/usr/include/fastjet/internal/SearchTree.hh is in libfastjet-dev 3.0.6+dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 | //STARTHEADER
// $Id: SearchTree.hh 3107 2013-05-03 15:47:47Z salam $
//
// Copyright (c) 2005-2011, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
//
//----------------------------------------------------------------------
// This file is part of FastJet.
//
// FastJet is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// The algorithms that underlie FastJet have required considerable
// development and are described in hep-ph/0512210. If you use
// FastJet as part of work towards a scientific publication, please
// include a citation to the FastJet paper.
//
// FastJet is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with FastJet. If not, see <http://www.gnu.org/licenses/>.
//----------------------------------------------------------------------
//ENDHEADER
#ifndef __FASTJET_SEARCHTREE_HH__
#define __FASTJET_SEARCHTREE_HH__
#include<vector>
#include<cassert>
#include<cstddef>
#include "fastjet/internal/base.hh"
FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
//======================================================================
/// \if internal_doc
/// @ingroup internal
/// \class SearchTree
/// Efficient class for a search tree
///
/// This is the class for a search tree designed to be especially efficient
/// when looking for successors and predecessors (to be used in Chan's
/// CP algorithm). It has the requirement that the maximum size of the
/// search tree must be known in advance.
/// \endif
template<class T> class SearchTree {
public:
class Node;
class circulator;
class const_circulator;
/// constructor for a search tree from an ordered vector
SearchTree(const std::vector<T> & init);
/// constructor for a search tree from an ordered vector allowing
/// for future growth beyond the current size, up to max_size
SearchTree(const std::vector<T> & init, unsigned int max_size);
/// remove the node corresponding to node_index from the search tree
void remove(unsigned node_index);
void remove(typename SearchTree::Node * node);
void remove(typename SearchTree::circulator & circ);
/// insert the supplied value into the tree and return a pointer to
/// the relevant SearchTreeNode.
//Node * insert(const T & value);
circulator insert(const T & value);
const Node & operator[](int i) const {return _nodes[i];};
/// return the number of elements currently in the search tree
unsigned int size() const {return _nodes.size() - _available_nodes.size();}
/// check that the structure we've obtained makes sense...
void verify_structure();
void verify_structure_linear() const;
void verify_structure_recursive(const Node * , const Node * , const Node * ) const;
/// print out all elements...
void print_elements();
// tracking the depth may have some speed overhead -- so leave it
// out for the time being...
#ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH
/// the max depth the tree has ever reached
inline unsigned int max_depth() const {return _max_depth;};
#else
inline unsigned int max_depth() const {return 0;};
#endif
int loc(const Node * node) const ;
/// return predecessor by walking through the tree
Node * _find_predecessor(const Node *);
/// return successor by walking through the tree
Node * _find_successor(const Node *);
const Node & operator[](unsigned int i) const {return _nodes[i];};
/// return a circulator to some place in the tree (with a circulator
/// you don't care where...)
const_circulator somewhere() const;
circulator somewhere();
private:
void _initialize(const std::vector<T> & init);
std::vector<Node> _nodes;
std::vector<Node *> _available_nodes;
Node * _top_node;
unsigned int _n_removes;
/// recursive routine for doing the initial connections assuming things
/// are ordered. Assumes this_one's parent is labelled, and was
/// generated at a scale "scale" -- connections will be carried out
/// including left edge and excluding right edge
void _do_initial_connections(unsigned int this_one, unsigned int scale,
unsigned int left_edge, unsigned int right_edge,
unsigned int depth);
#ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH
unsigned int _max_depth;
#endif
};
//======================================================================
/// \if internal_doc
/// @ingroup internal
/// \class SearchTree::Node
/// A node in the search tree
/// \endif
template<class T> class SearchTree<T>::Node{
public:
Node() {}; /// default constructor
/// returns tree if all the tree-related links are set to null for this node
bool treelinks_null() const {
return ((parent==0) && (left==0) && (right==0));};
/// set all the tree-related links are set to null for this node
inline void nullify_treelinks() {
parent = NULL;
left = NULL;
right = NULL;
};
/// if my parent exists, determine whether I am it's left or right
/// node and set the relevant link equal to XX.
void reset_parents_link_to_me(Node * XX);
T value;
Node * left;
Node * right;
Node * parent;
Node * successor;
Node * predecessor;
};
//----------------------------------------------------------------------
template<class T> void SearchTree<T>::Node::reset_parents_link_to_me(typename SearchTree<T>::Node * XX) {
if (parent == NULL) {return;}
if (parent->right == this) {parent->right = XX;}
else {parent->left = XX;}
}
//======================================================================
/// \if internal_doc
/// @ingroup internal
/// \class SearchTree::circulator
/// circulator for the search tree
/// \endif
template<class T> class SearchTree<T>::circulator{
public:
// so that it can access out _node object;
// note: "class U" needed for clang (v1.1 branches/release_27) compilation
template<class U> friend class SearchTree<U>::const_circulator;
friend class SearchTree<T>;
circulator() : _node(NULL) {}
circulator(Node * node) : _node(node) {}
const T * operator->() const {return &(_node->value);}
T * operator->() {return &(_node->value);}
const T & operator*() const {return _node->value;}
T & operator*() {return _node->value;}
/// prefix increment (structure copied from stl_bvector.h)
circulator & operator++() {
_node = _node->successor;
return *this;}
/// postfix increment ["int" argument tells compiler it's postfix]
/// (structure copied from stl_bvector.h)
circulator operator++(int) {
circulator tmp = *this;
_node = _node->successor;
return tmp;}
/// prefix decrement (structure copied from stl_bvector.h)
circulator & operator--() {
_node = _node->predecessor;
return *this;}
/// postfix decrement ["int" argument tells compiler it's postfix]
/// (structure copied from stl_bvector.h)
circulator operator--(int) {
circulator tmp = *this;
_node = _node->predecessor;
return tmp;}
/// return a circulator referring to the next node
circulator next() const {
return circulator(_node->successor);}
/// return a circulator referring to the previous node
circulator previous() const {
return circulator(_node->predecessor);}
bool operator!=(const circulator & other) const {return other._node != _node;}
bool operator==(const circulator & other) const {return other._node == _node;}
private:
Node * _node;
};
//======================================================================
/// \if internal_doc
/// @ingroup internal
/// \class SearchTree::const_circulator
/// A const_circulator for the search tree
/// \endif
template<class T> class SearchTree<T>::const_circulator{
public:
const_circulator() : _node(NULL) {}
const_circulator(const Node * node) : _node(node) {}
const_circulator(const circulator & circ) :_node(circ._node) {}
const T * operator->() {return &(_node->value);}
const T & operator*() const {return _node->value;}
/// prefix increment (structure copied from stl_bvector.h)
const_circulator & operator++() {
_node = _node->successor;
return *this;}
/// postfix increment ["int" argument tells compiler it's postfix]
/// (structure copied from stl_bvector.h)
const_circulator operator++(int) {
const_circulator tmp = *this;
_node = _node->successor;
return tmp;}
/// prefix decrement (structure copied from stl_bvector.h)
const_circulator & operator--() {
_node = _node->predecessor;
return *this;}
/// postfix decrement ["int" argument tells compiler it's postfix]
/// (structure copied from stl_bvector.h)
const_circulator operator--(int) {
const_circulator tmp = *this;
_node = _node->predecessor;
return tmp;}
/// return a circulator referring to the next node
const_circulator next() const {
return const_circulator(_node->successor);}
/// return a circulator referring to the previous node
const_circulator previous() const {
return const_circulator(_node->predecessor);}
bool operator!=(const const_circulator & other) const {return other._node != _node;}
bool operator==(const const_circulator & other) const {return other._node == _node;}
private:
const Node * _node;
};
//----------------------------------------------------------------------
/// initialise from a sorted initial array allowing for a larger
/// maximum size of the array...
template<class T> SearchTree<T>::SearchTree(const std::vector<T> & init,
unsigned int max_size) :
_nodes(max_size) {
_available_nodes.reserve(max_size);
_available_nodes.resize(max_size - init.size());
for (unsigned int i = init.size(); i < max_size; i++) {
_available_nodes[i-init.size()] = &(_nodes[i]);
}
_initialize(init);
}
//----------------------------------------------------------------------
/// initialise from a sorted initial array
template<class T> SearchTree<T>::SearchTree(const std::vector<T> & init) :
_nodes(init.size()), _available_nodes(0) {
// reserve space for the list of available nodes
_available_nodes.reserve(init.size());
_initialize(init);
}
//----------------------------------------------------------------------
/// do the actual hard work of initialization
template<class T> void SearchTree<T>::_initialize(const std::vector<T> & init) {
_n_removes = 0;
unsigned n = init.size();
assert(n>=1);
// reserve space for the list of available nodes
//_available_nodes.reserve();
#ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH
_max_depth = 0;
#endif
// validate the input
for (unsigned int i = 1; i<n; i++) {
assert(!(init[i] < init[i-1]));
}
// now initialise the vector; link neighbours in the sequence
for(unsigned int i = 0; i < n; i++) {
_nodes[i].value = init[i];
_nodes[i].predecessor = (& (_nodes[i])) - 1;
_nodes[i].successor = (& (_nodes[i])) + 1;
_nodes[i].nullify_treelinks();
}
// make a loop structure so that we can circulate...
_nodes[0].predecessor = (& (_nodes[n-1]));
_nodes[n-1].successor = (& (_nodes[0]));
// now label the rest of the nodes
unsigned int scale = (n+1)/2;
unsigned int top = std::min(n-1,scale);
_nodes[top].parent = NULL;
_top_node = &(_nodes[top]);
_do_initial_connections(top, scale, 0, n, 0);
// make sure things are sensible...
//verify_structure();
}
//----------------------------------------------------------------------
template<class T> inline int SearchTree<T>::loc(const Node * node) const {return node == NULL?
-999 : node - &(_nodes[0]);}
//----------------------------------------------------------------------
/// Recursive creation of connections, assuming the _nodes vector is
/// completely filled and ordered
template<class T> void SearchTree<T>::_do_initial_connections(
unsigned int this_one,
unsigned int scale,
unsigned int left_edge,
unsigned int right_edge,
unsigned int depth
) {
#ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH
// keep track of tree depth for checking things stay reasonable...
_max_depth = max(depth, _max_depth);
#endif
//std::cout << this_one << " "<< scale<< std::endl;
unsigned int ref_new_scale = (scale+1)/2;
// work through children to our left
unsigned new_scale = ref_new_scale;
bool did_child = false;
while(true) {
int left = this_one - new_scale; // be careful here to use signed int...
// if there is something unitialised to our left, link to it
if (left >= static_cast<int>(left_edge)
&& _nodes[left].treelinks_null() ) {
_nodes[left].parent = &(_nodes[this_one]);
_nodes[this_one].left = &(_nodes[left]);
// create connections between left_edge and this_one
_do_initial_connections(left, new_scale, left_edge, this_one, depth+1);
did_child = true;
break;
}
// reduce the scale so as to try again
unsigned int old_new_scale = new_scale;
new_scale = (old_new_scale + 1)/2;
// unless we've reached end of tree
if (new_scale == old_new_scale) break;
}
if (!did_child) {_nodes[this_one].left = NULL;}
// work through children to our right
new_scale = ref_new_scale;
did_child = false;
while(true) {
unsigned int right = this_one + new_scale;
if (right < right_edge && _nodes[right].treelinks_null()) {
_nodes[right].parent = &(_nodes[this_one]);
_nodes[this_one].right = &(_nodes[right]);
// create connections between this_one+1 and right_edge
_do_initial_connections(right, new_scale, this_one+1,right_edge,depth+1);
did_child = true;
break;
}
// reduce the scale so as to try again
unsigned int old_new_scale = new_scale;
new_scale = (old_new_scale + 1)/2;
// unless we've reached end of tree
if (new_scale == old_new_scale) break;
}
if (!did_child) {_nodes[this_one].right = NULL;}
}
//----------------------------------------------------------------------
template<class T> void SearchTree<T>::remove(unsigned int node_index) {
remove(&(_nodes[node_index]));
}
//----------------------------------------------------------------------
template<class T> void SearchTree<T>::remove(circulator & circ) {
remove(circ._node);
}
//----------------------------------------------------------------------
// Useful reference for this:
// http://en.wikipedia.org/wiki/Binary_search_tree#Deletion
template<class T> void SearchTree<T>::remove(typename SearchTree<T>::Node * node) {
// we don't remove things from the tree if we've reached the last
// elements... (is this wise?)
assert(size() > 1); // switch this to throw...?
assert(!node->treelinks_null());
// deal with relinking predecessor and successor
node->predecessor->successor = node->successor;
node->successor->predecessor = node->predecessor;
if (node->left == NULL && node->right == NULL) {
// node has no children, so remove it by nullifying the pointer
// from the parent
node->reset_parents_link_to_me(NULL);
} else if (node->left != NULL && node->right == NULL){
// make parent point to my child
node->reset_parents_link_to_me(node->left);
// and child to parent
node->left->parent = node->parent;
// sort out the top node...
if (_top_node == node) {_top_node = node->left;}
} else if (node->left == NULL && node->right != NULL){
// make parent point to my child
node->reset_parents_link_to_me(node->right);
// and child to parent
node->right->parent = node->parent;
// sort out the top node...
if (_top_node == node) {_top_node = node->right;}
} else {
// we have two children; we will put a replacement in our place
Node * replacement;
//SearchTree<T>::Node * replacements_child;
// chose predecessor or successor (one, then other, then first, etc...)
bool use_predecessor = (_n_removes % 2 == 1);
if (use_predecessor) {
// Option 1: put predecessor in our place, and have its parent
// point to its left child (as a predecessor it has no right child)
replacement = node->predecessor;
assert(replacement->right == NULL); // guaranteed if it's our predecessor
// we have to be careful of replacing certain links when the
// replacement is this node's child
if (replacement != node->left) {
if (replacement->left != NULL) {
replacement->left->parent = replacement->parent;}
replacement->reset_parents_link_to_me(replacement->left);
replacement->left = node->left;
}
replacement->parent = node->parent;
replacement->right = node->right;
} else {
// Option 2: put successor in our place, and have its parent
// point to its right child (as a successor it has no left child)
replacement = node->successor;
assert(replacement->left == NULL); // guaranteed if it's our successor
if (replacement != node->right) {
if (replacement->right != NULL) {
replacement->right->parent = replacement->parent;}
replacement->reset_parents_link_to_me(replacement->right);
replacement->right = node->right;
}
replacement->parent = node->parent;
replacement->left = node->left;
}
node->reset_parents_link_to_me(replacement);
// make sure node's original children now point to the replacement
if (node->left != replacement) {node->left->parent = replacement;}
if (node->right != replacement) {node->right->parent = replacement;}
// sort out the top node...
if (_top_node == node) {_top_node = replacement;}
}
// make sure we leave something nice and clean...
node->nullify_treelinks();
node->predecessor = NULL;
node->successor = NULL;
// for bookkeeping (and choosing whether to use pred. or succ.)
_n_removes++;
// for when we next need access to a free node...
_available_nodes.push_back(node);
}
//----------------------------------------------------------------------
//template<class T> typename SearchTree<T>::Node * SearchTree<T>::insert(const T & value) {
//----------------------------------------------------------------------
template<class T> typename SearchTree<T>::circulator SearchTree<T>::insert(const T & value) {
// make sure we don't exceed allowed number of nodes...
assert(_available_nodes.size() > 0);
Node * node = _available_nodes.back();
_available_nodes.pop_back();
node->value = value;
Node * location = _top_node;
Node * old_location = NULL;
bool on_left = true; // (init not needed -- but soothes g++4)
// work through tree until we reach its end
#ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH
unsigned int depth = 0;
#endif
while(location != NULL) {
#ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH
depth++;
#endif
old_location = location;
on_left = value < location->value;
if (on_left) {location = location->left;}
else {location = location->right;}
}
#ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH
_max_depth = max(depth, _max_depth);
#endif
// now create tree links
node->parent = old_location;
if (on_left) {node->parent->left = node;}
else {node->parent->right = node;}
node->left = NULL;
node->right = NULL;
// and create predecessor / successor links
node->predecessor = _find_predecessor(node);
if (node->predecessor != NULL) {
// it exists, so make use of its info (will include a cyclic case,
// when successor is round the bend)
node->successor = node->predecessor->successor;
node->predecessor->successor = node;
node->successor->predecessor = node;
} else {
// deal with case when we are left-most edge of tree (then successor
// will exist...)
node->successor = _find_successor(node);
assert(node->successor != NULL); // can only happen if we're sole element
// (but not allowed, since tree size>=1)
node->predecessor = node->successor->predecessor;
node->successor->predecessor = node;
node->predecessor->successor = node;
}
return circulator(node);
}
//----------------------------------------------------------------------
template<class T> void SearchTree<T>::verify_structure() {
// do a check running through all elements
verify_structure_linear();
// do a recursive check down tree from top
// first establish the extremities
const Node * left_limit = _top_node;
while (left_limit->left != NULL) {left_limit = left_limit->left;}
const Node * right_limit = _top_node;
while (right_limit->right != NULL) {right_limit = right_limit->right;}
// then actually do recursion
verify_structure_recursive(_top_node, left_limit, right_limit);
}
//----------------------------------------------------------------------
template<class T> void SearchTree<T>::verify_structure_recursive(
const typename SearchTree<T>::Node * element,
const typename SearchTree<T>::Node * left_limit,
const typename SearchTree<T>::Node * right_limit) const {
assert(!(element->value < left_limit->value));
assert(!(right_limit->value < element->value));
const Node * left = element->left;
if (left != NULL) {
assert(!(element->value < left->value));
if (left != left_limit) {
// recurse down the tree with this element as the right-hand limit
verify_structure_recursive(left, left_limit, element);}
}
const Node * right = element->right;
if (right != NULL) {
assert(!(right->value < element->value));
if (right != right_limit) {
// recurse down the tree with this element as the left-hand limit
verify_structure_recursive(right, element, right_limit);}
}
}
//----------------------------------------------------------------------
template<class T> void SearchTree<T>::verify_structure_linear() const {
//print_elements();
unsigned n_top = 0;
unsigned n_null = 0;
for(unsigned i = 0; i < _nodes.size(); i++) {
const typename SearchTree<T>::Node * node = &(_nodes[i]);
// make sure node is defined
if (node->treelinks_null()) {n_null++; continue;}
// make sure of the number of "top" nodes
if (node->parent == NULL) {
n_top++;
//assert(node->left != NULL);
//assert(node->right != NULL);
} else {
// make sure that I am a child of my parent...
//assert((node->parent->left == node) || (node->parent->right == node));
assert((node->parent->left == node) ^ (node->parent->right == node));
}
// when there is a left child make sure it's value is ordered
// (note use of !(b<a), to allow for a<=b while using just the <
// operator)
if (node->left != NULL) {
assert(!(node->value < node->left->value ));}
// when there is a right child make sure it's value is ordered
if (node->right != NULL) {
assert(!(node->right->value < node->value ));}
}
assert(n_top == 1 || (n_top == 0 && size() <= 1) );
assert(n_null == _available_nodes.size() ||
(n_null == _available_nodes.size() + 1 && size() == 1));
}
//----------------------------------------------------------------------
template<class T> typename SearchTree<T>::Node * SearchTree<T>::_find_predecessor(const typename SearchTree<T>::Node * node) {
typename SearchTree<T>::Node * newnode;
if (node->left != NULL) {
// go down left, and then down right as far as possible.
newnode = node->left;
while(newnode->right != NULL) {newnode = newnode->right;}
return newnode;
} else {
const typename SearchTree<T>::Node * lastnode = node;
newnode = node->parent;
// go up the tree as long as we're going right (when we go left then
// we've found something smaller, so stop)
while(newnode != NULL) {
if (newnode->right == lastnode) {return newnode;}
lastnode = newnode;
newnode = newnode->parent;
}
return newnode;
}
}
//----------------------------------------------------------------------
template<class T> typename SearchTree<T>::Node * SearchTree<T>::_find_successor(const typename SearchTree<T>::Node * node) {
typename SearchTree<T>::Node * newnode;
if (node->right != NULL) {
// go down right, and then down left as far as possible.
newnode = node->right;
while(newnode->left != NULL) {newnode = newnode->left;}
return newnode;
} else {
const typename SearchTree<T>::Node * lastnode = node;
newnode = node->parent;
// go up the tree as long as we're going left (when we go right then
// we've found something larger, so stop)
while(newnode != NULL) {
if (newnode->left == lastnode) {return newnode;}
lastnode = newnode;
newnode = newnode->parent;
}
return newnode;
}
}
//----------------------------------------------------------------------
// print out all the elements for visual checking...
template<class T> void SearchTree<T>::print_elements() {
typename SearchTree<T>::Node * base_node = &(_nodes[0]);
typename SearchTree<T>::Node * node = base_node;
int n = _nodes.size();
for(; node - base_node < n ; node++) {
printf("%4d parent:%4d left:%4d right:%4d pred:%4d succ:%4d value:%10.6f\n",loc(node), loc(node->parent), loc(node->left), loc(node->right), loc(node->predecessor),loc(node->successor),node->value);
}
}
//----------------------------------------------------------------------
template<class T> typename SearchTree<T>::circulator SearchTree<T>::somewhere() {
return circulator(_top_node);
}
//----------------------------------------------------------------------
template<class T> typename SearchTree<T>::const_circulator SearchTree<T>::somewhere() const {
return const_circulator(_top_node);
}
FASTJET_END_NAMESPACE
#endif // __FASTJET_SEARCHTREE_HH__
|