/usr/include/fcl/BVH/BV_splitter.h is in libfcl-dev 0.5.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 | /*
* Software License Agreement (BSD License)
*
* Copyright (c) 2011-2014, Willow Garage, Inc.
* Copyright (c) 2014-2016, Open Source Robotics Foundation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Open Source Robotics Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \author Jia Pan */
#ifndef FCL_BV_SPLITTER_H
#define FCL_BV_SPLITTER_H
#include "fcl/BVH/BVH_internal.h"
#include "fcl/BV/kIOS.h"
#include "fcl/BV/OBBRSS.h"
#include <vector>
#include <iostream>
namespace fcl
{
/// @brief Base interface for BV splitting algorithm
template<typename BV>
class BVSplitterBase
{
public:
/// @brief Set the geometry data needed by the split rule
virtual void set(Vec3f* vertices_, Triangle* tri_indices_, BVHModelType type_) = 0;
/// @brief Compute the split rule according to a subset of geometry and the corresponding BV node
virtual void computeRule(const BV& bv, unsigned int* primitive_indices, int num_primitives) = 0;
/// @brief Apply the split rule on a given point
virtual bool apply(const Vec3f& q) const = 0;
/// @brief Clear the geometry data set before
virtual void clear() = 0;
};
/// @brief Three types of split algorithms are provided in FCL as default
enum SplitMethodType {SPLIT_METHOD_MEAN, SPLIT_METHOD_MEDIAN, SPLIT_METHOD_BV_CENTER};
/// @brief A class describing the split rule that splits each BV node
template<typename BV>
class BVSplitter : public BVSplitterBase<BV>
{
public:
BVSplitter(SplitMethodType method) : split_method(method)
{
}
/// @brief Default deconstructor
virtual ~BVSplitter() {}
/// @brief Set the geometry data needed by the split rule
void set(Vec3f* vertices_, Triangle* tri_indices_, BVHModelType type_)
{
vertices = vertices_;
tri_indices = tri_indices_;
type = type_;
}
/// @brief Compute the split rule according to a subset of geometry and the corresponding BV node
void computeRule(const BV& bv, unsigned int* primitive_indices, int num_primitives)
{
switch(split_method)
{
case SPLIT_METHOD_MEAN:
computeRule_mean(bv, primitive_indices, num_primitives);
break;
case SPLIT_METHOD_MEDIAN:
computeRule_median(bv, primitive_indices, num_primitives);
break;
case SPLIT_METHOD_BV_CENTER:
computeRule_bvcenter(bv, primitive_indices, num_primitives);
break;
default:
std::cerr << "Split method not supported" << std::endl;
}
}
/// @brief Apply the split rule on a given point
bool apply(const Vec3f& q) const
{
return q[split_axis] > split_value;
}
/// @brief Clear the geometry data set before
void clear()
{
vertices = NULL;
tri_indices = NULL;
type = BVH_MODEL_UNKNOWN;
}
private:
/// @brief The axis based on which the split decision is made. For most BV, the axis is aligned with one of the world coordinate, so only split_axis is needed.
/// For oriented node, we can use a vector to make a better split decision.
int split_axis;
Vec3f split_vector;
/// @brief The split threshold, different primitives are splitted according whether their projection on the split_axis is larger or smaller than the threshold
FCL_REAL split_value;
/// @brief The mesh vertices or points handled by the splitter
Vec3f* vertices;
/// @brief The triangles handled by the splitter
Triangle* tri_indices;
/// @brief Whether the geometry is mesh or point cloud
BVHModelType type;
/// @brief The split algorithm used
SplitMethodType split_method;
/// @brief Split algorithm 1: Split the node from center
void computeRule_bvcenter(const BV& bv, unsigned int* primitive_indices, int num_primitives)
{
Vec3f center = bv.center();
int axis = 2;
if(bv.width() >= bv.height() && bv.width() >= bv.depth())
axis = 0;
else if(bv.height() >= bv.width() && bv.height() >= bv.depth())
axis = 1;
split_axis = axis;
split_value = center[axis];
}
/// @brief Split algorithm 2: Split the node according to the mean of the data contained
void computeRule_mean(const BV& bv, unsigned int* primitive_indices, int num_primitives)
{
int axis = 2;
if(bv.width() >= bv.height() && bv.width() >= bv.depth())
axis = 0;
else if(bv.height() >= bv.width() && bv.height() >= bv.depth())
axis = 1;
split_axis = axis;
FCL_REAL sum = 0;
if(type == BVH_MODEL_TRIANGLES)
{
for(int i = 0; i < num_primitives; ++i)
{
const Triangle& t = tri_indices[primitive_indices[i]];
sum += (vertices[t[0]][split_axis] + vertices[t[1]][split_axis] + vertices[t[2]][split_axis]);
}
sum /= 3;
}
else if(type == BVH_MODEL_POINTCLOUD)
{
for(int i = 0; i < num_primitives; ++i)
{
sum += vertices[primitive_indices[i]][split_axis];
}
}
split_value = sum / num_primitives;
}
/// @brief Split algorithm 3: Split the node according to the median of the data contained
void computeRule_median(const BV& bv, unsigned int* primitive_indices, int num_primitives)
{
int axis = 2;
if(bv.width() >= bv.height() && bv.width() >= bv.depth())
axis = 0;
else if(bv.height() >= bv.width() && bv.height() >= bv.depth())
axis = 1;
split_axis = axis;
std::vector<FCL_REAL> proj(num_primitives);
if(type == BVH_MODEL_TRIANGLES)
{
for(int i = 0; i < num_primitives; ++i)
{
const Triangle& t = tri_indices[primitive_indices[i]];
proj[i] = (vertices[t[0]][split_axis] + vertices[t[1]][split_axis] + vertices[t[2]][split_axis]) / 3;
}
}
else if(type == BVH_MODEL_POINTCLOUD)
{
for(int i = 0; i < num_primitives; ++i)
proj[i] = vertices[primitive_indices[i]][split_axis];
}
std::sort(proj.begin(), proj.end());
if(num_primitives % 2 == 1)
{
split_value = proj[(num_primitives - 1) / 2];
}
else
{
split_value = (proj[num_primitives / 2] + proj[num_primitives / 2 - 1]) / 2;
}
}
};
template<>
bool BVSplitter<OBB>::apply(const Vec3f& q) const;
template<>
bool BVSplitter<RSS>::apply(const Vec3f& q) const;
template<>
bool BVSplitter<kIOS>::apply(const Vec3f& q) const;
template<>
bool BVSplitter<OBBRSS>::apply(const Vec3f& q) const;
template<>
void BVSplitter<OBB>::computeRule_bvcenter(const OBB& bv, unsigned int* primitive_indices, int num_primitives);
template<>
void BVSplitter<OBB>::computeRule_mean(const OBB& bv, unsigned int* primitive_indices, int num_primitives);
template<>
void BVSplitter<OBB>::computeRule_median(const OBB& bv, unsigned int* primitive_indices, int num_primitives);
template<>
void BVSplitter<RSS>::computeRule_bvcenter(const RSS& bv, unsigned int* primitive_indices, int num_primitives);
template<>
void BVSplitter<RSS>::computeRule_mean(const RSS& bv, unsigned int* primitive_indices, int num_primitives);
template<>
void BVSplitter<RSS>::computeRule_median(const RSS& bv, unsigned int* primitive_indices, int num_primitives);
template<>
void BVSplitter<kIOS>::computeRule_bvcenter(const kIOS& bv, unsigned int* primitive_indices, int num_primitives);
template<>
void BVSplitter<kIOS>::computeRule_mean(const kIOS& bv, unsigned int* primitive_indices, int num_primitives);
template<>
void BVSplitter<kIOS>::computeRule_median(const kIOS& bv, unsigned int* primitive_indices, int num_primitives);
template<>
void BVSplitter<OBBRSS>::computeRule_bvcenter(const OBBRSS& bv, unsigned int* primitive_indices, int num_primitives);
template<>
void BVSplitter<OBBRSS>::computeRule_mean(const OBBRSS& bv, unsigned int* primitive_indices, int num_primitives);
template<>
void BVSplitter<OBBRSS>::computeRule_median(const OBBRSS& bv, unsigned int* primitive_indices, int num_primitives);
}
#endif
|