a user supplied function.
As the training data are numerable (data 1, data 2...), the user must write
a function that receives the number of the training data set (input,output)
and returns the set.
Parameters:
num_data - The number of training data
num_input - The number of inputs per training data
num_output - The number of ouputs per training data
user_function - The user suplied function
Parameters for the user function:
num - The number of the training data set
num_input - The number of inputs per training data
num_output - The number of ouputs per training data
input - The set of inputs
output - The set of desired outputs
See also:
<training_data::read_train_from_file>, <neural_net::train_on_data>,
<fann_create_train_from_callback>
This function appears in FANN >= 2.1.0
*/
void create_train_from_callback(unsigned int num_data,
unsigned int num_input,
unsigned int num_output,
void (FANN_API *user_function)( unsigned int,
unsigned int,
unsigned int,
fann_type * ,
fann_type * ))
{
destroy_train();
train_data = fann_create_train_from_callback(num_data, num_input, num_output, user_function);
}
/* Method: scale_input_train_data
Scales the inputs in the training data to the specified range.
See also:
<scale_output_train_data>, <scale_train_data>, <fann_scale_input_train_data>
This function appears in FANN >= 2.0.0.
*/
void scale_input_train_data(fann_type new_min, fann_type new_max)
{
if (train_data != NULL)
{
fann_scale_input_train_data(train_data, new_min, new_max);
}
}
/* Method: scale_output_train_data
Scales the outputs in the training data to the specified range.
See also:
<scale_input_train_data>, <scale_train_data>, <fann_scale_output_train_data>
This function appears in FANN >= 2.0.0.
*/
void scale_output_train_data(fann_type new_min, fann_type new_max)
{
if (train_data != NULL)
{
fann_scale_output_train_data(train_data, new_min, new_max);
}
}
/* Method: scale_train_data
Scales the inputs and outputs in the training data to the specified range.
See also:
<scale_output_train_data>, <scale_input_train_data>, <fann_scale_train_data>
This function appears in FANN >= 2.0.0.
*/
void scale_train_data(fann_type new_min, fann_type new_max)
{
if (train_data != NULL)
{
fann_scale_train_data(train_data, new_min, new_max);
}
}
/* Method: subset_train_data
Changes the training data to a subset, starting at position *pos*
and *length* elements forward. Use the copy constructor to work
on a new copy of the training data.
>FANN::training_data full_data_set;
>full_data_set.read_train_from_file("somefile.train");
>FANN::training_data *small_data_set = new FANN::training_data(full_data_set);
>small_data_set->subset_train_data(0, 2); // Only use first two
>// Use small_data_set ...
>delete small_data_set;
See also:
<fann_subset_train_data>
This function appears in FANN >= 2.0.0.
*/
void subset_train_data(unsigned int pos, unsigned int length)
{
if (train_data != NULL)
{
struct fann_train_data *temp = fann_subset_train_data(train_data, pos, length);
destroy_train();
train_data = temp;
}
}
/*********************************************************************/
protected:
/* The neural_net class has direct access to the training data */
friend class neural_net;
/* Pointer to the encapsulated training data */
struct fann_train_data* train_data;
};
/*************************************************************************/
/* Class: neural_net
Encapsulation of a neural network <struct fann> and
associated C API functions.
*/
class neural_net
{
public:
/* Constructor: neural_net
Default constructor creates an empty neural net.
Use one of the create functions to create the neural network.
See also:
<create_standard>, <create_sparse>, <create_shortcut>,
<create_standard_array>, <create_sparse_array>, <create_shortcut_array>
*/
neural_net() : ann(NULL)
{
}
/* Constructor neural_net
Creates a copy the other neural_net.
See also:
<copy_from_struct_fann>
*/
neural_net(const neural_net& other)
{
copy_from_struct_fann(other.ann);
}
/* Constructor: neural_net
Creates a copy the other neural_net.
See also:
<copy_from_struct_fann>
*/
neural_net(struct fann* other)
{
copy_from_struct_fann(other);
}
/* Method: copy_from_struct_fann
Set the internal fann struct to a copy of other
*/
void copy_from_struct_fann(struct fann* other)
{
destroy();
if (other != NULL)
ann=fann_copy(other);
}
/* Destructor: ~neural_net
Provides automatic cleanup of data.
Define USE_VIRTUAL_DESTRUCTOR if you need the destructor to be virtual.
See also:
<destroy>
*/
#ifdef USE_VIRTUAL_DESTRUCTOR
virtual
#endif
~neural_net()
{
destroy();
}
/* Method: destroy
Destructs the entire network. Called automatically by the destructor.
See also:
<~neural_net>
*/
void destroy()
{
if (ann != NULL)
{
user_context *user_data = static_cast<user_context *>(fann_get_user_data(ann));
if (user_data != NULL)
delete user_data;
fann_destroy(ann);
ann = NULL;
}
}
/* Method: create_standard
Creates a standard fully connected backpropagation neural network.
There will be a bias neuron in each layer (except the output layer),
and this bias neuron will be connected to all neurons in the next layer.
When running the network, the bias nodes always emits 1.
Parameters:
num_layers - The total number of layers including the input and the output layer.
... - Integer values determining the number of neurons in each layer starting with the
input layer and ending with the output layer.
Returns:
Boolean true if the network was created, false otherwise.
Example:
>const unsigned int num_layers = 3;
>const unsigned int num_input = 2;
>const unsigned int num_hidden = 3;
>const unsigned int num_output = 1;
>
>FANN::neural_net net;
>net.create_standard(num_layers, num_input, num_hidden, num_output);
See also:
<create_standard_array>, <create_sparse>, <create_shortcut>,
<fann_create_standard_array>
This function appears in FANN >= 2.0.0.
*/
bool create_standard(unsigned int num_layers, ...)
{
va_list layers;
unsigned int arr[num_layers];
va_start(layers, num_layers);
for (unsigned int ii = 0; ii < num_layers; ii++)
arr[ii] = va_arg(layers, unsigned int);
bool status = create_standard_array(num_layers, arr);
va_end(layers);
return status;
}
/* Method: create_standard_array
Just like <create_standard>, but with an array of layer sizes
instead of individual parameters.
See also:
<create_standard>, <create_sparse>, <create_shortcut>,
<fann_create_standard>
This function appears in FANN >= 2.0.0.
*/
bool create_standard_array(unsigned int num_layers, const unsigned int * layers)
{
destroy();
ann = fann_create_standard_array(num_layers, layers);
return (ann != NULL);
}
/* Method: create_sparse
Creates a standard backpropagation neural network, which is not fully connected.
Parameters:
connection_rate - The connection rate controls how many connections there will be in the
network. If the connection rate is set to 1, the network will be fully
connected, but if it is set to 0.5 only half of the connections will be set.
A connection rate of 1 will yield the same result as <fann_create_standard>
num_layers - The total number of layers including the input and the output layer.
... - Integer values determining the number of neurons in each layer starting with the
input layer and ending with the output layer.
Returns:
Boolean true if the network was created, false otherwise.
See also:
<create_standard>, <create_sparse_array>, <create_shortcut>,
<fann_create_sparse>
This function appears in FANN >= 2.0.0.
*/
bool create_sparse(float connection_rate, unsigned int num_layers, ...)
{
va_list layers;
unsigned int arr[num_layers];
va_start(layers, num_layers);
for (unsigned int ii = 0; ii < num_layers; ii++)
arr[ii] = va_arg(layers, unsigned int);
bool status = create_sparse_array(connection_rate, num_layers, arr);
va_end(layers);
return status;
}
/* Method: create_sparse_array
Just like <create_sparse>, but with an array of layer sizes
instead of individual parameters.
See <create_sparse> for a description of the parameters.
See also:
<create_standard>, <create_sparse>, <create_shortcut>,
<fann_create_sparse_array>
This function appears in FANN >= 2.0.0.
*/
bool create_sparse_array(float connection_rate,
unsigned int num_layers, const unsigned int * layers)
{
destroy();
ann = fann_create_sparse_array(connection_rate, num_layers, layers);
return (ann != NULL);
}
/* Method: create_shortcut
Creates a standard backpropagation neural network, which is not fully connected and which
also has shortcut connections.
Shortcut connections are connections that skip layers. A fully connected network with shortcut
connections, is a network where all neurons are connected to all neurons in later layers.
Including direct connections from the input layer to the output layer.
See <create_standard> for a description of the parameters.
See also:
<create_standard>, <create_sparse>, <create_shortcut_array>,
<fann_create_shortcut>
This function appears in FANN >= 2.0.0.
*/
bool create_shortcut(unsigned int num_layers, ...)
{
va_list layers;
unsigned int arr[num_layers];
va_start(layers, num_layers);
for (unsigned int ii = 0; ii < num_layers; ii++)
arr[ii] = va_arg(layers, unsigned int);
bool status = create_shortcut_array(num_layers, arr);
va_end(layers);
return status;
}
/* Method: create_shortcut_array
Just like <create_shortcut>, but with an array of layer sizes
instead of individual parameters.
See <create_standard_array> for a description of the parameters.
See also:
<create_standard>, <create_sparse>, <create_shortcut>,
<fann_create_shortcut_array>
This function appears in FANN >= 2.0.0.
*/
bool create_shortcut_array(unsigned int num_layers,
const unsigned int * layers)
{
destroy();
ann = fann_create_shortcut_array(num_layers, layers);
return (ann != NULL);
}
/* Method: run
Will run input through the neural network, returning an array of outputs, the number of which being
equal to the number of neurons in the output layer.
See also:
<test>, <fann_run>
This function appears in FANN >= 1.0.0.
*/
fann_type* run(fann_type *input)
{
if (ann == NULL)
{
return NULL;
}
return fann_run(ann, input);
}
/* Method: randomize_weights
Give each connection a random weight between *min_weight* and *max_weight*
From the beginning the weights are random between -0.1 and 0.1.
See also:
<init_weights>, <fann_randomize_weights>
This function appears in FANN >= 1.0.0.
*/
void randomize_weights(fann_type min_weight, fann_type max_weight)
{
if (ann != NULL)
{
fann_randomize_weights(ann, min_weight, max_weight);
}
}
/* Method: init_weights
Initialize the weights using Widrow + Nguyen's algorithm.
This function behaves similarly to fann_randomize_weights. It will use the algorithm developed
by Derrick Nguyen and Bernard Widrow to set the weights in such a way
as to speed up training. This technique is not always successful, and in some cases can be less
efficient than a purely random initialization.
The algorithm requires access to the range of the input data (ie, largest and smallest input),
and therefore accepts a second argument, data, which is the training data that will be used to
train the network.
See also:
<randomize_weights>, <training_data::read_train_from_file>,
<fann_init_weights>
This function appears in FANN >= 1.1.0.
*/
void init_weights(const training_data &data)
{
if ((ann != NULL) && (data.train_data != NULL))
{
fann_init_weights(ann, data.train_data);
}
}
/* Method: print_connections
Will print the connections of the ann in a compact matrix, for easy viewing of the internals
of the ann.
The output from fann_print_connections on a small (2 2 1) network trained on the xor problem
>Layer / Neuron 012345
>L 1 / N 3 BBa...
>L 1 / N 4 BBA...
>L 1 / N 5 ......
>L 2 / N 6 ...BBA
>L 2 / N 7 ......
This network have five real neurons and two bias neurons. This gives a total of seven neurons
named from 0 to 6. The connections between these neurons can be seen in the matrix. "." is a
place where there is no connection, while a character tells how strong the connection is on a
scale from a-z. The two real neurons in the hidden layer (neuron 3 and 4 in layer 1) has
connection from the three neurons in the previous layer as is visible in the first two lines.
The output neuron (6) has connections form the three neurons in the hidden layer 3 - 5 as is
visible in the fourth line.
To simplify the matrix output neurons is not visible as neurons that connections can come from,
and input and bias neurons are not visible as neurons that connections can go to.
This function appears in FANN >= 1.2.0.
*/
void print_connections()
{
if (ann != NULL)
{
fann_print_connections(ann);
}
}
/* Method: create_from_file
Constructs a backpropagation neural network from a configuration file,
which have been saved by <save>.
See also:
<save>, <save_to_fixed>, <fann_create_from_file>
This function appears in FANN >= 1.0.0.
*/
bool create_from_file(const std::string &configuration_file)
{
destroy();
ann = fann_create_from_file(configuration_file.c_str());
return (ann != NULL);
}
/* Method: save
Save the entire network to a configuration file.
The configuration file contains all information about the neural network and enables
<create_from_file> to create an exact copy of the neural network and all of the
parameters associated with the neural network.
These two parameters (<set_callback>, <set_error_log>) are *NOT* saved
to the file because they cannot safely be ported to a different location. Also temporary
parameters generated during training like <get_MSE> is not saved.
Return:
The function returns 0 on success and -1 on failure.
See also:
<create_from_file>, <save_to_fixed>, <fann_save>
This function appears in FANN >= 1.0.0.
*/
bool save(const std::string &configuration_file)
{
if (ann == NULL)
{
return false;
}
if (fann_save(ann, configuration_file.c_str()) == -1)
{
return false;
}
return true;
}
/* Method: save_to_fixed
Saves the entire network to a configuration file.
But it is saved in fixed point format no matter which
format it is currently in.
This is usefull for training a network in floating points,
and then later executing it in fixed point.
The function returns the bit position of the fix point, which
can be used to find out how accurate the fixed point network will be.
A high value indicates high precision, and a low value indicates low
precision.
A negative value indicates very low precision, and a very
strong possibility for overflow.
(the actual fix point will be set to 0, since a negative
fix point does not make sence).
Generally, a fix point lower than 6 is bad, and should be avoided.
The best way to avoid this, is to have less connections to each neuron,
or just less neurons in each layer.
The fixed point use of this network is only intended for use on machines that
have no floating point processor, like an iPAQ. On normal computers the floating
point version is actually faster.
See also:
<create_from_file>, <save>, <fann_save_to_fixed>
This function appears in FANN >= 1.0.0.
*/
int save_to_fixed(const std::string &configuration_file)
{
int fixpoint = 0;
if (ann != NULL)
{
fixpoint = fann_save_to_fixed(ann, configuration_file.c_str());
}
return fixpoint;
}
#ifndef FIXEDFANN
/* Method: train
Train one iteration with a set of inputs, and a set of desired outputs.
This training is always incremental training (see <FANN::training_algorithm_enum>),
since only one pattern is presented.
Parameters:
ann - The neural network structure
input - an array of inputs. This array must be exactly <fann_get_num_input> long.
desired_output - an array of desired outputs. This array must be exactly <fann_get_num_output> long.
See also:
<train_on_data>, <train_epoch>, <fann_train>
This function appears in FANN >= 1.0.0.
*/
void train(fann_type *input, fann_type *desired_output)
{
if (ann != NULL)
{
fann_train(ann, input, desired_output);
}
}
/* Method: train_epoch
Train one epoch with a set of training data.
Train one epoch with the training data stored in data. One epoch is where all of
the training data is considered exactly once.
This function returns the MSE error as it is calculated either before or during
the actual training. This is not the actual MSE after the training epoch, but since
calculating this will require to go through the entire training set once more, it is
more than adequate to use this value during training.
The training algorithm used by this function is chosen by the <fann_set_training_algorithm>
function.
See also:
<train_on_data>, <test_data>, <fann_train_epoch>
This function appears in FANN >= 1.2.0.
*/
float train_epoch(const training_data &data)
{
float mse = 0.0f;
if ((ann != NULL) && (data.train_data != NULL))
{
mse = fann_train_epoch(ann, data.train_data);
}
return mse;
}
/* Method: train_on_data
Trains on an entire dataset, for a period of time.
This training uses the training algorithm chosen by <set_training_algorithm>,
and the parameters set for these training algorithms.
Parameters:
ann - The neural network
data - The data, which should be used during training
max_epochs - The maximum number of epochs the training should continue
epochs_between_reports - The number of epochs between printing a status report to stdout.
A value of zero means no reports should be printed.
desired_error - The desired <get_MSE> or <get_bit_fail>, depending on which stop function
is chosen by <set_train_stop_function>.
Instead of printing out reports every epochs_between_reports, a callback function can be called
(see <set_callback>).
See also:
<train_on_file>, <train_epoch>, <fann_train_on_data>
This function appears in FANN >= 1.0.0.
*/
void train_on_data(const training_data &data, unsigned int max_epochs,
unsigned int epochs_between_reports, float desired_error)
{
if ((ann != NULL) && (data.train_data != NULL))
{
fann_train_on_data(ann, data.train_data, max_epochs,
epochs_between_reports, desired_error);
}
}
/* Method: train_on_file
Does the same as <train_on_data>, but reads the training data directly from a file.
See also:
<train_on_data>, <fann_train_on_file>
This function appears in FANN >= 1.0.0.
*/
void train_on_file(const std::string &filename, unsigned int max_epochs,
unsigned int epochs_between_reports, float desired_error)
{
if (ann != NULL)
{
fann_train_on_file(ann, filename.c_str(),
max_epochs, epochs_between_reports, desired_error);
}
}
#endif /* NOT FIXEDFANN */
/* Method: test
Test with a set of inputs, and a set of desired outputs.
This operation updates the mean square error, but does not
change the network in any way.
See also:
<test_data>, <train>, <fann_test>
This function appears in FANN >= 1.0.0.
*/
fann_type * test(fann_type *input, fann_type *desired_output)
{
fann_type * output = NULL;
if (ann != NULL)
{
output = fann_test(ann, input, desired_output);
}
return output;
}
/* Method: test_data
Test a set of training data and calculates the MSE for the training data.
This function updates the MSE and the bit fail values.
See also:
<test>, <get_MSE>, <get_bit_fail>, <fann_test_data>
This function appears in FANN >= 1.2.0.
*/
float test_data(const training_data &data)
{
float mse = 0.0f;
if ((ann != NULL) && (data.train_data != NULL))
{
mse = fann_test_data(ann, data.train_data);
}
return mse;
}
/* Method: get_MSE
Reads the mean square error from the network.
Reads the mean square error from the network. This value is calculated during
training or testing, and can therefore sometimes be a bit off if the weights
have been changed since the last calculation of the value.
See also:
<test_data>, <fann_get_MSE>
This function appears in FANN >= 1.1.0.
*/
float get_MSE()
{
float mse = 0.0f;
if (ann != NULL)
{
mse = fann_get_MSE(ann);
}
return mse;
}
/* Method: reset_MSE
Resets the mean square error from the network.
This function also resets the number of bits that fail.
See also:
<get_MSE>, <get_bit_fail_limit>, <fann_reset_MSE>
This function appears in FANN >= 1.1.0
*/
void reset_MSE()
{
if (ann != NULL)
{
fann_reset_MSE(ann);
}
}
/* Method: set_callback
Sets the callback function for use during training. The user_data is passed to
the callback. It can point to arbitrary data that the callback might require and
can be NULL if it is not used.
See <FANN::callback_type> for more information about the callback function.
The default callback function simply prints out some status information.
This function appears in FANN >= 2.0.0.
*/
void set_callback(callback_type callback, void *user_data)
{
if (ann != NULL)
{
// Allocated data is also deleted in the destroy method called by the destructor
user_context *user_instance = static_cast<user_context *>(fann_get_user_data(ann));
if (user_instance != NULL)
delete user_instance;
user_instance = new user_context();
user_instance->user_callback = callback;
user_instance->user_data = user_data;
user_instance->net = this;
fann_set_user_data(ann, user_instance);
if (callback != NULL)
fann_set_callback(ann, &FANN::neural_net::internal_callback);
else
fann_set_callback(ann, NULL);
}
}
/* Method: print_parameters
Prints all of the parameters and options of the neural network
See also:
<fann_print_parameters>
This function appears in FANN >= 1.2.0.
*/
void print_parameters()
{
if (ann != NULL)
{
fann_print_parameters(ann);
}
}
/* Method: get_training_algorithm
Return the training algorithm as described by <FANN::training_algorithm_enum>.
This training algorithm is used by <train_on_data> and associated functions.
Note that this algorithm is also used during <cascadetrain_on_data>, although only
FANN::TRAIN_RPROP and FANN::TRAIN_QUICKPROP is allowed during cascade training.
The default training algorithm is FANN::TRAIN_RPROP.
See also:
<set_training_algorithm>, <FANN::training_algorithm_enum>,
<fann_get_training_algorithm>
This function appears in FANN >= 1.0.0.
*/
training_algorithm_enum get_training_algorithm()
{
fann_train_enum training_algorithm = FANN_TRAIN_INCREMENTAL;
if (ann != NULL)
{
training_algorithm = fann_get_training_algorithm(ann);
}
return static_cast<training_algorithm_enum>(training_algorithm);
}
/* Method: set_training_algorithm
Set the training algorithm.
More info available in <get_training_algorithm>
This function appears in FANN >= 1.0.0.
*/
void set_training_algorithm(training_algorithm_enum training_algorithm)
{
if (ann != NULL)
{
fann_set_training_algorithm(ann,
static_cast<fann_train_enum>(training_algorithm));
}
}
/* Method: get_learning_rate
Return the learning rate.
The learning rate is used to determine how aggressive training should be for some of the
training algorithms (FANN::TRAIN_INCREMENTAL, FANN::TRAIN_BATCH, FANN::TRAIN_QUICKPROP).
Do however note that it is not used in FANN::TRAIN_RPROP.
The default learning rate is 0.7.
See also:
<set_learning_rate>, <set_training_algorithm>,
<fann_get_learning_rate>
This function appears in FANN >= 1.0.0.
*/
float get_learning_rate()
{
float learning_rate = 0.0f;
if (ann != NULL)
{
learning_rate = fann_get_learning_rate(ann);
}
return learning_rate;
}
/* Method: set_learning_rate
Set the learning rate.
More info available in <get_learning_rate>
This function appears in FANN >= 1.0.0.
*/
void set_learning_rate(float learning_rate)
{
if (ann != NULL)
{
fann_set_learning_rate(ann, learning_rate);
}
}
/*************************************************************************************************************/
/* Method: get_activation_function
Get the activation function for neuron number *neuron* in layer number *layer*,
counting the input layer as layer 0.
It is not possible to get activation functions for the neurons in the input layer.
Information about the individual activation functions is available at <FANN::activation_function_enum>.
Returns:
The activation function for the neuron or -1 if the neuron is not defined in the neural network.
See also:
<set_activation_function_layer>, <set_activation_function_hidden>,
<set_activation_function_output>, <set_activation_steepness>,
<set_activation_function>, <fann_get_activation_function>
This function appears in FANN >= 2.1.0
*/
activation_function_enum get_activation_function(int layer, int neuron)
{
unsigned int activation_function = 0;
if (ann != NULL)
{
activation_function = fann_get_activation_function(ann, layer, neuron);
}
return static_cast<activation_function_enum>(activation_function);
}
/* Method: set_activation_function
Set the activation function for neuron number *neuron* in layer number *layer*,
counting the input layer as layer 0.
It is not possible to set activation functions for the neurons in the input layer.
When choosing an activation function it is important to note that the activation
functions have different range. FANN::SIGMOID is e.g. in the 0 - 1 range while
FANN::SIGMOID_SYMMETRIC is in the -1 - 1 range and FANN::LINEAR is unbound.
Information about the individual activation functions is available at <FANN::activation_function_enum>.
The default activation function is FANN::SIGMOID_STEPWISE.
See also:
<set_activation_function_layer>, <set_activation_function_hidden>,
<set_activation_function_output>, <set_activation_steepness>,
<get_activation_function>, <fann_set_activation_function>
This function appears in FANN >= 2.0.0.
*/
void set_activation_function(activation_function_enum activation_function, int layer, int neuron)
{
if (ann != NULL)
{
fann_set_activation_function(ann,
static_cast<fann_activationfunc_enum>(activation_function), layer, neuron);
}
}
/* Method: set_activation_function_layer
Set the activation function for all the neurons in the layer number *layer*,
counting the input layer as layer 0.
It is not possible to set activation functions for the neurons in the input layer.
See also:
<set_activation_function>, <set_activation_function_hidden>,
<set_activation_function_output>, <set_activation_steepness_layer>,
<fann_set_activation_function_layer>
This function appears in FANN >= 2.0.0.
*/
void set_activation_function_layer(activation_function_enum activation_function, int layer)
{
if (ann != NULL)
{
fann_set_activation_function_layer(ann,
static_cast<fann_activationfunc_enum>(activation_function), layer);
}
}
/* Method: set_activation_function_hidden
Set the activation function for all of the hidden layers.
See also:
<set_activation_function>, <set_activation_function_layer>,
<set_activation_function_output>, <set_activation_steepness_hidden>,
<fann_set_activation_function_hidden>
This function appears in FANN >= 1.0.0.
*/
void set_activation_function_hidden(activation_function_enum activation_function)
{
if (ann != NULL)
{
fann_set_activation_function_hidden(ann,
static_cast<fann_activationfunc_enum>(activation_function));
}
}
/* Method: set_activation_function_output
Set the activation function for the output layer.
See also:
<set_activation_function>, <set_activation_function_layer>,
<set_activation_function_hidden>, <set_activation_steepness_output>,
<fann_set_activation_function_output>
This function appears in FANN >= 1.0.0.
*/
void set_activation_function_output(activation_function_enum activation_function)
{
if (ann != NULL)
{
fann_set_activation_function_output(ann,
static_cast<fann_activationfunc_enum>(activation_function));
}
}
/* Method: get_activation_steepness
Get the activation steepness for neuron number *neuron* in layer number *layer*,
counting the input layer as layer 0.
It is not possible to get activation steepness for the neurons in the input layer.
The steepness of an activation function says something about how fast the activation function
goes from the minimum to the maximum. A high value for the activation function will also
give a more agressive training.
When training neural networks where the output values should be at the extremes (usually 0 and 1,
depending on the activation function), a steep activation function can be used (e.g. 1.0).
The default activation steepness is 0.5.
Returns:
The activation steepness for the neuron or -1 if the neuron is not defined in the neural network.
See also:
<set_activation_steepness_layer>, <set_activation_steepness_hidden>,
<set_activation_steepness_output>, <set_activation_function>,
<set_activation_steepness>, <fann_get_activation_steepness>
This function appears in FANN >= 2.1.0
*/
fann_type get_activation_steepness(int layer, int neuron)
{
fann_type activation_steepness = 0;
if (ann != NULL)
{
activation_steepness = fann_get_activation_steepness(ann, layer, neuron);
}
return activation_steepness;
}
/* Method: set_activation_steepness
Set the activation steepness for neuron number *neuron* in layer number *layer*,
counting the input layer as layer 0.
It is not possible to set activation steepness for the neurons in the input layer.
The steepness of an activation function says something about how fast the activation function
goes from the minimum to the maximum. A high value for the activation function will also
give a more agressive training.
When training neural networks where the output values should be at the extremes (usually 0 and 1,
depending on the activation function), a steep activation function can be used (e.g. 1.0).
The default activation steepness is 0.5.
See also:
<set_activation_steepness_layer>, <set_activation_steepness_hidden>,
<set_activation_steepness_output>, <set_activation_function>,
<get_activation_steepness>, <fann_set_activation_steepness>
This function appears in FANN >= 2.0.0.
*/
void set_activation_steepness(fann_type steepness, int layer, int neuron)
{
if (ann != NULL)
{
fann_set_activation_steepness(ann, steepness, layer, neuron);
}
}
/* Method: set_activation_steepness_layer
Set the activation steepness all of the neurons in layer number *layer*,
counting the input layer as layer 0.
It is not possible to set activation steepness for the neurons in the input layer.
See also:
<set_activation_steepness>, <set_activation_steepness_hidden>,
<set_activation_steepness_output>, <set_activation_function_layer>,
<fann_set_activation_steepness_layer>
This function appears in FANN >= 2.0.0.
*/
void set_activation_steepness_layer(fann_type steepness, int layer)
{
if (ann != NULL)
{
fann_set_activation_steepness_layer(ann, steepness, layer);
}
}
/* Method: set_activation_steepness_hidden
Set the steepness of the activation steepness in all of the hidden layers.
See also:
<set_activation_steepness>, <set_activation_steepness_layer>,
<set_activation_steepness_output>, <set_activation_function_hidden>,
<fann_set_activation_steepness_hidden>
This function appears in FANN >= 1.2.0.
*/
void set_activation_steepness_hidden(fann_type steepness)
{
if (ann != NULL)
{
fann_set_activation_steepness_hidden(ann, steepness);
}
}
/* Method: set_activation_steepness_output
Set the steepness of the activation steepness in the output layer.
See also:
<set_activation_steepness>, <set_activation_steepness_layer>,
<set_activation_steepness_hidden>, <set_activation_function_output>,
<fann_set_activation_steepness_output>
This function appears in FANN >= 1.2.0.
*/
void set_activation_steepness_output(fann_type steepness)
{
if (ann != NULL)
{
fann_set_activation_steepness_output(ann, steepness);
}
}
/*************************************************************************************************************/
/* Method: get_train_error_function
Returns the error function used during training.
The error functions is described further in <FANN::error_function_enum>
The default error function is FANN::ERRORFUNC_TANH
See also:
<set_train_error_function>, <fann_get_train_error_function>
This function appears in FANN >= 1.2.0.
*/
error_function_enum get_train_error_function()
{
fann_errorfunc_enum train_error_function = FANN_ERRORFUNC_LINEAR;
if (ann != NULL)
{
train_error_function = fann_get_train_error_function(ann);
}
return static_cast<error_function_enum>(train_error_function);
}
/* Method: set_train_error_function
Set the error function used during training.
The error functions is described further in <FANN::error_function_enum>
See also:
<get_train_error_function>, <fann_set_train_error_function>
This function appears in FANN >= 1.2.0.
*/
void set_train_error_function(error_function_enum train_error_function)
{
if (ann != NULL)
{
fann_set_train_error_function(ann,
static_cast<fann_errorfunc_enum>(train_error_function));
}
}
/* Method: get_quickprop_decay
The decay is a small negative valued number which is the factor that the weights
should become smaller in each iteration during quickprop training. This is used
to make sure that the weights do not become too high during training.
The default decay is -0.0001.
See also:
<set_quickprop_decay>, <fann_get_quickprop_decay>
This function appears in FANN >= 1.2.0.
*/
float get_quickprop_decay()
{
float quickprop_decay = 0.0f;
if (ann != NULL)
{
quickprop_decay = fann_get_quickprop_decay(ann);
}
return quickprop_decay;
}
/* Method: set_quickprop_decay
Sets the quickprop decay factor.
See also:
<get_quickprop_decay>, <fann_set_quickprop_decay>
This function appears in FANN >= 1.2.0.
*/
void set_quickprop_decay(float quickprop_decay)
{
if (ann != NULL)
{
fann_set_quickprop_decay(ann, quickprop_decay);
}
}
/* Method: get_quickprop_mu
The mu factor is used to increase and decrease the step-size during quickprop training.
The mu factor should always be above 1, since it would otherwise decrease the step-size
when it was suppose to increase it.
The default mu factor is 1.75.
See also:
<set_quickprop_mu>, <fann_get_quickprop_mu>
This function appears in FANN >= 1.2.0.
*/
float get_quickprop_mu()
{
float quickprop_mu = 0.0f;
if (ann != NULL)
{
quickprop_mu = fann_get_quickprop_mu(ann);
}
return quickprop_mu;
}
/* Method: set_quickprop_mu
Sets the quickprop mu factor.
See also:
<get_quickprop_mu>, <fann_set_quickprop_mu>
This function appears in FANN >= 1.2.0.
*/
void set_quickprop_mu(float quickprop_mu)
{
if (ann != NULL)
{
fann_set_quickprop_mu(ann, quickprop_mu);
}
}
/* Method: get_rprop_increase_factor
The increase factor is a value larger than 1, which is used to
increase the step-size during RPROP training.
The default increase factor is 1.2.
See also:
<set_rprop_increase_factor>, <fann_get_rprop_increase_factor>
This function appears in FANN >= 1.2.0.
*/
float get_rprop_increase_factor()
{
float factor = 0.0f;
if (ann != NULL)
{
factor = fann_get_rprop_increase_factor(ann);
}
return factor;
}
/* Method: set_rprop_increase_factor
The increase factor used during RPROP training.
See also:
<get_rprop_increase_factor>, <fann_set_rprop_increase_factor>
This function appears in FANN >= 1.2.0.
*/
void set_rprop_increase_factor(float rprop_increase_factor)
{
if (ann != NULL)
{
fann_set_rprop_increase_factor(ann, rprop_increase_factor);
}
}
/* Method: get_rprop_decrease_factor
The decrease factor is a value smaller than 1, which is used to decrease the step-size during RPROP training.
The default decrease factor is 0.5.
See also:
<set_rprop_decrease_factor>, <fann_get_rprop_decrease_factor>
This function appears in FANN >= 1.2.0.
*/
float get_rprop_decrease_factor()
{
float factor = 0.0f;
if (ann != NULL)
{
factor = fann_get_rprop_decrease_factor(ann);
}
return factor;
}
/* Method: set_rprop_decrease_factor
The decrease factor is a value smaller than 1, which is used to decrease the step-size during RPROP training.
See also:
<get_rprop_decrease_factor>, <fann_set_rprop_decrease_factor>
This function appears in FANN >= 1.2.0.
*/
void set_rprop_decrease_factor(float rprop_decrease_factor)
{
if (ann != NULL)
{
fann_set_rprop_decrease_factor(ann, rprop_decrease_factor);
}
}
/* Method: get_rprop_delta_zero
The initial step-size is a small positive number determining how small the initial step-size may be.
The default value delta zero is 0.1.
See also:
<set_rprop_delta_zero>, <fann_get_rprop_delta_zero>
This function appears in FANN >= 2.1.0.
*/
float get_rprop_delta_zero()
{
float delta = 0.0f;
if (ann != NULL)
{
delta = fann_get_rprop_delta_zero(ann);
}
return delta;
}
/* Method: set_rprop_delta_zero
The initial step-size is a small positive number determining how small the initial step-size may be.
See also:
<get_rprop_delta_zero>, <fann_set_rprop_delta_zero>
This function appears in FANN >= 2.1.0.
*/
void set_rprop_delta_zero(float rprop_delta_zero)
{
if (ann != NULL)
{
fann_set_rprop_delta_zero(ann, rprop_delta_zero);
}
}
/* Method: get_rprop_delta_min
The minimum step-size is a small positive number determining how small the minimum step-size may be.
The default value delta min is 0.0.
See also:
<set_rprop_delta_min>, <fann_get_rprop_delta_min>
This function appears in FANN >= 1.2.0.
*/
float get_rprop_delta_min()
{
float delta = 0.0f;
if (ann != NULL)
{
delta = fann_get_rprop_delta_min(ann);
}
return delta;
}
/* Method: set_rprop_delta_min
The minimum step-size is a small positive number determining how small the minimum step-size may be.
See also:
<get_rprop_delta_min>, <fann_set_rprop_delta_min>
This function appears in FANN >= 1.2.0.
*/
void set_rprop_delta_min(float rprop_delta_min)
{
if (ann != NULL)
{
fann_set_rprop_delta_min(ann, rprop_delta_min);
}
}
/* Method: get_rprop_delta_max
The maximum step-size is a positive number determining how large the maximum step-size may be.
The default delta max is 50.0.
See also:
<set_rprop_delta_max>, <get_rprop_delta_min>, <fann_get_rprop_delta_max>
This function appears in FANN >= 1.2.0.
*/
float get_rprop_delta_max()
{
float delta = 0.0f;
if (ann != NULL)
{
delta = fann_get_rprop_delta_max(ann);
}
return delta;
}
/* Method: set_rprop_delta_max
The maximum step-size is a positive number determining how large the maximum step-size may be.
See also:
<get_rprop_delta_max>, <get_rprop_delta_min>, <fann_set_rprop_delta_max>
This function appears in FANN >= 1.2.0.
*/
void set_rprop_delta_max(float rprop_delta_max)
{
if (ann != NULL)
{
fann_set_rprop_delta_max(ann, rprop_delta_max);
}
}
/* Method: get_sarprop_weight_decay_shift
The sarprop weight decay shift.
The default delta max is -6.644.
See also:
<set_sarprop_weight_decay_shift>, <fann get_sarprop_weight_decay_shift>
This function appears in FANN >= 2.1.0.
*/
float get_sarprop_weight_decay_shift()
{
float res = 0.0f;
if (ann != NULL)
{
res = fann_get_rprop_delta_max(ann);
}
return res;
}
/* Method: set_sarprop_weight_decay_shift
Set the sarprop weight decay shift.
This function appears in FANN >= 2.1.0.
See also:
<get_sarprop_weight_decay_shift>, <fann_set_sarprop_weight_decay_shift>
*/
void set_sarprop_weight_decay_shift(float sarprop_weight_decay_shift)
{
if (ann != NULL)
{
fann_set_sarprop_weight_decay_shift(ann, sarprop_weight_decay_shift);
}
}
/* Method: get_sarprop_step_error_threshold_factor
The sarprop step error threshold factor.
The default delta max is 0.1.
See also:
<set_sarprop_step_error_threshold_factor>, <fann get_sarprop_step_error_threshold_factor>
This function appears in FANN >= 2.1.0.
*/
float get_sarprop_step_error_threshold_factor()
{
float res = 0.0f;
if (ann != NULL)
{
res = fann_get_rprop_delta_max(ann);
}
return res;
}
/* Method: set_sarprop_step_error_threshold_factor
Set the sarprop step error threshold factor.
This function appears in FANN >= 2.1.0.
See also:
<get_sarprop_step_error_threshold_factor>, <fann_set_sarprop_step_error_threshold_factor>
*/
void set_sarprop_step_error_threshold_factor(float sarprop_step_error_threshold_factor)
{
if (ann != NULL)
{
fann_set_sarprop_step_error_threshold_factor(ann, sarprop_step_error_threshold_factor);
}
}
/* Method: get_sarprop_step_error_shift
The get sarprop step error shift.
The default delta max is 1.385.
See also:
<set_sarprop_step_error_shift>, <fann get_sarprop_step_error_shift>
This function appears in FANN >= 2.1.0.
*/
float get_sarprop_step_error_shift()
{
float res = 0.0f;
if (ann != NULL)
{
res = fann_get_rprop_delta_max(ann);
}
return res;
}
/* Method: set_sarprop_step_error_shift
Set the sarprop step error shift.
This function appears in FANN >= 2.1.0.
See also:
<get_sarprop_step_error_shift>, <fann_set_sarprop_step_error_shift>
*/
void set_sarprop_step_error_shift(float sarprop_step_error_shift)
{
if (ann != NULL)
{
fann_set_sarprop_step_error_shift(ann, sarprop_step_error_shift);
}
}
/* Method: get_sarprop_temperature
The sarprop weight decay shift.
The default delta max is 0.015.
See also:
<set_sarprop_temperature>, <fann get_sarprop_temperature>
This function appears in FANN >= 2.1.0.
*/
float get_sarprop_temperature()
{
float res = 0.0f;
if (ann != NULL)
{
res = fann_get_rprop_delta_max(ann);
}
return res;
}
/* Method: set_sarprop_temperature
Set the sarprop_temperature.
This function appears in FANN >= 2.1.0.
See also:
<get_sarprop_temperature>, <fann_set_sarprop_temperature>
*/
void set_sarprop_temperature(float sarprop_temperature)
{
if (ann != NULL)
{
fann_set_sarprop_temperature(ann, sarprop_temperature);
}
}
/* Method: get_num_input
Get the number of input neurons.
This function appears in FANN >= 1.0.0.
*/
unsigned int get_num_input()
{
unsigned int num_input = 0;
if (ann != NULL)
{
num_input = fann_get_num_input(ann);
}
return num_input;
}
/* Method: get_num_output
Get the number of output neurons.
This function appears in FANN >= 1.0.0.
*/
unsigned int get_num_output()
{
unsigned int num_output = 0;
if (ann != NULL)
{
num_output = fann_get_num_output(ann);
}
return num_output;
}
/* Method: get_total_neurons
Get the total number of neurons in the entire network. This number does also include the
bias neurons, so a 2-4-2 network has 2+4+2 +2(bias) = 10 neurons.
This function appears in FANN >= 1.0.0.
*/
unsigned int get_total_neurons()
{
if (ann == NULL)
{
return 0;
}
return fann_get_total_neurons(ann);
}
/* Method: get_total_connections
Get the total number of connections in the entire network.
This function appears in FANN >= 1.0.0.
*/
unsigned int get_total_connections()
{
if (ann == NULL)
{
return 0;
}
return fann_get_total_connections(ann);
}
#ifdef FIXEDFANN
/* Method: get_decimal_point
Returns the position of the decimal point in the ann.
This function is only available when the ANN is in fixed point mode.
The decimal point is described in greater detail in the tutorial <Fixed Point Usage>.
See also:
<Fixed Point Usage>, <get_multiplier>, <save_to_fixed>,
<training_data::save_train_to_fixed>, <fann_get_decimal_point>
This function appears in FANN >= 1.0.0.
*/
unsigned int get_decimal_point()
{
if (ann == NULL)
{
return 0;
}
return fann_get_decimal_point(ann);
}
/* Method: get_multiplier
Returns the multiplier that fix point data is multiplied with.
This function is only available when the ANN is in fixed point mode.
The multiplier is the used to convert between floating point and fixed point notation.
A floating point number is multiplied with the multiplier in order to get the fixed point
number and visa versa.
The multiplier is described in greater detail in the tutorial <Fixed Point Usage>.
See also:
<Fixed Point Usage>, <get_decimal_point>, <save_to_fixed>,
<training_data::save_train_to_fixed>, <fann_get_multiplier>
This function appears in FANN >= 1.0.0.
*/
unsigned int get_multiplier()
{
if (ann == NULL)
{
return 0;
}
return fann_get_multiplier(ann);
}
#endif /* FIXEDFANN */
/*********************************************************************/
/* Method: get_network_type
Get the type of neural network it was created as.
Returns:
The neural network type from enum <FANN::network_type_enum>
See Also:
<fann_get_network_type>
This function appears in FANN >= 2.1.0
*/
network_type_enum get_network_type()
{
fann_nettype_enum network_type = FANN_NETTYPE_LAYER;
if (ann != NULL)
{
network_type = fann_get_network_type(ann);
}
return static_cast<network_type_enum>(network_type);
}
/* Method: get_connection_rate
Get the connection rate used when the network was created
Returns:
The connection rate
See also:
<fann_get_connection_rate>
This function appears in FANN >= 2.1.0
*/
float get_connection_rate()
{
if (ann == NULL)
{
return 0;
}
return fann_get_connection_rate(ann);
}
/* Method: get_num_layers
Get the number of layers in the network
Returns:
The number of layers in the neural network
See also:
<fann_get_num_layers>
This function appears in FANN >= 2.1.0
*/
unsigned int get_num_layers()
{
if (ann == NULL)
{
return 0;
}
return fann_get_num_layers(ann);
}
/* Method: get_layer_array
Get the number of neurons in each layer in the network.
Bias is not included so the layers match the create methods.
The layers array must be preallocated to at least
sizeof(unsigned int) * get_num_layers() long.
See also:
<fann_get_layer_array>
This function appears in FANN >= 2.1.0
*/
void get_layer_array(unsigned int *layers)
{
if (ann != NULL)
{
fann_get_layer_array(ann, layers);
}
}
/* Method: get_bias_array
Get the number of bias in each layer in the network.
The bias array must be preallocated to at least
sizeof(unsigned int) * get_num_layers() long.
See also:
<fann_get_bias_array>
This function appears in FANN >= 2.1.0
*/
void get_bias_array(unsigned int *bias)
{
if (ann != NULL)
{
fann_get_bias_array(ann, bias);
}
}
/* Method: get_connection_array
Get the connections in the network.
The connections array must be preallocated to at least
sizeof(struct fann_connection) * get_total_connections() long.
See also:
<fann_get_connection_array>
This function appears in FANN >= 2.1.0
*/
void get_connection_array(connection *connections)
{
if (ann != NULL)
{
fann_get_connection_array(ann, connections);
}
}
/* Method: set_weight_array
Set connections in the network.
Only the weights can be changed, connections and weights are ignored
if they do not already exist in the network.
The array must have sizeof(struct fann_connection) * num_connections size.
See also:
<fann_set_weight_array>
This function appears in FANN >= 2.1.0
*/
void set_weight_array(connection *connections, unsigned int num_connections)
{
if (ann != NULL)
{
fann_set_weight_array(ann, connections, num_connections);
}
}
/* Method: set_weight
Set a connection in the network.
Only the weights can be changed. The connection/weight is
ignored if it does not already exist in the network.
See also:
<fann_set_weight>
This function appears in FANN >= 2.1.0
*/
void set_weight(unsigned int from_neuron, unsigned int to_neuron, fann_type weight)
{
if (ann != NULL)
{
fann_set_weight(ann, from_neuron, to_neuron, weight);
}
}
/*********************************************************************/
/* Method: get_learning_momentum
Get the learning momentum.
The learning momentum can be used to speed up FANN::TRAIN_INCREMENTAL training.
A too high momentum will however not benefit training. Setting momentum to 0 will
be the same as not using the momentum parameter. The recommended value of this parameter
is between 0.0 and 1.0.
The default momentum is 0.
See also:
<set_learning_momentum>, <set_training_algorithm>
This function appears in FANN >= 2.0.0.
*/
float get_learning_momentum()
{
float learning_momentum = 0.0f;
if (ann != NULL)
{
learning_momentum = fann_get_learning_momentum(ann);
}
return learning_momentum;
}
/* Method: set_learning_momentum
Set the learning momentum.
More info available in <get_learning_momentum>
This function appears in FANN >= 2.0.0.
*/
void set_learning_momentum(float learning_momentum)
{
if (ann != NULL)
{
fann_set_learning_momentum(ann, learning_momentum);
}
}
/* Method: get_train_stop_function
Returns the the stop function used during training.
The stop function is described further in <FANN::stop_function_enum>
The default stop function is FANN::STOPFUNC_MSE
See also:
<get_train_stop_function>, <get_bit_fail_limit>
This function appears in FANN >= 2.0.0.
*/
stop_function_enum get_train_stop_function()
{
enum fann_stopfunc_enum stopfunc = FANN_STOPFUNC_MSE;
if (ann != NULL)
{
stopfunc = fann_get_train_stop_function(ann);
}
return static_cast<stop_function_enum>(stopfunc);
}
/* Method: set_train_stop_function
Set the stop function used during training.
The stop function is described further in <FANN::stop_function_enum>
See also:
<get_train_stop_function>
This function appears in FANN >= 2.0.0.
*/
void set_train_stop_function(stop_function_enum train_stop_function)
{
if (ann != NULL)
{
fann_set_train_stop_function(ann,
static_cast<enum fann_stopfunc_enum>(train_stop_function));
}
}
/* Method: get_bit_fail_limit
Returns the bit fail limit used during training.
The bit fail limit is used during training when the <FANN::stop_function_enum> is set to FANN_STOPFUNC_BIT.
The limit is the maximum accepted difference between the desired output and the actual output during
training. Each output that diverges more than this limit is counted as an error bit.
This difference is divided by two when dealing with symmetric activation functions,
so that symmetric and not symmetric activation functions can use the same limit.
The default bit fail limit is 0.35.
See also:
<set_bit_fail_limit>
This function appears in FANN >= 2.0.0.
*/
fann_type get_bit_fail_limit()
{
fann_type bit_fail_limit = 0.0f;
if (ann != NULL)
{
bit_fail_limit = fann_get_bit_fail_limit(ann);
}
return bit_fail_limit;
}
/* Method: set_bit_fail_limit
Set the bit fail limit used during training.
See also:
<get_bit_fail_limit>
This function appears in FANN >= 2.0.0.
*/
void set_bit_fail_limit(fann_type bit_fail_limit)
{
if (ann != NULL)
{
fann_set_bit_fail_limit(ann, bit_fail_limit);
}
}
/* Method: get_bit_fail
The number of fail bits; means the number of output neurons which differ more
than the bit fail limit (see <get_bit_fail_limit>, <set_bit_fail_limit>).
The bits are counted in all of the training data, so this number can be higher than
the number of training data.
This value is reset by <reset_MSE> and updated by all the same functions which also
updates the MSE value (e.g. <test_data>, <train_epoch>)
See also:
<FANN::stop_function_enum>, <get_MSE>
This function appears in FANN >= 2.0.0
*/
unsigned int get_bit_fail()
{
unsigned int bit_fail = 0;
if (ann != NULL)
{
bit_fail = fann_get_bit_fail(ann);
}
return bit_fail;
}
/*********************************************************************/
/* Method: cascadetrain_on_data
Trains on an entire dataset, for a period of time using the Cascade2 training algorithm.
This algorithm adds neurons to the neural network while training, which means that it
needs to start with an ANN without any hidden layers. The neural network should also use
shortcut connections, so <create_shortcut> should be used to create the ANN like this:
>net.create_shortcut(2, train_data.num_input_train_data(), train_data.num_output_train_data());
This training uses the parameters set using the set_cascade_..., but it also uses another
training algorithm as it's internal training algorithm. This algorithm can be set to either
FANN::TRAIN_RPROP or FANN::TRAIN_QUICKPROP by <set_training_algorithm>, and the parameters
set for these training algorithms will also affect the cascade training.
Parameters:
data - The data, which should be used during training
max_neuron - The maximum number of neurons to be added to neural network
neurons_between_reports - The number of neurons between printing a status report to stdout.
A value of zero means no reports should be printed.
desired_error - The desired <fann_get_MSE> or <fann_get_bit_fail>, depending on which stop function
is chosen by <fann_set_train_stop_function>.
Instead of printing out reports every neurons_between_reports, a callback function can be called
(see <set_callback>).
See also:
<train_on_data>, <cascadetrain_on_file>, <fann_cascadetrain_on_data>
This function appears in FANN >= 2.0.0.
*/
void cascadetrain_on_data(const training_data &data, unsigned int max_neurons,
unsigned int neurons_between_reports, float desired_error)
{
if ((ann != NULL) && (data.train_data != NULL))
{
fann_cascadetrain_on_data(ann, data.train_data, max_neurons,
neurons_between_reports, desired_error);
}
}
/* Method: cascadetrain_on_file
Does the same as <cascadetrain_on_data>, but reads the training data directly from a file.
See also:
<fann_cascadetrain_on_data>, <fann_cascadetrain_on_file>
This function appears in FANN >= 2.0.0.
*/
void cascadetrain_on_file(const std::string &filename, unsigned int max_neurons,
unsigned int neurons_between_reports, float desired_error)
{
if (ann != NULL)
{
fann_cascadetrain_on_file(ann, filename.c_str(),
max_neurons, neurons_between_reports, desired_error);
}
}
/* Method: get_cascade_output_change_fraction
The cascade output change fraction is a number between 0 and 1 determining how large a fraction
the <get_MSE> value should change within <get_cascade_output_stagnation_epochs> during
training of the output connections, in order for the training not to stagnate. If the training
stagnates, the training of the output connections will be ended and new candidates will be prepared.
This means:
If the MSE does not change by a fraction of <get_cascade_output_change_fraction> during a
period of <get_cascade_output_stagnation_epochs>, the training of the output connections
is stopped because the training has stagnated.
If the cascade output change fraction is low, the output connections will be trained more and if the
fraction is high they will be trained less.
The default cascade output change fraction is 0.01, which is equalent to a 1% change in MSE.
See also:
<set_cascade_output_change_fraction>, <get_MSE>,
<get_cascade_output_stagnation_epochs>, <fann_get_cascade_output_change_fraction>
This function appears in FANN >= 2.0.0.
*/
float get_cascade_output_change_fraction()
{
float change_fraction = 0.0f;
if (ann != NULL)
{
change_fraction = fann_get_cascade_output_change_fraction(ann);
}
return change_fraction;
}
/* Method: set_cascade_output_change_fraction
Sets the cascade output change fraction.
See also:
<get_cascade_output_change_fraction>, <fann_set_cascade_output_change_fraction>
This function appears in FANN >= 2.0.0.
*/
void set_cascade_output_change_fraction(float cascade_output_change_fraction)
{
if (ann != NULL)
{
fann_set_cascade_output_change_fraction(ann, cascade_output_change_fraction);
}
}
/* Method: get_cascade_output_stagnation_epochs
The number of cascade output stagnation epochs determines the number of epochs training is allowed to
continue without changing the MSE by a fraction of <get_cascade_output_change_fraction>.
See more info about this parameter in <get_cascade_output_change_fraction>.
The default number of cascade output stagnation epochs is 12.
See also:
<set_cascade_output_stagnation_epochs>, <get_cascade_output_change_fraction>,
<fann_get_cascade_output_stagnation_epochs>
This function appears in FANN >= 2.0.0.
*/
unsigned int get_cascade_output_stagnation_epochs()
{
unsigned int stagnation_epochs = 0;
if (ann != NULL)
{
stagnation_epochs = fann_get_cascade_output_stagnation_epochs(ann);
}
return stagnation_epochs;
}
/* Method: set_cascade_output_stagnation_epochs
Sets the number of cascade output stagnation epochs.
See also:
<get_cascade_output_stagnation_epochs>, <fann_set_cascade_output_stagnation_epochs>
This function appears in FANN >= 2.0.0.
*/
void set_cascade_output_stagnation_epochs(unsigned int cascade_output_stagnation_epochs)
{
if (ann != NULL)
{
fann_set_cascade_output_stagnation_epochs(ann, cascade_output_stagnation_epochs);
}
}
/* Method: get_cascade_candidate_change_fraction
The cascade candidate change fraction is a number between 0 and 1 determining how large a fraction
the <get_MSE> value should change within <get_cascade_candidate_stagnation_epochs> during
training of the candidate neurons, in order for the training not to stagnate. If the training
stagnates, the training of the candidate neurons will be ended and the best candidate will be selected.
This means:
If the MSE does not change by a fraction of <get_cascade_candidate_change_fraction> during a
period of <get_cascade_candidate_stagnation_epochs>, the training of the candidate neurons
is stopped because the training has stagnated.
If the cascade candidate change fraction is low, the candidate neurons will be trained more and if the
fraction is high they will be trained less.
The default cascade candidate change fraction is 0.01, which is equalent to a 1% change in MSE.
See also:
<set_cascade_candidate_change_fraction>, <get_MSE>,
<get_cascade_candidate_stagnation_epochs>, <fann_get_cascade_candidate_change_fraction>
This function appears in FANN >= 2.0.0.
*/
float get_cascade_candidate_change_fraction()
{
float change_fraction = 0.0f;
if (ann != NULL)
{
change_fraction = fann_get_cascade_candidate_change_fraction(ann);
}
return change_fraction;
}
/* Method: set_cascade_candidate_change_fraction
Sets the cascade candidate change fraction.
See also:
<get_cascade_candidate_change_fraction>,
<fann_set_cascade_candidate_change_fraction>
This function appears in FANN >= 2.0.0.
*/
void set_cascade_candidate_change_fraction(float cascade_candidate_change_fraction)
{
if (ann != NULL)
{
fann_set_cascade_candidate_change_fraction(ann, cascade_candidate_change_fraction);
}
}
/* Method: get_cascade_candidate_stagnation_epochs
The number of cascade candidate stagnation epochs determines the number of epochs training is allowed to
continue without changing the MSE by a fraction of <get_cascade_candidate_change_fraction>.
See more info about this parameter in <get_cascade_candidate_change_fraction>.
The default number of cascade candidate stagnation epochs is 12.
See also:
<set_cascade_candidate_stagnation_epochs>, <get_cascade_candidate_change_fraction>,
<fann_get_cascade_candidate_stagnation_epochs>
This function appears in FANN >= 2.0.0.
*/
unsigned int get_cascade_candidate_stagnation_epochs()
{
unsigned int stagnation_epochs = 0;
if (ann != NULL)
{
stagnation_epochs = fann_get_cascade_candidate_stagnation_epochs(ann);
}
return stagnation_epochs;
}
/* Method: set_cascade_candidate_stagnation_epochs
Sets the number of cascade candidate stagnation epochs.
See also:
<get_cascade_candidate_stagnation_epochs>,
<fann_set_cascade_candidate_stagnation_epochs>
This function appears in FANN >= 2.0.0.
*/
void set_cascade_candidate_stagnation_epochs(unsigned int cascade_candidate_stagnation_epochs)
{
if (ann != NULL)
{
fann_set_cascade_candidate_stagnation_epochs(ann, cascade_candidate_stagnation_epochs);
}
}
/* Method: get_cascade_weight_multiplier
The weight multiplier is a parameter which is used to multiply the weights from the candidate neuron
before adding the neuron to the neural network. This parameter is usually between 0 and 1, and is used
to make the training a bit less aggressive.
The default weight multiplier is 0.4
See also:
<set_cascade_weight_multiplier>, <fann_get_cascade_weight_multiplier>
This function appears in FANN >= 2.0.0.
*/
fann_type get_cascade_weight_multiplier()
{
fann_type weight_multiplier = 0;
if (ann != NULL)
{
weight_multiplier = fann_get_cascade_weight_multiplier(ann);
}
return weight_multiplier;
}
/* Method: set_cascade_weight_multiplier
Sets the weight multiplier.
See also:
<get_cascade_weight_multiplier>, <fann_set_cascade_weight_multiplier>
This function appears in FANN >= 2.0.0.
*/
void set_cascade_weight_multiplier(fann_type cascade_weight_multiplier)
{
if (ann != NULL)
{
fann_set_cascade_weight_multiplier(ann, cascade_weight_multiplier);
}
}
/* Method: get_cascade_candidate_limit
The candidate limit is a limit for how much the candidate neuron may be trained.
The limit is a limit on the proportion between the MSE and candidate score.
Set this to a lower value to avoid overfitting and to a higher if overfitting is
not a problem.
The default candidate limit is 1000.0
See also:
<set_cascade_candidate_limit>, <fann_get_cascade_candidate_limit>
This function appears in FANN >= 2.0.0.
*/
fann_type get_cascade_candidate_limit()
{
fann_type candidate_limit = 0;
if (ann != NULL)
{
candidate_limit = fann_get_cascade_candidate_limit(ann);
}
return candidate_limit;
}
/* Method: set_cascade_candidate_limit
Sets the candidate limit.
See also:
<get_cascade_candidate_limit>, <fann_set_cascade_candidate_limit>
This function appears in FANN >= 2.0.0.
*/
void set_cascade_candidate_limit(fann_type cascade_candidate_limit)
{
if (ann != NULL)
{
fann_set_cascade_candidate_limit(ann, cascade_candidate_limit);
}
}
/* Method: get_cascade_max_out_epochs
The maximum out epochs determines the maximum number of epochs the output connections
may be trained after adding a new candidate neuron.
The default max out epochs is 150
See also:
<set_cascade_max_out_epochs>, <fann_get_cascade_max_out_epochs>
This function appears in FANN >= 2.0.0.
*/
unsigned int get_cascade_max_out_epochs()
{
unsigned int max_out_epochs = 0;
if (ann != NULL)
{
max_out_epochs = fann_get_cascade_max_out_epochs(ann);
}
return max_out_epochs;
}
/* Method: set_cascade_max_out_epochs
Sets the maximum out epochs.
See also:
<get_cascade_max_out_epochs>, <fann_set_cascade_max_out_epochs>
This function appears in FANN >= 2.0.0.
*/
void set_cascade_max_out_epochs(unsigned int cascade_max_out_epochs)
{
if (ann != NULL)
{
fann_set_cascade_max_out_epochs(ann, cascade_max_out_epochs);
}
}
/* Method: get_cascade_max_cand_epochs
The maximum candidate epochs determines the maximum number of epochs the input
connections to the candidates may be trained before adding a new candidate neuron.
The default max candidate epochs is 150
See also:
<set_cascade_max_cand_epochs>, <fann_get_cascade_max_cand_epochs>
This function appears in FANN >= 2.0.0.
*/
unsigned int get_cascade_max_cand_epochs()
{
unsigned int max_cand_epochs = 0;
if (ann != NULL)
{
max_cand_epochs = fann_get_cascade_max_cand_epochs(ann);
}
return max_cand_epochs;
}
/* Method: set_cascade_max_cand_epochs
Sets the max candidate epochs.
See also:
<get_cascade_max_cand_epochs>, <fann_set_cascade_max_cand_epochs>
This function appears in FANN >= 2.0.0.
*/
void set_cascade_max_cand_epochs(unsigned int cascade_max_cand_epochs)
{
if (ann != NULL)
{
fann_set_cascade_max_cand_epochs(ann, cascade_max_cand_epochs);
}
}
/* Method: get_cascade_num_candidates
The number of candidates used during training (calculated by multiplying <get_cascade_activation_functions_count>,
<get_cascade_activation_steepnesses_count> and <get_cascade_num_candidate_groups>).
The actual candidates is defined by the <get_cascade_activation_functions> and
<get_cascade_activation_steepnesses> arrays. These arrays define the activation functions
and activation steepnesses used for the candidate neurons. If there are 2 activation functions
in the activation function array and 3 steepnesses in the steepness array, then there will be
2x3=6 different candidates which will be trained. These 6 different candidates can be copied into
several candidate groups, where the only difference between these groups is the initial weights.
If the number of groups is set to 2, then the number of candidate neurons will be 2x3x2=12. The
number of candidate groups is defined by <set_cascade_num_candidate_groups>.
The default number of candidates is 6x4x2 = 48
See also:
<get_cascade_activation_functions>, <get_cascade_activation_functions_count>,
<get_cascade_activation_steepnesses>, <get_cascade_activation_steepnesses_count>,
<get_cascade_num_candidate_groups>, <fann_get_cascade_num_candidates>
This function appears in FANN >= 2.0.0.
*/
unsigned int get_cascade_num_candidates()
{
unsigned int num_candidates = 0;
if (ann != NULL)
{
num_candidates = fann_get_cascade_num_candidates(ann);
}
return num_candidates;
}
/* Method: get_cascade_activation_functions_count
The number of activation functions in the <get_cascade_activation_functions> array.
The default number of activation functions is 6.
See also:
<get_cascade_activation_functions>, <set_cascade_activation_functions>,
<fann_get_cascade_activation_functions_count>
This function appears in FANN >= 2.0.0.
*/
unsigned int get_cascade_activation_functions_count()
{
unsigned int activation_functions_count = 0;
if (ann != NULL)
{
activation_functions_count = fann_get_cascade_activation_functions_count(ann);
}
return activation_functions_count;
}
/* Method: get_cascade_activation_functions
The cascade activation functions array is an array of the different activation functions used by
the candidates.
See <get_cascade_num_candidates> for a description of which candidate neurons will be
generated by this array.
See also:
<get_cascade_activation_functions_count>, <set_cascade_activation_functions>,
<FANN::activation_function_enum>
This function appears in FANN >= 2.0.0.
*/
activation_function_enum * get_cascade_activation_functions()
{
enum fann_activationfunc_enum *activation_functions = NULL;
if (ann != NULL)
{
activation_functions = fann_get_cascade_activation_functions(ann);
}
return reinterpret_cast<activation_function_enum *>(activation_functions);
}
/* Method: set_cascade_activation_functions
Sets the array of cascade candidate activation functions. The array must be just as long
as defined by the count.
See <get_cascade_num_candidates> for a description of which candidate neurons will be
generated by this array.
See also:
<get_cascade_activation_steepnesses_count>, <get_cascade_activation_steepnesses>,
<fann_set_cascade_activation_functions>
This function appears in FANN >= 2.0.0.
*/
void set_cascade_activation_functions(activation_function_enum *cascade_activation_functions,
unsigned int cascade_activation_functions_count)
{
if (ann != NULL)
{
fann_set_cascade_activation_functions(ann,
reinterpret_cast<enum fann_activationfunc_enum *>(cascade_activation_functions),
cascade_activation_functions_count);
}
}
/* Method: get_cascade_activation_steepnesses_count
The number of activation steepnesses in the <get_cascade_activation_functions> array.
The default number of activation steepnesses is 4.
See also:
<get_cascade_activation_steepnesses>, <set_cascade_activation_functions>,
<fann_get_cascade_activation_steepnesses_count>
This function appears in FANN >= 2.0.0.
*/
unsigned int get_cascade_activation_steepnesses_count()
{
unsigned int activation_steepness_count = 0;
if (ann != NULL)
{
activation_steepness_count = fann_get_cascade_activation_steepnesses_count(ann);
}
return activation_steepness_count;
}
/* Method: get_cascade_activation_steepnesses
The cascade activation steepnesses array is an array of the different activation functions used by
the candidates.
See <get_cascade_num_candidates> for a description of which candidate neurons will be
generated by this array.
The default activation steepnesses is {0.25, 0.50, 0.75, 1.00}
See also:
<set_cascade_activation_steepnesses>, <get_cascade_activation_steepnesses_count>,
<fann_get_cascade_activation_steepnesses>
This function appears in FANN >= 2.0.0.
*/
fann_type *get_cascade_activation_steepnesses()
{
fann_type *activation_steepnesses = NULL;
if (ann != NULL)
{
activation_steepnesses = fann_get_cascade_activation_steepnesses(ann);
}
return activation_steepnesses;
}
/* Method: set_cascade_activation_steepnesses
Sets the array of cascade candidate activation steepnesses. The array must be just as long
as defined by the count.
See <get_cascade_num_candidates> for a description of which candidate neurons will be
generated by this array.
See also:
<get_cascade_activation_steepnesses>, <get_cascade_activation_steepnesses_count>,
<fann_set_cascade_activation_steepnesses>
This function appears in FANN >= 2.0.0.
*/
void set_cascade_activation_steepnesses(fann_type *cascade_activation_steepnesses,
unsigned int cascade_activation_steepnesses_count)
{
if (ann != NULL)
{
fann_set_cascade_activation_steepnesses(ann,
cascade_activation_steepnesses, cascade_activation_steepnesses_count);
}
}
/* Method: get_cascade_num_candidate_groups
The number of candidate groups is the number of groups of identical candidates which will be used
during training.
This number can be used to have more candidates without having to define new parameters for the candidates.
See <get_cascade_num_candidates> for a description of which candidate neurons will be
generated by this parameter.
The default number of candidate groups is 2
See also:
<set_cascade_num_candidate_groups>, <fann_get_cascade_num_candidate_groups>
This function appears in FANN >= 2.0.0.
*/
unsigned int get_cascade_num_candidate_groups()
{
unsigned int num_candidate_groups = 0;
if (ann != NULL)
{
num_candidate_groups = fann_get_cascade_num_candidate_groups(ann);
}
return num_candidate_groups;
}
/* Method: set_cascade_num_candidate_groups
Sets the number of candidate groups.
See also:
<get_cascade_num_candidate_groups>, <fann_set_cascade_num_candidate_groups>
This function appears in FANN >= 2.0.0.
*/
void set_cascade_num_candidate_groups(unsigned int cascade_num_candidate_groups)
{
if (ann != NULL)
{
fann_set_cascade_num_candidate_groups(ann, cascade_num_candidate_groups);
}
}
/*********************************************************************/
#ifndef FIXEDFANN
/* Method: scale_train
Scale input and output data based on previously calculated parameters.
See also:
<descale_train>, <fann_scale_train>
This function appears in FANN >= 2.1.0.
*/
void scale_train(training_data &data)
{
if (ann != NULL)
{
fann_scale_train(ann, data.train_data);
}
}
/* Method: descale_train
Descale input and output data based on previously calculated parameters.
See also:
<scale_train>, <fann_descale_train>
This function appears in FANN >= 2.1.0.
*/
void descale_train(training_data &data)
{
if (ann != NULL)
{
fann_descale_train(ann, data.train_data);
}
}
/* Method: set_input_scaling_params
Calculate scaling parameters for future use based on training data.
See also:
<set_output_scaling_params>, <fann_set_input_scaling_params>
This function appears in FANN >= 2.1.0.
*/
bool set_input_scaling_params(const training_data &data, float new_input_min, float new_input_max)
{
bool status = false;
if (ann != NULL)
{
status = (fann_set_input_scaling_params(ann, data.train_data, new_input_min, new_input_max) != -1);
}
return status;
}
/* Method: set_output_scaling_params
Calculate scaling parameters for future use based on training data.
See also:
<set_input_scaling_params>, <fann_set_output_scaling_params>
This function appears in FANN >= 2.1.0.
*/
bool set_output_scaling_params(const training_data &data, float new_output_min, float new_output_max)
{
bool status = false;
if (ann != NULL)
{
status = (fann_set_output_scaling_params(ann, data.train_data, new_output_min, new_output_max) != -1);
}
return status;
}
/* Method: set_scaling_params
Calculate scaling parameters for future use based on training data.
See also:
<clear_scaling_params>, <fann_set_scaling_params>
This function appears in FANN >= 2.1.0.
*/
bool set_scaling_params(const training_data &data,
float new_input_min, float new_input_max, float new_output_min, float new_output_max)
{
bool status = false;
if (ann != NULL)
{
status = (fann_set_scaling_params(ann, data.train_data,
new_input_min, new_input_max, new_output_min, new_output_max) != -1);
}
return status;
}
/* Method: clear_scaling_params
Clears scaling parameters.
See also:
<set_scaling_params>, <fann_clear_scaling_params>
This function appears in FANN >= 2.1.0.
*/
bool clear_scaling_params()
{
bool status = false;
if (ann != NULL)
{
status = (fann_clear_scaling_params(ann) != -1);
}
return status;
}
/* Method: scale_input
Scale data in input vector before feed it to ann based on previously calculated parameters.
See also:
<descale_input>, <scale_output>, <fann_scale_input>
This function appears in FANN >= 2.1.0.
*/
void scale_input(fann_type *input_vector)
{
if (ann != NULL)
{
fann_scale_input(ann, input_vector );
}
}
/* Method: scale_output
Scale data in output vector before feed it to ann based on previously calculated parameters.
See also:
<descale_output>, <scale_input>, <fann_scale_output>
This function appears in FANN >= 2.1.0.
*/
void scale_output(fann_type *output_vector)
{
if (ann != NULL)
{
fann_scale_output(ann, output_vector );
}
}
/* Method: descale_input
Scale data in input vector after get it from ann based on previously calculated parameters.
See also:
<scale_input>, <descale_output>, <fann_descale_input>
This function appears in FANN >= 2.1.0.
*/
void descale_input(fann_type *input_vector)
{
if (ann != NULL)
{
fann_descale_input(ann, input_vector );
}
}
/* Method: descale_output
Scale data in output vector after get it from ann based on previously calculated parameters.
See also:
<scale_output>, <descale_input>, <fann_descale_output>
This function appears in FANN >= 2.1.0.
*/
void descale_output(fann_type *output_vector)
{
if (ann != NULL)
{
fann_descale_output(ann, output_vector );
}
}
#endif /* FIXEDFANN */
/*********************************************************************/
/* Method: set_error_log
Change where errors are logged to.
If log_file is NULL, no errors will be printed.
If neural_net is empty i.e. ann is NULL, the default log will be set.
The default log is the log used when creating a neural_net.
This default log will also be the default for all new structs
that are created.
The default behavior is to log them to stderr.
See also:
<struct fann_error>, <fann_set_error_log>
This function appears in FANN >= 1.1.0.
*/
void set_error_log(FILE *log_file)
{
fann_set_error_log(reinterpret_cast<struct fann_error *>(ann), log_file);
}
/* Method: get_errno
Returns the last error number.
See also:
<fann_errno_enum>, <fann_reset_errno>, <fann_get_errno>
This function appears in FANN >= 1.1.0.
*/
unsigned int get_errno()
{
return fann_get_errno(reinterpret_cast<struct fann_error *>(ann));
}
/* Method: reset_errno
Resets the last error number.
This function appears in FANN >= 1.1.0.
*/
void reset_errno()
{
fann_reset_errno(reinterpret_cast<struct fann_error *>(ann));
}
/* Method: reset_errstr
Resets the last error string.
This function appears in FANN >= 1.1.0.
*/
void reset_errstr()
{
fann_reset_errstr(reinterpret_cast<struct fann_error *>(ann));
}
/* Method: get_errstr
Returns the last errstr.
This function calls <fann_reset_errno> and <fann_reset_errstr>
This function appears in FANN >= 1.1.0.
*/
std::string get_errstr()
{
return std::string(fann_get_errstr(reinterpret_cast<struct fann_error *>(ann)));
}
/* Method: print_error
Prints the last error to stderr.
This function appears in FANN >= 1.1.0.
*/
void print_error()
{
fann_print_error(reinterpret_cast<struct fann_error *>(ann));
}
/*********************************************************************/
private:
// Structure used by set_callback to hold information about a user callback
typedef struct user_context_type
{
callback_type user_callback; // Pointer to user callback function
void *user_data; // Arbitrary data pointer passed to the callback
neural_net *net; // This pointer for the neural network
} user_context;
// Internal callback used to convert from pointers to class references
static int FANN_API internal_callback(struct fann *ann, struct fann_train_data *train,
unsigned int max_epochs, unsigned int epochs_between_reports, float desired_error, unsigned int epochs)
{
user_context *user_data = static_cast<user_context *>(fann_get_user_data(ann));
if (user_data != NULL)
{
FANN::training_data data;
data.train_data = train;
int result = (*user_data->user_callback)(*user_data->net,
data, max_epochs, epochs_between_reports, desired_error, epochs, user_data);
data.train_data = NULL; // Prevent automatic cleanup
return result;
}
else
{
return -1; // This should not occur except if out of memory
}
}
protected:
// Pointer the encapsulated fann neural net structure
struct fann *ann;
};
/*************************************************************************/
}
#endif /* FANN_CPP_H_INCLUDED */
|