This file is indexed.

/usr/include/fcl/broadphase/hierarchy_tree.h is in libfcl-dev 0.5.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
/*
 * Software License Agreement (BSD License)
 *
 *  Copyright (c) 2011-2014, Willow Garage, Inc.
 *  Copyright (c) 2014-2016, Open Source Robotics Foundation
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of Open Source Robotics Foundation nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 */

/** \author Jia Pan  */

#ifndef FCL_HIERARCHY_TREE_H
#define FCL_HIERARCHY_TREE_H

#include <vector>
#include <map>
#include <functional>
#include "fcl/BV/AABB.h"
#include "fcl/broadphase/morton.h"

namespace fcl
{

/// @brief dynamic AABB tree node
template<typename BV>
struct NodeBase
{
  /// @brief the bounding volume for the node
  BV bv;

  /// @brief pointer to parent node
  NodeBase<BV>* parent;

  /// @brief whether is a leaf
  bool isLeaf() const { return (children[1] == NULL); }

  /// @brief whether is internal node
  bool isInternal() const { return !isLeaf(); }

  union
  {
    /// @brief for leaf node, children nodes
    NodeBase<BV>* children[2];
    void* data;
  };

  /// @brief morton code for current BV
  FCL_UINT32 code;

  NodeBase()
  {
    parent = NULL;
    children[0] = NULL;
    children[1] = NULL;
  }
};


/// @brief Compare two nodes accoording to the d-th dimension of node center
template<typename BV>
bool nodeBaseLess(NodeBase<BV>* a, NodeBase<BV>* b, int d)
{
  if(a->bv.center()[d] < b->bv.center()[d]) return true;
  return false;
}

/// @brief select from node1 and node2 which is close to a given query. 0 for node1 and 1 for node2
template<typename BV>
size_t select(const NodeBase<BV>& query, const NodeBase<BV>& node1, const NodeBase<BV>& node2)
{
  return 0;
}

template<>
size_t select(const NodeBase<AABB>& node, const NodeBase<AABB>& node1, const NodeBase<AABB>& node2);

/// @brief select from node1 and node2 which is close to a given query bounding volume. 0 for node1 and 1 for node2
template<typename BV>
size_t select(const BV& query, const NodeBase<BV>& node1, const NodeBase<BV>& node2)
{
  return 0;
}

template<>
size_t select(const AABB& query, const NodeBase<AABB>& node1, const NodeBase<AABB>& node2);


/// @brief Class for hierarchy tree structure
template<typename BV>
class HierarchyTree
{
  typedef NodeBase<BV> NodeType;
  typedef typename std::vector<NodeBase<BV>* >::iterator NodeVecIterator;
  typedef typename std::vector<NodeBase<BV>* >::const_iterator NodeVecConstIterator;

  struct SortByMorton
  {
    bool operator() (const NodeType* a, const NodeType* b) const
    {
      return a->code < b->code;
    }
  };

public:

  /// @brief Create hierarchy tree with suitable setting.
  /// bu_threshold decides the height of tree node to start bottom-up construction / optimization;
  /// topdown_level decides different methods to construct tree in topdown manner.
  /// lower level method constructs tree with better quality but is slower.
  HierarchyTree(int bu_threshold_ = 16, int topdown_level_ = 0);

  ~HierarchyTree();
  
  /// @brief Initialize the tree by a set of leaves using algorithm with a given level.
  void init(std::vector<NodeType*>& leaves, int level = 0);

  /// @brief Insest a node
  NodeType* insert(const BV& bv, void* data);

  /// @brief Remove a leaf node
  void remove(NodeType* leaf);

  /// @brief Clear the tree 
  void clear();

  /// @brief Whether the tree is empty 
  bool empty() const;

  /// @brief update one leaf node 
  void update(NodeType* leaf, int lookahead_level = -1);

  /// @brief update the tree when the bounding volume of a given leaf has changed
  bool update(NodeType* leaf, const BV& bv);

  /// @brief update one leaf's bounding volume, with prediction 
  bool update(NodeType* leaf, const BV& bv, const Vec3f& vel, FCL_REAL margin);

  /// @brief update one leaf's bounding volume, with prediction 
  bool update(NodeType* leaf, const BV& bv, const Vec3f& vel);

  /// @brief get the max height of the tree
  size_t getMaxHeight() const;

  /// @brief get the max depth of the tree
  size_t getMaxDepth() const;

  /// @brief balance the tree from bottom 
  void balanceBottomup();

  /// @brief balance the tree from top 
  void balanceTopdown();
  
  /// @brief balance the tree in an incremental way 
  void balanceIncremental(int iterations);
  
  /// @brief refit the tree, i.e., when the leaf nodes' bounding volumes change, update the entire tree in a bottom-up manner
  void refit();

  /// @brief extract all the leaves of the tree 
  void extractLeaves(const NodeType* root, std::vector<NodeType*>& leaves) const;

  /// @brief number of leaves in the tree
  size_t size() const;

  /// @brief get the root of the tree
  NodeType* getRoot() const;

  NodeType*& getRoot();

  /// @brief print the tree in a recursive way
  void print(NodeType* root, int depth);

private:

  /// @brief construct a tree for a set of leaves from bottom -- very heavy way 
  void bottomup(const NodeVecIterator lbeg, const NodeVecIterator lend);

  /// @brief construct a tree for a set of leaves from top 
  NodeType* topdown(const NodeVecIterator lbeg, const NodeVecIterator lend);

  /// @brief compute the maximum height of a subtree rooted from a given node
  size_t getMaxHeight(NodeType* node) const;

  /// @brief compute the maximum depth of a subtree rooted from a given node
  void getMaxDepth(NodeType* node, size_t depth, size_t& max_depth) const;

  /// @brief construct a tree from a list of nodes stored in [lbeg, lend) in a topdown manner.
  /// During construction, first compute the best split axis as the axis along with the longest AABB edge.
  /// Then compute the median of all nodes' center projection onto the axis and using it as the split threshold.
  NodeType* topdown_0(const NodeVecIterator lbeg, const NodeVecIterator lend);

  /// @brief construct a tree from a list of nodes stored in [lbeg, lend) in a topdown manner.
  /// During construction, first compute the best split thresholds for different axes as the average of all nodes' center.
  /// Then choose the split axis as the axis whose threshold can divide the nodes into two parts with almost similar size.
  /// This construction is more expensive then topdown_0, but also can provide tree with better quality.
  NodeType* topdown_1(const NodeVecIterator lbeg, const NodeVecIterator lend);

  /// @brief init tree from leaves in the topdown manner (topdown_0 or topdown_1)
  void init_0(std::vector<NodeType*>& leaves);

  /// @brief init tree from leaves using morton code. It uses morton_0, i.e., for nodes which is of depth more than the maximum bits of the morton code,
  /// we use bottomup method to construct the subtree, which is slow but can construct tree with high quality.
  void init_1(std::vector<NodeType*>& leaves);

  /// @brief init tree from leaves using morton code. It uses morton_0, i.e., for nodes which is of depth more than the maximum bits of the morton code,
  /// we split the leaves into two parts with the same size simply using the node index. 
  void init_2(std::vector<NodeType*>& leaves);

  /// @brief init tree from leaves using morton code. It uses morton_2, i.e., for all nodes, we simply divide the leaves into parts with the same size simply using the node index.
  void init_3(std::vector<NodeType*>& leaves);
  
  NodeType* mortonRecurse_0(const NodeVecIterator lbeg, const NodeVecIterator lend, const FCL_UINT32& split, int bits);

  NodeType* mortonRecurse_1(const NodeVecIterator lbeg, const NodeVecIterator lend, const FCL_UINT32& split, int bits);

  NodeType* mortonRecurse_2(const NodeVecIterator lbeg, const NodeVecIterator lend);

  /// @brief update one leaf node's bounding volume 
  void update_(NodeType* leaf, const BV& bv);

  /// @brief sort node n and its parent according to their memory position 
  NodeType* sort(NodeType* n, NodeType*& r);
  
  /// @brief Insert a leaf node and also update its ancestors 
  void insertLeaf(NodeType* root, NodeType* leaf);

  /// @brief Remove a leaf. The leaf node itself is not deleted yet, but all the unnecessary internal nodes are deleted.
  /// return the node with the smallest depth and is influenced by the remove operation 
  NodeType* removeLeaf(NodeType* leaf);

  /// @brief Delete all internal nodes and return all leaves nodes with given depth from root 
  void fetchLeaves(NodeType* root, std::vector<NodeType*>& leaves, int depth = -1);

  static size_t indexOf(NodeType* node);

  /// @brief create one node (leaf or internal)  
  NodeType* createNode(NodeType* parent, 
                       const BV& bv,
                       void* data);

  NodeType* createNode(NodeType* parent,
                       const BV& bv1,
                       const BV& bv2,
                       void* data);
  
  NodeType* createNode(NodeType* parent,
                       void* data);

  void deleteNode(NodeType* node);

  void recurseDeleteNode(NodeType* node);

  void recurseRefit(NodeType* node);

  static BV bounds(const std::vector<NodeType*>& leaves);

  static BV bounds(const NodeVecIterator lbeg, const NodeVecIterator lend);

protected:
  NodeType* root_node;

  size_t n_leaves;

  unsigned int opath;

  /// This is a one NodeType cache, the reason is that we need to remove a node and then add it again frequently. 
  NodeType* free_node; 

  int max_lookahead_level;
  
public:
  /// @brief decide which topdown algorithm to use
  int topdown_level;

  /// @brief decide the depth to use expensive bottom-up algorithm
  int bu_threshold;
};


template<>
bool HierarchyTree<AABB>::update(NodeBase<AABB>* leaf, const AABB& bv_, const Vec3f& vel, FCL_REAL margin);

template<>
bool HierarchyTree<AABB>::update(NodeBase<AABB>* leaf, const AABB& bv_, const Vec3f& vel);


namespace implementation_array
{

template<typename BV>
struct NodeBase
{
  BV bv;

  union
  {
    size_t parent;
    size_t next;
  };
  
  union
  {
    size_t children[2];
    void* data;
  };

  FCL_UINT32 code;
  
  bool isLeaf() const { return (children[1] == (size_t)(-1)); }
  bool isInternal() const { return !isLeaf(); }
};
 


/// @brief Functor comparing two nodes
template<typename BV>
struct nodeBaseLess
{
  nodeBaseLess(const NodeBase<BV>* nodes_, size_t d_) : nodes(nodes_),
                                                        d(d_)
  {}

  bool operator() (size_t i, size_t j) const
  {
    if(nodes[i].bv.center()[d] < nodes[j].bv.center()[d])
      return true;
    return false;
  }

private:

  /// @brief the nodes array
  const NodeBase<BV>* nodes;
  
  /// @brief the dimension to compare
  size_t d;
};


/// @brief select the node from node1 and node2 which is close to the query-th node in the nodes. 0 for node1 and 1 for node2.
template<typename BV> 
size_t select(size_t query, size_t node1, size_t node2, NodeBase<BV>* nodes)
{
  return 0;
}

template<>
size_t select(size_t query, size_t node1, size_t node2, NodeBase<AABB>* nodes);

/// @brief select the node from node1 and node2 which is close to the query AABB. 0 for node1 and 1 for node2.
template<typename BV>
size_t select(const BV& query, size_t node1, size_t node2, NodeBase<BV>* nodes)
{
  return 0;
}

template<>
size_t select(const AABB& query, size_t node1, size_t node2, NodeBase<AABB>* nodes);

/// @brief Class for hierarchy tree structure
template<typename BV>
class HierarchyTree
{
  typedef NodeBase<BV> NodeType;
  
  struct SortByMorton
  {
    bool operator() (size_t a, size_t b) const
    {
      if((a != NULL_NODE) && (b != NULL_NODE))
        return nodes[a].code < nodes[b].code;
      else if(a == NULL_NODE)
        return split < nodes[b].code;
      else if(b == NULL_NODE)
        return nodes[a].code < split;

      return false;
    }

    NodeType* nodes;
    FCL_UINT32 split;
  };

public:
  /// @brief Create hierarchy tree with suitable setting.
  /// bu_threshold decides the height of tree node to start bottom-up construction / optimization;
  /// topdown_level decides different methods to construct tree in topdown manner.
  /// lower level method constructs tree with better quality but is slower.
  HierarchyTree(int bu_threshold_ = 16, int topdown_level_ = 0);

  ~HierarchyTree();

  /// @brief Initialize the tree by a set of leaves using algorithm with a given level.
  void init(NodeType* leaves, int n_leaves_, int level = 0);

  /// @brief Initialize the tree by a set of leaves using algorithm with a given level.
  size_t insert(const BV& bv, void* data);

  /// @brief Remove a leaf node
  void remove(size_t leaf);

  /// @brief Clear the tree 
  void clear();

  /// @brief Whether the tree is empty 
  bool empty() const;
 
  /// @brief update one leaf node 
  void update(size_t leaf, int lookahead_level = -1);

  /// @brief update the tree when the bounding volume of a given leaf has changed
  bool update(size_t leaf, const BV& bv);

  /// @brief update one leaf's bounding volume, with prediction 
  bool update(size_t leaf, const BV& bv, const Vec3f& vel, FCL_REAL margin);

  /// @brief update one leaf's bounding volume, with prediction 
  bool update(size_t leaf, const BV& bv, const Vec3f& vel);

  /// @brief get the max height of the tree
  size_t getMaxHeight() const;

  /// @brief get the max depth of the tree
  size_t getMaxDepth() const;

  /// @brief balance the tree from bottom 
  void balanceBottomup();

  /// @brief balance the tree from top 
  void balanceTopdown();

  /// @brief balance the tree in an incremental way 
  void balanceIncremental(int iterations);

  /// @brief refit the tree, i.e., when the leaf nodes' bounding volumes change, update the entire tree in a bottom-up manner
  void refit();

  /// @brief extract all the leaves of the tree 
  void extractLeaves(size_t root, NodeType*& leaves) const;

  /// @brief number of leaves in the tree
  size_t size() const;

  /// @brief get the root of the tree
  size_t getRoot() const;

  /// @brief get the pointer to the nodes array
  NodeType* getNodes() const;

  /// @brief print the tree in a recursive way
  void print(size_t root, int depth);

private:

  /// @brief construct a tree for a set of leaves from bottom -- very heavy way 
  void bottomup(size_t* lbeg, size_t* lend);
  
  /// @brief construct a tree for a set of leaves from top 
  size_t topdown(size_t* lbeg, size_t* lend);

  /// @brief compute the maximum height of a subtree rooted from a given node
  size_t getMaxHeight(size_t node) const;

  /// @brief compute the maximum depth of a subtree rooted from a given node
  void getMaxDepth(size_t node, size_t depth, size_t& max_depth) const;

  /// @brief construct a tree from a list of nodes stored in [lbeg, lend) in a topdown manner.
  /// During construction, first compute the best split axis as the axis along with the longest AABB edge.
  /// Then compute the median of all nodes' center projection onto the axis and using it as the split threshold.
  size_t topdown_0(size_t* lbeg, size_t* lend);

  /// @brief construct a tree from a list of nodes stored in [lbeg, lend) in a topdown manner.
  /// During construction, first compute the best split thresholds for different axes as the average of all nodes' center.
  /// Then choose the split axis as the axis whose threshold can divide the nodes into two parts with almost similar size.
  /// This construction is more expensive then topdown_0, but also can provide tree with better quality.
  size_t topdown_1(size_t* lbeg, size_t* lend);

  /// @brief init tree from leaves in the topdown manner (topdown_0 or topdown_1)
  void init_0(NodeType* leaves, int n_leaves_);

  /// @brief init tree from leaves using morton code. It uses morton_0, i.e., for nodes which is of depth more than the maximum bits of the morton code,
  /// we use bottomup method to construct the subtree, which is slow but can construct tree with high quality.
  void init_1(NodeType* leaves, int n_leaves_);

  /// @brief init tree from leaves using morton code. It uses morton_0, i.e., for nodes which is of depth more than the maximum bits of the morton code,
  /// we split the leaves into two parts with the same size simply using the node index. 
  void init_2(NodeType* leaves, int n_leaves_);

  /// @brief init tree from leaves using morton code. It uses morton_2, i.e., for all nodes, we simply divide the leaves into parts with the same size simply using the node index.
  void init_3(NodeType* leaves, int n_leaves_);

  size_t mortonRecurse_0(size_t* lbeg, size_t* lend, const FCL_UINT32& split, int bits);

  size_t mortonRecurse_1(size_t* lbeg, size_t* lend, const FCL_UINT32& split, int bits);

  size_t mortonRecurse_2(size_t* lbeg, size_t* lend);

  /// @brief update one leaf node's bounding volume 
  void update_(size_t leaf, const BV& bv);

  /// @brief Insert a leaf node and also update its ancestors 
  void insertLeaf(size_t root, size_t leaf);

  /// @brief Remove a leaf. The leaf node itself is not deleted yet, but all the unnecessary internal nodes are deleted.
  /// return the node with the smallest depth and is influenced by the remove operation 
  size_t removeLeaf(size_t leaf);

  /// @brief Delete all internal nodes and return all leaves nodes with given depth from root 
  void fetchLeaves(size_t root, NodeType*& leaves, int depth = -1);

  size_t indexOf(size_t node);

  size_t allocateNode();

  /// @brief create one node (leaf or internal)
  size_t createNode(size_t parent, 
                    const BV& bv1,
                    const BV& bv2,
                    void* data);

  size_t createNode(size_t parent,
                    const BV& bv, 
                    void* data);

  size_t createNode(size_t parent,
                    void* data);

  void deleteNode(size_t node);

  void recurseRefit(size_t node);

protected:
  size_t root_node;
  NodeType* nodes;
  size_t n_nodes;
  size_t n_nodes_alloc;
  
  size_t n_leaves;
  size_t freelist;
  unsigned int opath;

  int max_lookahead_level;

public:
  /// @brief decide which topdown algorithm to use
  int topdown_level;

  /// @brief decide the depth to use expensive bottom-up algorithm
  int bu_threshold;

public:
  static const size_t NULL_NODE = -1;
};

template<typename BV>
const size_t HierarchyTree<BV>::NULL_NODE;

}

}


#include "fcl/broadphase/hierarchy_tree.hxx"


#endif