/usr/include/fcl/BVH/BVH_model.h is in libfcl-dev 0.5.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 | /*
* Software License Agreement (BSD License)
*
* Copyright (c) 2011-2014, Willow Garage, Inc.
* Copyright (c) 2014-2016, Open Source Robotics Foundation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Open Source Robotics Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \author Jia Pan */
#ifndef FCL_BVH_MODEL_H
#define FCL_BVH_MODEL_H
#include "fcl/collision_object.h"
#include "fcl/BVH/BVH_internal.h"
#include "fcl/BV/BV_node.h"
#include "fcl/BVH/BV_splitter.h"
#include "fcl/BVH/BV_fitter.h"
#include <vector>
#include <memory>
namespace fcl
{
/// @brief A class describing the bounding hierarchy of a mesh model or a point cloud model (which is viewed as a degraded version of mesh)
template<typename BV>
class BVHModel : public CollisionGeometry
{
public:
/// @brief Model type described by the instance
BVHModelType getModelType() const
{
if(num_tris && num_vertices)
return BVH_MODEL_TRIANGLES;
else if(num_vertices)
return BVH_MODEL_POINTCLOUD;
else
return BVH_MODEL_UNKNOWN;
}
/// @brief Constructing an empty BVH
BVHModel() : vertices(NULL),
tri_indices(NULL),
prev_vertices(NULL),
num_tris(0),
num_vertices(0),
build_state(BVH_BUILD_STATE_EMPTY),
bv_splitter(new BVSplitter<BV>(SPLIT_METHOD_MEAN)),
bv_fitter(new BVFitter<BV>()),
num_tris_allocated(0),
num_vertices_allocated(0),
num_bvs_allocated(0),
num_vertex_updated(0),
primitive_indices(NULL),
bvs(NULL),
num_bvs(0)
{
}
/// @brief copy from another BVH
BVHModel(const BVHModel& other);
/// @brief deconstruction, delete mesh data related.
~BVHModel()
{
delete [] vertices;
delete [] tri_indices;
delete [] bvs;
delete [] prev_vertices;
delete [] primitive_indices;
}
/// @brief We provide getBV() and getNumBVs() because BVH may be compressed (in future), so we must provide some flexibility here
/// @brief Access the bv giving the its index
const BVNode<BV>& getBV(int id) const
{
return bvs[id];
}
/// @brief Access the bv giving the its index
BVNode<BV>& getBV(int id)
{
return bvs[id];
}
/// @brief Get the number of bv in the BVH
int getNumBVs() const
{
return num_bvs;
}
/// @brief Get the object type: it is a BVH
OBJECT_TYPE getObjectType() const { return OT_BVH; }
/// @brief Get the BV type: default is unknown
NODE_TYPE getNodeType() const { return BV_UNKNOWN; }
/// @brief Compute the AABB for the BVH, used for broad-phase collision
void computeLocalAABB();
/// @brief Begin a new BVH model
int beginModel(int num_tris = 0, int num_vertices = 0);
/// @brief Add one point in the new BVH model
int addVertex(const Vec3f& p);
/// @brief Add one triangle in the new BVH model
int addTriangle(const Vec3f& p1, const Vec3f& p2, const Vec3f& p3);
/// @brief Add a set of triangles in the new BVH model
int addSubModel(const std::vector<Vec3f>& ps, const std::vector<Triangle>& ts);
/// @brief Add a set of points in the new BVH model
int addSubModel(const std::vector<Vec3f>& ps);
/// @brief End BVH model construction, will build the bounding volume hierarchy
int endModel();
/// @brief Replace the geometry information of current frame (i.e. should have the same mesh topology with the previous frame)
int beginReplaceModel();
/// @brief Replace one point in the old BVH model
int replaceVertex(const Vec3f& p);
/// @brief Replace one triangle in the old BVH model
int replaceTriangle(const Vec3f& p1, const Vec3f& p2, const Vec3f& p3);
/// @brief Replace a set of points in the old BVH model
int replaceSubModel(const std::vector<Vec3f>& ps);
/// @brief End BVH model replacement, will also refit or rebuild the bounding volume hierarchy
int endReplaceModel(bool refit = true, bool bottomup = true);
/// @brief Replace the geometry information of current frame (i.e. should have the same mesh topology with the previous frame).
/// The current frame will be saved as the previous frame in prev_vertices.
int beginUpdateModel();
/// @brief Update one point in the old BVH model
int updateVertex(const Vec3f& p);
/// @brief Update one triangle in the old BVH model
int updateTriangle(const Vec3f& p1, const Vec3f& p2, const Vec3f& p3);
/// @brief Update a set of points in the old BVH model
int updateSubModel(const std::vector<Vec3f>& ps);
/// @brief End BVH model update, will also refit or rebuild the bounding volume hierarchy
int endUpdateModel(bool refit = true, bool bottomup = true);
/// @brief Check the number of memory used
int memUsage(int msg) const;
/// @brief This is a special acceleration: BVH_model default stores the BV's transform in world coordinate. However, we can also store each BV's transform related to its parent
/// BV node. When traversing the BVH, this can save one matrix transformation.
void makeParentRelative()
{
Vec3f I[3] = {Vec3f(1, 0, 0), Vec3f(0, 1, 0), Vec3f(0, 0, 1)};
makeParentRelativeRecurse(0, I, Vec3f());
}
Vec3f computeCOM() const
{
FCL_REAL vol = 0;
Vec3f com;
for(int i = 0; i < num_tris; ++i)
{
const Triangle& tri = tri_indices[i];
FCL_REAL d_six_vol = (vertices[tri[0]].cross(vertices[tri[1]])).dot(vertices[tri[2]]);
vol += d_six_vol;
com += (vertices[tri[0]] + vertices[tri[1]] + vertices[tri[2]]) * d_six_vol;
}
return com / (vol * 4);
}
FCL_REAL computeVolume() const
{
FCL_REAL vol = 0;
for(int i = 0; i < num_tris; ++i)
{
const Triangle& tri = tri_indices[i];
FCL_REAL d_six_vol = (vertices[tri[0]].cross(vertices[tri[1]])).dot(vertices[tri[2]]);
vol += d_six_vol;
}
return vol / 6;
}
Matrix3f computeMomentofInertia() const
{
Matrix3f C(0, 0, 0,
0, 0, 0,
0, 0, 0);
Matrix3f C_canonical(1/60.0, 1/120.0, 1/120.0,
1/120.0, 1/60.0, 1/120.0,
1/120.0, 1/120.0, 1/60.0);
for(int i = 0; i < num_tris; ++i)
{
const Triangle& tri = tri_indices[i];
const Vec3f& v1 = vertices[tri[0]];
const Vec3f& v2 = vertices[tri[1]];
const Vec3f& v3 = vertices[tri[2]];
FCL_REAL d_six_vol = (v1.cross(v2)).dot(v3);
Matrix3f A(v1, v2, v3);
C += transpose(A) * C_canonical * A * d_six_vol;
}
FCL_REAL trace_C = C(0, 0) + C(1, 1) + C(2, 2);
return Matrix3f(trace_C - C(0, 0), -C(0, 1), -C(0, 2),
-C(1, 0), trace_C - C(1, 1), -C(1, 2),
-C(2, 0), -C(2, 1), trace_C - C(2, 2));
}
public:
/// @brief Geometry point data
Vec3f* vertices;
/// @brief Geometry triangle index data, will be NULL for point clouds
Triangle* tri_indices;
/// @brief Geometry point data in previous frame
Vec3f* prev_vertices;
/// @brief Number of triangles
int num_tris;
/// @brief Number of points
int num_vertices;
/// @brief The state of BVH building process
BVHBuildState build_state;
/// @brief Split rule to split one BV node into two children
std::shared_ptr<BVSplitterBase<BV> > bv_splitter;
/// @brief Fitting rule to fit a BV node to a set of geometry primitives
std::shared_ptr<BVFitterBase<BV> > bv_fitter;
private:
int num_tris_allocated;
int num_vertices_allocated;
int num_bvs_allocated;
int num_vertex_updated; /// for ccd vertex update
unsigned int* primitive_indices;
/// @brief Bounding volume hierarchy
BVNode<BV>* bvs;
/// @brief Number of BV nodes in bounding volume hierarchy
int num_bvs;
/// @brief Build the bounding volume hierarchy
int buildTree();
/// @brief Refit the bounding volume hierarchy
int refitTree(bool bottomup);
/// @brief Refit the bounding volume hierarchy in a top-down way (slow but more compact)
int refitTree_topdown();
/// @brief Refit the bounding volume hierarchy in a bottom-up way (fast but less compact)
int refitTree_bottomup();
/// @brief Recursive kernel for hierarchy construction
int recursiveBuildTree(int bv_id, int first_primitive, int num_primitives);
/// @brief Recursive kernel for bottomup refitting
int recursiveRefitTree_bottomup(int bv_id);
/// @recursively compute each bv's transform related to its parent. For default BV, only the translation works.
/// For oriented BV (OBB, RSS, OBBRSS), special implementation is provided.
void makeParentRelativeRecurse(int bv_id, Vec3f parent_axis[], const Vec3f& parent_c)
{
if(!bvs[bv_id].isLeaf())
{
makeParentRelativeRecurse(bvs[bv_id].first_child, parent_axis, bvs[bv_id].getCenter());
makeParentRelativeRecurse(bvs[bv_id].first_child + 1, parent_axis, bvs[bv_id].getCenter());
}
bvs[bv_id].bv = translate(bvs[bv_id].bv, -parent_c);
}
};
template<>
void BVHModel<OBB>::makeParentRelativeRecurse(int bv_id, Vec3f parent_axis[], const Vec3f& parent_c);
template<>
void BVHModel<RSS>::makeParentRelativeRecurse(int bv_id, Vec3f parent_axis[], const Vec3f& parent_c);
template<>
void BVHModel<OBBRSS>::makeParentRelativeRecurse(int bv_id, Vec3f parent_axis[], const Vec3f& parent_c);
/// @brief Specialization of getNodeType() for BVHModel with different BV types
template<>
NODE_TYPE BVHModel<AABB>::getNodeType() const;
template<>
NODE_TYPE BVHModel<OBB>::getNodeType() const;
template<>
NODE_TYPE BVHModel<RSS>::getNodeType() const;
template<>
NODE_TYPE BVHModel<kIOS>::getNodeType() const;
template<>
NODE_TYPE BVHModel<OBBRSS>::getNodeType() const;
template<>
NODE_TYPE BVHModel<KDOP<16> >::getNodeType() const;
template<>
NODE_TYPE BVHModel<KDOP<18> >::getNodeType() const;
template<>
NODE_TYPE BVHModel<KDOP<24> >::getNodeType() const;
}
#endif
|