This file is indexed.

/usr/include/fann_train.h is in libfann-dev 2.2.0+ds-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
/*
Fast Artificial Neural Network Library (fann)
Copyright (C) 2003-2012 Steffen Nissen (sn@leenissen.dk)

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
*/

#ifndef __fann_train_h__
#define __fann_train_h__

/* Section: FANN Training 
 
 	There are many different ways of training neural networks and the FANN library supports
 	a number of different approaches. 
 	
 	Two fundementally different approaches are the most commonly used:
 	
 		Fixed topology training - The size and topology of the ANN is determined in advance
 			and the training alters the weights in order to minimize the difference between
 			the desired output values and the actual output values. This kind of training is 
 			supported by <fann_train_on_data>.
 			
 		Evolving topology training - The training start out with an empty ANN, only consisting
 			of input and output neurons. Hidden neurons and connections is the added during training,
 			in order to reach the same goal as for fixed topology training. This kind of training
 			is supported by <FANN Cascade Training>.
 */

/* Struct: struct fann_train_data
	Structure used to store data, for use with training.
	
	The data inside this structure should never be manipulated directly, but should use some 
	of the supplied functions in <Training Data Manipulation>.
	
	The training data structure is very usefull for storing data during training and testing of a
	neural network.
   
	See also:
	<fann_read_train_from_file>, <fann_train_on_data>, <fann_destroy_train>
*/
struct fann_train_data
{
	enum fann_errno_enum errno_f;
	FILE *error_log;
	char *errstr;

	unsigned int num_data;
	unsigned int num_input;
	unsigned int num_output;
	fann_type **input;
	fann_type **output;
};

/* Section: FANN Training */

/* Group: Training */

#ifndef FIXEDFANN
/* Function: fann_train

   Train one iteration with a set of inputs, and a set of desired outputs.
   This training is always incremental training (see <fann_train_enum>), since
   only one pattern is presented.
   
   Parameters:
   	ann - The neural network structure
   	input - an array of inputs. This array must be exactly <fann_get_num_input> long.
   	desired_output - an array of desired outputs. This array must be exactly <fann_get_num_output> long.
   	
   	See also:
   		<fann_train_on_data>, <fann_train_epoch>
   	
   	This function appears in FANN >= 1.0.0.
 */ 
FANN_EXTERNAL void FANN_API fann_train(struct fann *ann, fann_type * input,
									   fann_type * desired_output);

#endif	/* NOT FIXEDFANN */
	
/* Function: fann_test
   Test with a set of inputs, and a set of desired outputs.
   This operation updates the mean square error, but does not
   change the network in any way.
   
   See also:
   		<fann_test_data>, <fann_train>
   
   This function appears in FANN >= 1.0.0.
*/ 
FANN_EXTERNAL fann_type * FANN_API fann_test(struct fann *ann, fann_type * input,
												 fann_type * desired_output);

/* Function: fann_get_MSE
   Reads the mean square error from the network.
   
   Reads the mean square error from the network. This value is calculated during 
   training or testing, and can therefore sometimes be a bit off if the weights 
   have been changed since the last calculation of the value.
   
   See also:
   	<fann_test_data>

	This function appears in FANN >= 1.1.0.
 */ 
FANN_EXTERNAL float FANN_API fann_get_MSE(struct fann *ann);

/* Function: fann_get_bit_fail
	
	The number of fail bits; means the number of output neurons which differ more 
	than the bit fail limit (see <fann_get_bit_fail_limit>, <fann_set_bit_fail_limit>). 
	The bits are counted in all of the training data, so this number can be higher than
	the number of training data.
	
	This value is reset by <fann_reset_MSE> and updated by all the same functions which also
	updates the MSE value (e.g. <fann_test_data>, <fann_train_epoch>)
	
	See also:
		<fann_stopfunc_enum>, <fann_get_MSE>

	This function appears in FANN >= 2.0.0
*/
FANN_EXTERNAL unsigned int FANN_API fann_get_bit_fail(struct fann *ann);

/* Function: fann_reset_MSE
   Resets the mean square error from the network.
   
   This function also resets the number of bits that fail.
   
   See also:
   	<fann_get_MSE>, <fann_get_bit_fail_limit>
   
    This function appears in FANN >= 1.1.0
 */ 
FANN_EXTERNAL void FANN_API fann_reset_MSE(struct fann *ann);

/* Group: Training Data Training */

#ifndef FIXEDFANN
	
/* Function: fann_train_on_data

   Trains on an entire dataset, for a period of time. 
   
   This training uses the training algorithm chosen by <fann_set_training_algorithm>,
   and the parameters set for these training algorithms.
   
   Parameters:
   		ann - The neural network
   		data - The data, which should be used during training
   		max_epochs - The maximum number of epochs the training should continue
   		epochs_between_reports - The number of epochs between printing a status report to stdout.
   			A value of zero means no reports should be printed.
   		desired_error - The desired <fann_get_MSE> or <fann_get_bit_fail>, depending on which stop function
   			is chosen by <fann_set_train_stop_function>.

	Instead of printing out reports every epochs_between_reports, a callback function can be called 
	(see <fann_set_callback>).
	
	See also:
		<fann_train_on_file>, <fann_train_epoch>, <Parameters>

	This function appears in FANN >= 1.0.0.
*/ 
FANN_EXTERNAL void FANN_API fann_train_on_data(struct fann *ann, struct fann_train_data *data,
											   unsigned int max_epochs,
											   unsigned int epochs_between_reports,
											   float desired_error);

/* Function: fann_train_on_file
   
   Does the same as <fann_train_on_data>, but reads the training data directly from a file.
   
   See also:
   		<fann_train_on_data>

	This function appears in FANN >= 1.0.0.
*/ 
FANN_EXTERNAL void FANN_API fann_train_on_file(struct fann *ann, const char *filename,
											   unsigned int max_epochs,
											   unsigned int epochs_between_reports,
											   float desired_error);

/* Function: fann_train_epoch
   Train one epoch with a set of training data.
   
    Train one epoch with the training data stored in data. One epoch is where all of 
    the training data is considered exactly once.

	This function returns the MSE error as it is calculated either before or during 
	the actual training. This is not the actual MSE after the training epoch, but since 
	calculating this will require to go through the entire training set once more, it is 
	more than adequate to use this value during training.

	The training algorithm used by this function is chosen by the <fann_set_training_algorithm> 
	function.
	
	See also:
		<fann_train_on_data>, <fann_test_data>
		
	This function appears in FANN >= 1.2.0.
 */ 
FANN_EXTERNAL float FANN_API fann_train_epoch(struct fann *ann, struct fann_train_data *data);
#endif	/* NOT FIXEDFANN */

/* Function: fann_test_data
  
   Test a set of training data and calculates the MSE for the training data. 
   
   This function updates the MSE and the bit fail values.
   
   See also:
 	<fann_test>, <fann_get_MSE>, <fann_get_bit_fail>

	This function appears in FANN >= 1.2.0.
 */ 
FANN_EXTERNAL float FANN_API fann_test_data(struct fann *ann, struct fann_train_data *data);

/* Group: Training Data Manipulation */

/* Function: fann_read_train_from_file
   Reads a file that stores training data.
   
   The file must be formatted like:
   >num_train_data num_input num_output
   >inputdata seperated by space
   >outputdata seperated by space
   >
   >.
   >.
   >.
   >
   >inputdata seperated by space
   >outputdata seperated by space
   
   See also:
   	<fann_train_on_data>, <fann_destroy_train>, <fann_save_train>

    This function appears in FANN >= 1.0.0
*/ 
FANN_EXTERNAL struct fann_train_data *FANN_API fann_read_train_from_file(const char *filename);


/* Function: fann_create_train
   Creates an empty training data struct.
  
   See also:
     <fann_read_train_from_file>, <fann_train_on_data>, <fann_destroy_train>,
     <fann_save_train>

    This function appears in FANN >= 2.2.0
*/ 
FANN_EXTERNAL struct fann_train_data * FANN_API fann_create_train(unsigned int num_data, unsigned int num_input, unsigned int num_output);

/* Function: fann_create_train_from_callback
   Creates the training data struct from a user supplied function.
   As the training data are numerable (data 1, data 2...), the user must write
   a function that receives the number of the training data set (input,output)
   and returns the set.

   Parameters:
     num_data      - The number of training data
     num_input     - The number of inputs per training data
     num_output    - The number of ouputs per training data
     user_function - The user suplied function

   Parameters for the user function:
     num        - The number of the training data set
     num_input  - The number of inputs per training data
     num_output - The number of ouputs per training data
     input      - The set of inputs
     output     - The set of desired outputs
  
   See also:
     <fann_read_train_from_file>, <fann_train_on_data>, <fann_destroy_train>,
     <fann_save_train>

    This function appears in FANN >= 2.1.0
*/ 
FANN_EXTERNAL struct fann_train_data * FANN_API fann_create_train_from_callback(unsigned int num_data,
                                          unsigned int num_input,
                                          unsigned int num_output,
                                          void (FANN_API *user_function)( unsigned int,
                                                                 unsigned int,
                                                                 unsigned int,
                                                                 fann_type * ,
                                                                 fann_type * ));

/* Function: fann_destroy_train
   Destructs the training data and properly deallocates all of the associated data.
   Be sure to call this function after finished using the training data.

    This function appears in FANN >= 1.0.0
 */ 
FANN_EXTERNAL void FANN_API fann_destroy_train(struct fann_train_data *train_data);


/* Function: fann_shuffle_train_data
   
   Shuffles training data, randomizing the order. 
   This is recommended for incremental training, while it have no influence during batch training.
   
   This function appears in FANN >= 1.1.0.
 */ 
FANN_EXTERNAL void FANN_API fann_shuffle_train_data(struct fann_train_data *train_data);

#ifndef FIXEDFANN
/* Function: fann_scale_train

   Scale input and output data based on previously calculated parameters.
   
   Parameters:
     ann      - ann for which were calculated trained parameters before
     data     - training data that needs to be scaled
     
   See also:
   	<fann_descale_train>, <fann_set_scaling_params>

    This function appears in FANN >= 2.1.0
*/
FANN_EXTERNAL void FANN_API fann_scale_train( struct fann *ann, struct fann_train_data *data );

/* Function: fann_descale_train

   Descale input and output data based on previously calculated parameters.
   
   Parameters:
     ann      - ann for which were calculated trained parameters before
     data     - training data that needs to be descaled
     
   See also:
   	<fann_scale_train>, <fann_set_scaling_params>

    This function appears in FANN >= 2.1.0
 */
FANN_EXTERNAL void FANN_API fann_descale_train( struct fann *ann, struct fann_train_data *data );

/* Function: fann_set_input_scaling_params

   Calculate input scaling parameters for future use based on training data.
   
   Parameters:
   	 ann           - ann for wgich parameters needs to be calculated
   	 data          - training data that will be used to calculate scaling parameters
   	 new_input_min - desired lower bound in input data after scaling (not strictly followed)
   	 new_input_max - desired upper bound in input data after scaling (not strictly followed)
   	 
   See also:
   	 <fann_set_output_scaling_params>

    This function appears in FANN >= 2.1.0
 */
FANN_EXTERNAL int FANN_API fann_set_input_scaling_params(
	struct fann *ann,
	const struct fann_train_data *data,
	float new_input_min,
	float new_input_max);

/* Function: fann_set_output_scaling_params

   Calculate output scaling parameters for future use based on training data.
   
   Parameters:
   	 ann            - ann for wgich parameters needs to be calculated
   	 data           - training data that will be used to calculate scaling parameters
   	 new_output_min - desired lower bound in input data after scaling (not strictly followed)
   	 new_output_max - desired upper bound in input data after scaling (not strictly followed)
   	 
   See also:
   	 <fann_set_input_scaling_params>

    This function appears in FANN >= 2.1.0
 */
FANN_EXTERNAL int FANN_API fann_set_output_scaling_params(
	struct fann *ann,
	const struct fann_train_data *data,
	float new_output_min,
	float new_output_max);

/* Function: fann_set_scaling_params

   Calculate input and output scaling parameters for future use based on training data.

   Parameters:
   	 ann            - ann for wgich parameters needs to be calculated
   	 data           - training data that will be used to calculate scaling parameters
   	 new_input_min  - desired lower bound in input data after scaling (not strictly followed)
   	 new_input_max  - desired upper bound in input data after scaling (not strictly followed)
   	 new_output_min - desired lower bound in input data after scaling (not strictly followed)
   	 new_output_max - desired upper bound in input data after scaling (not strictly followed)
   	 
   See also:
   	 <fann_set_input_scaling_params>, <fann_set_output_scaling_params>

    This function appears in FANN >= 2.1.0
 */
FANN_EXTERNAL int FANN_API fann_set_scaling_params(
	struct fann *ann,
	const struct fann_train_data *data,
	float new_input_min,
	float new_input_max,
	float new_output_min,
	float new_output_max);

/* Function: fann_clear_scaling_params

   Clears scaling parameters.
   
   Parameters:
     ann - ann for which to clear scaling parameters

    This function appears in FANN >= 2.1.0
 */
FANN_EXTERNAL int FANN_API fann_clear_scaling_params(struct fann *ann);

/* Function: fann_scale_input

   Scale data in input vector before feed it to ann based on previously calculated parameters.
   
   Parameters:
     ann          - for which scaling parameters were calculated
     input_vector - input vector that will be scaled
   
   See also:
     <fann_descale_input>, <fann_scale_output>

    This function appears in FANN >= 2.1.0
*/
FANN_EXTERNAL void FANN_API fann_scale_input( struct fann *ann, fann_type *input_vector );

/* Function: fann_scale_output

   Scale data in output vector before feed it to ann based on previously calculated parameters.
   
   Parameters:
     ann           - for which scaling parameters were calculated
     output_vector - output vector that will be scaled
   
   See also:
     <fann_descale_output>, <fann_scale_input>

    This function appears in FANN >= 2.1.0
 */
FANN_EXTERNAL void FANN_API fann_scale_output( struct fann *ann, fann_type *output_vector );

/* Function: fann_descale_input

   Scale data in input vector after get it from ann based on previously calculated parameters.
   
   Parameters:
     ann          - for which scaling parameters were calculated
     input_vector - input vector that will be descaled
   
   See also:
     <fann_scale_input>, <fann_descale_output>

    This function appears in FANN >= 2.1.0
 */
FANN_EXTERNAL void FANN_API fann_descale_input( struct fann *ann, fann_type *input_vector );

/* Function: fann_descale_output

   Scale data in output vector after get it from ann based on previously calculated parameters.
   
   Parameters:
     ann           - for which scaling parameters were calculated
     output_vector - output vector that will be descaled
   
   See also:
     <fann_scale_output>, <fann_descale_input>

    This function appears in FANN >= 2.1.0
 */
FANN_EXTERNAL void FANN_API fann_descale_output( struct fann *ann, fann_type *output_vector );

#endif

/* Function: fann_scale_input_train_data
   
   Scales the inputs in the training data to the specified range.

   See also:
   	<fann_scale_output_train_data>, <fann_scale_train_data>

   This function appears in FANN >= 2.0.0.
 */ 
FANN_EXTERNAL void FANN_API fann_scale_input_train_data(struct fann_train_data *train_data,
														fann_type new_min, fann_type new_max);


/* Function: fann_scale_output_train_data
   
   Scales the outputs in the training data to the specified range.

   See also:
   	<fann_scale_input_train_data>, <fann_scale_train_data>

   This function appears in FANN >= 2.0.0.
 */ 
FANN_EXTERNAL void FANN_API fann_scale_output_train_data(struct fann_train_data *train_data,
														 fann_type new_min, fann_type new_max);


/* Function: fann_scale_train_data
   
   Scales the inputs and outputs in the training data to the specified range.
   
   See also:
   	<fann_scale_output_train_data>, <fann_scale_input_train_data>

   This function appears in FANN >= 2.0.0.
 */ 
FANN_EXTERNAL void FANN_API fann_scale_train_data(struct fann_train_data *train_data,
												  fann_type new_min, fann_type new_max);


/* Function: fann_merge_train_data
   
   Merges the data from *data1* and *data2* into a new <struct fann_train_data>.
   
   This function appears in FANN >= 1.1.0.
 */ 
FANN_EXTERNAL struct fann_train_data *FANN_API fann_merge_train_data(struct fann_train_data *data1,
																	 struct fann_train_data *data2);


/* Function: fann_duplicate_train_data
   
   Returns an exact copy of a <struct fann_train_data>.

   This function appears in FANN >= 1.1.0.
 */ 
FANN_EXTERNAL struct fann_train_data *FANN_API fann_duplicate_train_data(struct fann_train_data
																		 *data);
	
/* Function: fann_subset_train_data
   
   Returns an copy of a subset of the <struct fann_train_data>, starting at position *pos* 
   and *length* elements forward.
   
   >fann_subset_train_data(train_data, 0, fann_length_train_data(train_data))
   
   Will do the same as <fann_duplicate_train_data>.
   
   See also:
   	<fann_length_train_data>

   This function appears in FANN >= 2.0.0.
 */ 
FANN_EXTERNAL struct fann_train_data *FANN_API fann_subset_train_data(struct fann_train_data
																		 *data, unsigned int pos,
																		 unsigned int length);
	
/* Function: fann_length_train_data
   
   Returns the number of training patterns in the <struct fann_train_data>.

   This function appears in FANN >= 2.0.0.
 */ 
FANN_EXTERNAL unsigned int FANN_API fann_length_train_data(struct fann_train_data *data);
	
/* Function: fann_num_input_train_data
   
   Returns the number of inputs in each of the training patterns in the <struct fann_train_data>.
   
   See also:
   	<fann_num_train_data>, <fann_num_output_train_data>

   This function appears in FANN >= 2.0.0.
 */ 
FANN_EXTERNAL unsigned int FANN_API fann_num_input_train_data(struct fann_train_data *data);
	
/* Function: fann_num_output_train_data
   
   Returns the number of outputs in each of the training patterns in the <struct fann_train_data>.
   
   See also:
   	<fann_num_train_data>, <fann_num_input_train_data>

   This function appears in FANN >= 2.0.0.
 */ 
FANN_EXTERNAL unsigned int FANN_API fann_num_output_train_data(struct fann_train_data *data);
	
/* Function: fann_save_train
   
   Save the training structure to a file, with the format as specified in <fann_read_train_from_file>

   Return:
   The function returns 0 on success and -1 on failure.
      
   See also:
   	<fann_read_train_from_file>, <fann_save_train_to_fixed>
	
   This function appears in FANN >= 1.0.0.   	
 */ 
FANN_EXTERNAL int FANN_API fann_save_train(struct fann_train_data *data, const char *filename);


/* Function: fann_save_train_to_fixed
   
   Saves the training structure to a fixed point data file.
 
   This function is very usefull for testing the quality of a fixed point network.
   
   Return:
   The function returns 0 on success and -1 on failure.
   
   See also:
   	<fann_save_train>

   This function appears in FANN >= 1.0.0.   	
 */ 
FANN_EXTERNAL int FANN_API fann_save_train_to_fixed(struct fann_train_data *data, const char *filename,
													 unsigned int decimal_point);


/* Group: Parameters */

/* Function: fann_get_training_algorithm

   Return the training algorithm as described by <fann_train_enum>. This training algorithm
   is used by <fann_train_on_data> and associated functions.
   
   Note that this algorithm is also used during <fann_cascadetrain_on_data>, although only
   FANN_TRAIN_RPROP and FANN_TRAIN_QUICKPROP is allowed during cascade training.
   
   The default training algorithm is FANN_TRAIN_RPROP.
   
   See also:
    <fann_set_training_algorithm>, <fann_train_enum>

   This function appears in FANN >= 1.0.0.   	
 */ 
FANN_EXTERNAL enum fann_train_enum FANN_API fann_get_training_algorithm(struct fann *ann);


/* Function: fann_set_training_algorithm

   Set the training algorithm.
   
   More info available in <fann_get_training_algorithm>

   This function appears in FANN >= 1.0.0.   	
 */ 
FANN_EXTERNAL void FANN_API fann_set_training_algorithm(struct fann *ann,
														enum fann_train_enum training_algorithm);


/* Function: fann_get_learning_rate

   Return the learning rate.
   
   The learning rate is used to determine how aggressive training should be for some of the
   training algorithms (FANN_TRAIN_INCREMENTAL, FANN_TRAIN_BATCH, FANN_TRAIN_QUICKPROP).
   Do however note that it is not used in FANN_TRAIN_RPROP.
   
   The default learning rate is 0.7.
   
   See also:
   	<fann_set_learning_rate>, <fann_set_training_algorithm>
   
   This function appears in FANN >= 1.0.0.   	
 */ 
FANN_EXTERNAL float FANN_API fann_get_learning_rate(struct fann *ann);


/* Function: fann_set_learning_rate

   Set the learning rate.
   
   More info available in <fann_get_learning_rate>

   This function appears in FANN >= 1.0.0.   	
 */ 
FANN_EXTERNAL void FANN_API fann_set_learning_rate(struct fann *ann, float learning_rate);

/* Function: fann_get_learning_momentum

   Get the learning momentum.
   
   The learning momentum can be used to speed up FANN_TRAIN_INCREMENTAL training.
   A too high momentum will however not benefit training. Setting momentum to 0 will
   be the same as not using the momentum parameter. The recommended value of this parameter
   is between 0.0 and 1.0.

   The default momentum is 0.
   
   See also:
   <fann_set_learning_momentum>, <fann_set_training_algorithm>

   This function appears in FANN >= 2.0.0.   	
 */ 
FANN_EXTERNAL float FANN_API fann_get_learning_momentum(struct fann *ann);


/* Function: fann_set_learning_momentum

   Set the learning momentum.

   More info available in <fann_get_learning_momentum>

   This function appears in FANN >= 2.0.0.   	
 */ 
FANN_EXTERNAL void FANN_API fann_set_learning_momentum(struct fann *ann, float learning_momentum);


/* Function: fann_get_activation_function

   Get the activation function for neuron number *neuron* in layer number *layer*, 
   counting the input layer as layer 0. 
   
   It is not possible to get activation functions for the neurons in the input layer.
   
   Information about the individual activation functions is available at <fann_activationfunc_enum>.

   Returns:
    The activation function for the neuron or -1 if the neuron is not defined in the neural network.
   
   See also:
   	<fann_set_activation_function_layer>, <fann_set_activation_function_hidden>,
   	<fann_set_activation_function_output>, <fann_set_activation_steepness>,
    <fann_set_activation_function>

   This function appears in FANN >= 2.1.0
 */ 
FANN_EXTERNAL enum fann_activationfunc_enum FANN_API fann_get_activation_function(struct fann *ann,
																int layer,
																int neuron);

/* Function: fann_set_activation_function

   Set the activation function for neuron number *neuron* in layer number *layer*, 
   counting the input layer as layer 0. 
   
   It is not possible to set activation functions for the neurons in the input layer.
   
   When choosing an activation function it is important to note that the activation 
   functions have different range. FANN_SIGMOID is e.g. in the 0 - 1 range while 
   FANN_SIGMOID_SYMMETRIC is in the -1 - 1 range and FANN_LINEAR is unbound.
   
   Information about the individual activation functions is available at <fann_activationfunc_enum>.
   
   The default activation function is FANN_SIGMOID_STEPWISE.
   
   See also:
   	<fann_set_activation_function_layer>, <fann_set_activation_function_hidden>,
   	<fann_set_activation_function_output>, <fann_set_activation_steepness>,
    <fann_get_activation_function>

   This function appears in FANN >= 2.0.0.
 */ 
FANN_EXTERNAL void FANN_API fann_set_activation_function(struct fann *ann,
																enum fann_activationfunc_enum
																activation_function,
																int layer,
																int neuron);

/* Function: fann_set_activation_function_layer

   Set the activation function for all the neurons in the layer number *layer*, 
   counting the input layer as layer 0. 
   
   It is not possible to set activation functions for the neurons in the input layer.

   See also:
   	<fann_set_activation_function>, <fann_set_activation_function_hidden>,
   	<fann_set_activation_function_output>, <fann_set_activation_steepness_layer>

   This function appears in FANN >= 2.0.0.
 */ 
FANN_EXTERNAL void FANN_API fann_set_activation_function_layer(struct fann *ann,
																enum fann_activationfunc_enum
																activation_function,
																int layer);

/* Function: fann_set_activation_function_hidden

   Set the activation function for all of the hidden layers.

   See also:
   	<fann_set_activation_function>, <fann_set_activation_function_layer>,
   	<fann_set_activation_function_output>, <fann_set_activation_steepness_hidden>

   This function appears in FANN >= 1.0.0.
 */ 
FANN_EXTERNAL void FANN_API fann_set_activation_function_hidden(struct fann *ann,
																enum fann_activationfunc_enum
																activation_function);


/* Function: fann_set_activation_function_output

   Set the activation function for the output layer.

   See also:
   	<fann_set_activation_function>, <fann_set_activation_function_layer>,
   	<fann_set_activation_function_hidden>, <fann_set_activation_steepness_output>

   This function appears in FANN >= 1.0.0.
 */ 
FANN_EXTERNAL void FANN_API fann_set_activation_function_output(struct fann *ann,
																enum fann_activationfunc_enum
																activation_function);

/* Function: fann_get_activation_steepness

   Get the activation steepness for neuron number *neuron* in layer number *layer*, 
   counting the input layer as layer 0. 
   
   It is not possible to get activation steepness for the neurons in the input layer.
   
   The steepness of an activation function says something about how fast the activation function 
   goes from the minimum to the maximum. A high value for the activation function will also
   give a more agressive training.
   
   When training neural networks where the output values should be at the extremes (usually 0 and 1, 
   depending on the activation function), a steep activation function can be used (e.g. 1.0).
   
   The default activation steepness is 0.5.
   
   Returns:
    The activation steepness for the neuron or -1 if the neuron is not defined in the neural network.
   
   See also:
   	<fann_set_activation_steepness_layer>, <fann_set_activation_steepness_hidden>,
   	<fann_set_activation_steepness_output>, <fann_set_activation_function>,
    <fann_set_activation_steepness>

   This function appears in FANN >= 2.1.0
 */ 
FANN_EXTERNAL fann_type FANN_API fann_get_activation_steepness(struct fann *ann,
																int layer,
																int neuron);

/* Function: fann_set_activation_steepness

   Set the activation steepness for neuron number *neuron* in layer number *layer*, 
   counting the input layer as layer 0. 
   
   It is not possible to set activation steepness for the neurons in the input layer.
   
   The steepness of an activation function says something about how fast the activation function 
   goes from the minimum to the maximum. A high value for the activation function will also
   give a more agressive training.
   
   When training neural networks where the output values should be at the extremes (usually 0 and 1, 
   depending on the activation function), a steep activation function can be used (e.g. 1.0).
   
   The default activation steepness is 0.5.
   
   See also:
   	<fann_set_activation_steepness_layer>, <fann_set_activation_steepness_hidden>,
   	<fann_set_activation_steepness_output>, <fann_set_activation_function>,
    <fann_get_activation_steepness>

   This function appears in FANN >= 2.0.0.
 */ 
FANN_EXTERNAL void FANN_API fann_set_activation_steepness(struct fann *ann,
																fann_type steepness,
																int layer,
																int neuron);

/* Function: fann_set_activation_steepness_layer

   Set the activation steepness all of the neurons in layer number *layer*, 
   counting the input layer as layer 0. 
   
   It is not possible to set activation steepness for the neurons in the input layer.
   
   See also:
   	<fann_set_activation_steepness>, <fann_set_activation_steepness_hidden>,
   	<fann_set_activation_steepness_output>, <fann_set_activation_function_layer>

   This function appears in FANN >= 2.0.0.
 */ 
FANN_EXTERNAL void FANN_API fann_set_activation_steepness_layer(struct fann *ann,
																fann_type steepness,
																int layer);

/* Function: fann_set_activation_steepness_hidden

   Set the steepness of the activation steepness in all of the hidden layers.

   See also:
   	<fann_set_activation_steepness>, <fann_set_activation_steepness_layer>,
   	<fann_set_activation_steepness_output>, <fann_set_activation_function_hidden>

   This function appears in FANN >= 1.2.0.
 */ 
FANN_EXTERNAL void FANN_API fann_set_activation_steepness_hidden(struct fann *ann,
																 fann_type steepness);


/* Function: fann_set_activation_steepness_output

   Set the steepness of the activation steepness in the output layer.

   See also:
   	<fann_set_activation_steepness>, <fann_set_activation_steepness_layer>,
   	<fann_set_activation_steepness_hidden>, <fann_set_activation_function_output>

   This function appears in FANN >= 1.2.0.
 */ 
FANN_EXTERNAL void FANN_API fann_set_activation_steepness_output(struct fann *ann,
																 fann_type steepness);


/* Function: fann_get_train_error_function

   Returns the error function used during training.

   The error functions is described further in <fann_errorfunc_enum>
   
   The default error function is FANN_ERRORFUNC_TANH
   
   See also:
   	<fann_set_train_error_function>
      
   This function appears in FANN >= 1.2.0.
  */ 
FANN_EXTERNAL enum fann_errorfunc_enum FANN_API fann_get_train_error_function(struct fann *ann);


/* Function: fann_set_train_error_function

   Set the error function used during training.
   
   The error functions is described further in <fann_errorfunc_enum>
   
   See also:
   	<fann_get_train_error_function>
      
   This function appears in FANN >= 1.2.0.
 */ 
FANN_EXTERNAL void FANN_API fann_set_train_error_function(struct fann *ann,
														  enum fann_errorfunc_enum 
														  train_error_function);


/* Function: fann_get_train_stop_function

   Returns the the stop function used during training.
   
   The stop function is described further in <fann_stopfunc_enum>
   
   The default stop function is FANN_STOPFUNC_MSE
   
   See also:
   	<fann_get_train_stop_function>, <fann_get_bit_fail_limit>
      
   This function appears in FANN >= 2.0.0.
 */ 
FANN_EXTERNAL enum fann_stopfunc_enum FANN_API fann_get_train_stop_function(struct fann *ann);


/* Function: fann_set_train_stop_function

   Set the stop function used during training.

   Returns the the stop function used during training.
   
   The stop function is described further in <fann_stopfunc_enum>
   
   See also:
   	<fann_get_train_stop_function>
      
   This function appears in FANN >= 2.0.0.
 */ 
FANN_EXTERNAL void FANN_API fann_set_train_stop_function(struct fann *ann,
														 enum fann_stopfunc_enum train_stop_function);


/* Function: fann_get_bit_fail_limit

   Returns the bit fail limit used during training.
   
   The bit fail limit is used during training where the <fann_stopfunc_enum> is set to FANN_STOPFUNC_BIT.

   The limit is the maximum accepted difference between the desired output and the actual output during
   training. Each output that diverges more than this limit is counted as an error bit.
   This difference is divided by two when dealing with symmetric activation functions,
   so that symmetric and not symmetric activation functions can use the same limit.
   
   The default bit fail limit is 0.35.
   
   See also:
   	<fann_set_bit_fail_limit>
   
   This function appears in FANN >= 2.0.0.
 */ 
FANN_EXTERNAL fann_type FANN_API fann_get_bit_fail_limit(struct fann *ann);

/* Function: fann_set_bit_fail_limit

   Set the bit fail limit used during training.
  
   See also:
   	<fann_get_bit_fail_limit>
   
   This function appears in FANN >= 2.0.0.
 */ 
FANN_EXTERNAL void FANN_API fann_set_bit_fail_limit(struct fann *ann, fann_type bit_fail_limit);

/* Function: fann_set_callback
   
   Sets the callback function for use during training.
 	
   See <fann_callback_type> for more information about the callback function.
   
   The default callback function simply prints out some status information.

   This function appears in FANN >= 2.0.0.
 */
FANN_EXTERNAL void FANN_API fann_set_callback(struct fann *ann, fann_callback_type callback);

/* Function: fann_get_quickprop_decay

   The decay is a small negative valued number which is the factor that the weights 
   should become smaller in each iteration during quickprop training. This is used 
   to make sure that the weights do not become too high during training.
   
   The default decay is -0.0001.
   
   See also:
   	<fann_set_quickprop_decay>

   This function appears in FANN >= 1.2.0.
 */
FANN_EXTERNAL float FANN_API fann_get_quickprop_decay(struct fann *ann);


/* Function: fann_set_quickprop_decay
   
   Sets the quickprop decay factor.
   
   See also:
   	<fann_get_quickprop_decay>

   This function appears in FANN >= 1.2.0.
*/ 
FANN_EXTERNAL void FANN_API fann_set_quickprop_decay(struct fann *ann, float quickprop_decay);


/* Function: fann_get_quickprop_mu

   The mu factor is used to increase and decrease the step-size during quickprop training. 
   The mu factor should always be above 1, since it would otherwise decrease the step-size 
   when it was suppose to increase it.
   
   The default mu factor is 1.75. 
   
   See also:
   	<fann_set_quickprop_mu>

   This function appears in FANN >= 1.2.0.
*/ 
FANN_EXTERNAL float FANN_API fann_get_quickprop_mu(struct fann *ann);


/* Function: fann_set_quickprop_mu

    Sets the quickprop mu factor.
   
   See also:
   	<fann_get_quickprop_mu>

   This function appears in FANN >= 1.2.0.
*/ 
FANN_EXTERNAL void FANN_API fann_set_quickprop_mu(struct fann *ann, float quickprop_mu);


/* Function: fann_get_rprop_increase_factor

   The increase factor is a value larger than 1, which is used to 
   increase the step-size during RPROP training.

   The default increase factor is 1.2.
   
   See also:
   	<fann_set_rprop_increase_factor>

   This function appears in FANN >= 1.2.0.
*/ 
FANN_EXTERNAL float FANN_API fann_get_rprop_increase_factor(struct fann *ann);


/* Function: fann_set_rprop_increase_factor

   The increase factor used during RPROP training.

   See also:
   	<fann_get_rprop_increase_factor>

   This function appears in FANN >= 1.2.0.
*/ 
FANN_EXTERNAL void FANN_API fann_set_rprop_increase_factor(struct fann *ann,
														   float rprop_increase_factor);


/* Function: fann_get_rprop_decrease_factor

   The decrease factor is a value smaller than 1, which is used to decrease the step-size during RPROP training.

   The default decrease factor is 0.5.

   See also:
    <fann_set_rprop_decrease_factor>

   This function appears in FANN >= 1.2.0.
*/ 
FANN_EXTERNAL float FANN_API fann_get_rprop_decrease_factor(struct fann *ann);


/* Function: fann_set_rprop_decrease_factor

   The decrease factor is a value smaller than 1, which is used to decrease the step-size during RPROP training.

   See also:
    <fann_get_rprop_decrease_factor>

   This function appears in FANN >= 1.2.0.
*/
FANN_EXTERNAL void FANN_API fann_set_rprop_decrease_factor(struct fann *ann,
														   float rprop_decrease_factor);


/* Function: fann_get_rprop_delta_min

   The minimum step-size is a small positive number determining how small the minimum step-size may be.

   The default value delta min is 0.0.

   See also:
   	<fann_set_rprop_delta_min>
   	
   This function appears in FANN >= 1.2.0.
*/ 
FANN_EXTERNAL float FANN_API fann_get_rprop_delta_min(struct fann *ann);


/* Function: fann_set_rprop_delta_min

   The minimum step-size is a small positive number determining how small the minimum step-size may be.

   See also:
   	<fann_get_rprop_delta_min>
   	
   This function appears in FANN >= 1.2.0.
*/ 
FANN_EXTERNAL void FANN_API fann_set_rprop_delta_min(struct fann *ann, float rprop_delta_min);


/* Function: fann_get_rprop_delta_max

   The maximum step-size is a positive number determining how large the maximum step-size may be.

   The default delta max is 50.0.

   See also:
   	<fann_set_rprop_delta_max>, <fann_get_rprop_delta_min>

   This function appears in FANN >= 1.2.0.
*/ 
FANN_EXTERNAL float FANN_API fann_get_rprop_delta_max(struct fann *ann);


/* Function: fann_set_rprop_delta_max

   The maximum step-size is a positive number determining how large the maximum step-size may be.

   See also:
   	<fann_get_rprop_delta_max>, <fann_get_rprop_delta_min>

   This function appears in FANN >= 1.2.0.
*/
FANN_EXTERNAL void FANN_API fann_set_rprop_delta_max(struct fann *ann, float rprop_delta_max);

/* Function: fann_get_rprop_delta_zero

   The initial step-size is a positive number determining the initial step size.

   The default delta zero is 0.1.

   See also:
   	<fann_set_rprop_delta_zero>, <fann_get_rprop_delta_min>, <fann_get_rprop_delta_max>

   This function appears in FANN >= 2.1.0.
*/ 
FANN_EXTERNAL float FANN_API fann_get_rprop_delta_zero(struct fann *ann);


/* Function: fann_set_rprop_delta_zero

   The initial step-size is a positive number determining the initial step size.

   See also:
   	<fann_get_rprop_delta_zero>, <fann_get_rprop_delta_zero>

   This function appears in FANN >= 2.1.0.
*/
FANN_EXTERNAL void FANN_API fann_set_rprop_delta_zero(struct fann *ann, float rprop_delta_max);

/* Method: fann_get_sarprop_weight_decay_shift

   The sarprop weight decay shift.

   The default delta max is -6.644.

   See also:
   <fann fann_set_sarprop_weight_decay_shift>

   This function appears in FANN >= 2.1.0.
   */ 
FANN_EXTERNAL float FANN_API fann_get_sarprop_weight_decay_shift(struct fann *ann);

/* Method: fann_set_sarprop_weight_decay_shift

   Set the sarprop weight decay shift.

   This function appears in FANN >= 2.1.0.

   See also:
   <fann_set_sarprop_weight_decay_shift>
   */ 
FANN_EXTERNAL void FANN_API fann_set_sarprop_weight_decay_shift(struct fann *ann, float sarprop_weight_decay_shift);

/* Method: fann_get_sarprop_step_error_threshold_factor

   The sarprop step error threshold factor.

   The default delta max is 0.1.

   See also:
   <fann fann_get_sarprop_step_error_threshold_factor>

   This function appears in FANN >= 2.1.0.
   */ 
FANN_EXTERNAL float FANN_API fann_get_sarprop_step_error_threshold_factor(struct fann *ann);

/* Method: fann_set_sarprop_step_error_threshold_factor

   Set the sarprop step error threshold factor.

   This function appears in FANN >= 2.1.0.

   See also:
   <fann_get_sarprop_step_error_threshold_factor>
   */ 
FANN_EXTERNAL void FANN_API fann_set_sarprop_step_error_threshold_factor(struct fann *ann, float sarprop_step_error_threshold_factor);

/* Method: fann_get_sarprop_step_error_shift

   The get sarprop step error shift.

   The default delta max is 1.385.

   See also:
   <fann_set_sarprop_step_error_shift>

   This function appears in FANN >= 2.1.0.
   */ 
FANN_EXTERNAL float FANN_API fann_get_sarprop_step_error_shift(struct fann *ann);

/* Method: fann_set_sarprop_step_error_shift

   Set the sarprop step error shift.

   This function appears in FANN >= 2.1.0.

   See also:
   <fann_get_sarprop_step_error_shift>
   */ 
FANN_EXTERNAL void FANN_API fann_set_sarprop_step_error_shift(struct fann *ann, float sarprop_step_error_shift);

/* Method: fann_get_sarprop_temperature

   The sarprop weight decay shift.

   The default delta max is 0.015.

   See also:
   <fann_set_sarprop_temperature>

   This function appears in FANN >= 2.1.0.
   */ 
FANN_EXTERNAL float FANN_API fann_get_sarprop_temperature(struct fann *ann);

/* Method: fann_set_sarprop_temperature

   Set the sarprop_temperature.

   This function appears in FANN >= 2.1.0.

   See also:
   <fann_get_sarprop_temperature>
   */ 
FANN_EXTERNAL void FANN_API fann_set_sarprop_temperature(struct fann *ann, float sarprop_temperature);

#endif