This file is indexed.

/usr/include/fcl/shape/geometric_shape_to_BVH_model.h is in libfcl-dev 0.5.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
/*
 * Software License Agreement (BSD License)
 *
 *  Copyright (c) 2011-2014, Willow Garage, Inc.
 *  Copyright (c) 2014-2016, Open Source Robotics Foundation
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of Open Source Robotics Foundation nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 */

/** \author Jia Pan */


#ifndef GEOMETRIC_SHAPE_TO_BVH_MODEL_H
#define GEOMETRIC_SHAPE_TO_BVH_MODEL_H

#include "fcl/shape/geometric_shapes.h"
#include "fcl/BVH/BVH_model.h"

namespace fcl
{

/// @brief Generate BVH model from box
template<typename BV>
void generateBVHModel(BVHModel<BV>& model, const Box& shape, const Transform3f& pose)
{
  double a = shape.side[0];
  double b = shape.side[1];
  double c = shape.side[2];
  std::vector<Vec3f> points(8);
  std::vector<Triangle> tri_indices(12);
  points[0].setValue(0.5 * a, -0.5 * b, 0.5 * c);
  points[1].setValue(0.5 * a, 0.5 * b, 0.5 * c);
  points[2].setValue(-0.5 * a, 0.5 * b, 0.5 * c);
  points[3].setValue(-0.5 * a, -0.5 * b, 0.5 * c);
  points[4].setValue(0.5 * a, -0.5 * b, -0.5 * c);
  points[5].setValue(0.5 * a, 0.5 * b, -0.5 * c);
  points[6].setValue(-0.5 * a, 0.5 * b, -0.5 * c);
  points[7].setValue(-0.5 * a, -0.5 * b, -0.5 * c);

  tri_indices[0].set(0, 4, 1);
  tri_indices[1].set(1, 4, 5);
  tri_indices[2].set(2, 6, 3);
  tri_indices[3].set(3, 6, 7);
  tri_indices[4].set(3, 0, 2);
  tri_indices[5].set(2, 0, 1);
  tri_indices[6].set(6, 5, 7);
  tri_indices[7].set(7, 5, 4);
  tri_indices[8].set(1, 5, 2);
  tri_indices[9].set(2, 5, 6);
  tri_indices[10].set(3, 7, 0);
  tri_indices[11].set(0, 7, 4);

  for(unsigned int i = 0; i < points.size(); ++i)
  {
    points[i] = pose.transform(points[i]);
  }

  model.beginModel();
  model.addSubModel(points, tri_indices);
  model.endModel();
  model.computeLocalAABB();
}

/// @brief Generate BVH model from sphere, given the number of segments along longitude and number of rings along latitude.
template<typename BV>
void generateBVHModel(BVHModel<BV>& model, const Sphere& shape, const Transform3f& pose, unsigned int seg, unsigned int ring)
{
  std::vector<Vec3f> points;
  std::vector<Triangle> tri_indices;

  double r = shape.radius;
  double phi, phid;
  const double pi = constants::pi;
  phid = pi * 2 / seg;
  phi = 0;

  double theta, thetad;
  thetad = pi / (ring + 1);
  theta = 0;

  for(unsigned int i = 0; i < ring; ++i)
  {
    double theta_ = theta + thetad * (i + 1);
    for(unsigned int j = 0; j < seg; ++j)
    {
      points.push_back(Vec3f(r * sin(theta_) * cos(phi + j * phid), r * sin(theta_) * sin(phi + j * phid), r * cos(theta_)));
    }
  }
  points.push_back(Vec3f(0, 0, r));
  points.push_back(Vec3f(0, 0, -r));

  for(unsigned int i = 0; i < ring - 1; ++i)
  {
    for(unsigned int j = 0; j < seg; ++j)
    {
       unsigned int a, b, c, d;
       a = i * seg + j;
       b = (j == seg - 1) ? (i * seg) : (i * seg + j + 1);
       c = (i + 1) * seg + j;
       d = (j == seg - 1) ? ((i + 1) * seg) : ((i + 1) * seg + j + 1);
       tri_indices.push_back(Triangle(a, c, b));
       tri_indices.push_back(Triangle(b, c, d));
    }
  }

  for(unsigned int j = 0; j < seg; ++j)
  {
    unsigned int a, b;
    a = j;
    b = (j == seg - 1) ? 0 : (j + 1);
    tri_indices.push_back(Triangle(ring * seg, a, b));

    a = (ring - 1) * seg + j;
    b = (j == seg - 1) ? (ring - 1) * seg : ((ring - 1) * seg + j + 1);
    tri_indices.push_back(Triangle(a, ring * seg + 1, b));
  }

  for(unsigned int i = 0; i < points.size(); ++i)
  {
    points[i] = pose.transform(points[i]);
  }

  model.beginModel();
  model.addSubModel(points, tri_indices);
  model.endModel();
  model.computeLocalAABB();
}

/// @brief Generate BVH model from sphere
/// The difference between generateBVHModel is that it gives the number of triangles faces N for a sphere with unit radius. For sphere of radius r,
/// then the number of triangles is r * r * N so that the area represented by a single triangle is approximately the same.s
template<typename BV>
void generateBVHModel(BVHModel<BV>& model, const Sphere& shape, const Transform3f& pose, unsigned int n_faces_for_unit_sphere)
{
  double r = shape.radius;
  double n_low_bound = sqrtf(n_faces_for_unit_sphere / 2.0) * r * r;
  unsigned int ring = ceil(n_low_bound);
  unsigned int seg = ceil(n_low_bound);

  generateBVHModel(model, shape, pose, seg, ring);  
}

/// @brief Generate BVH model from ellipsoid, given the number of segments along longitude and number of rings along latitude.
template<typename BV>
void generateBVHModel(BVHModel<BV>& model, const Ellipsoid& shape, const Transform3f& pose, unsigned int seg, unsigned int ring)
{
  std::vector<Vec3f> points;
  std::vector<Triangle> tri_indices;

  const FCL_REAL& a = shape.radii[0];
  const FCL_REAL& b = shape.radii[1];
  const FCL_REAL& c = shape.radii[2];

  FCL_REAL phi, phid;
  const FCL_REAL pi = constants::pi;
  phid = pi * 2 / seg;
  phi = 0;

  FCL_REAL theta, thetad;
  thetad = pi / (ring + 1);
  theta = 0;

  for(unsigned int i = 0; i < ring; ++i)
  {
    double theta_ = theta + thetad * (i + 1);
    for(unsigned int j = 0; j < seg; ++j)
    {
      points.push_back(Vec3f(a * sin(theta_) * cos(phi + j * phid), b * sin(theta_) * sin(phi + j * phid), c * cos(theta_)));
    }
  }
  points.push_back(Vec3f(0, 0, c));
  points.push_back(Vec3f(0, 0, -c));

  for(unsigned int i = 0; i < ring - 1; ++i)
  {
    for(unsigned int j = 0; j < seg; ++j)
    {
       unsigned int a, b, c, d;
       a = i * seg + j;
       b = (j == seg - 1) ? (i * seg) : (i * seg + j + 1);
       c = (i + 1) * seg + j;
       d = (j == seg - 1) ? ((i + 1) * seg) : ((i + 1) * seg + j + 1);
       tri_indices.push_back(Triangle(a, c, b));
       tri_indices.push_back(Triangle(b, c, d));
    }
  }

  for(unsigned int j = 0; j < seg; ++j)
  {
    unsigned int a, b;
    a = j;
    b = (j == seg - 1) ? 0 : (j + 1);
    tri_indices.push_back(Triangle(ring * seg, a, b));

    a = (ring - 1) * seg + j;
    b = (j == seg - 1) ? (ring - 1) * seg : ((ring - 1) * seg + j + 1);
    tri_indices.push_back(Triangle(a, ring * seg + 1, b));
  }

  for(unsigned int i = 0; i < points.size(); ++i)
  {
    points[i] = pose.transform(points[i]);
  }

  model.beginModel();
  model.addSubModel(points, tri_indices);
  model.endModel();
  model.computeLocalAABB();
}

/// @brief Generate BVH model from ellipsoid
/// The difference between generateBVHModel is that it gives the number of triangles faces N for an ellipsoid with unit radii (1, 1, 1). For ellipsoid of radii (a, b, c),
/// then the number of triangles is ((a^p * b^p + b^p * c^p + c^p * a^p)/3)^(1/p) * N, where p is 1.6075, so that the area represented by a single triangle is approximately the same.
/// Reference: https://en.wikipedia.org/wiki/Ellipsoid#Approximate_formula
template<typename BV>
void generateBVHModel(BVHModel<BV>& model, const Ellipsoid& shape, const Transform3f& pose, unsigned int n_faces_for_unit_ellipsoid)
{
  const FCL_REAL p = 1.6075;

  const FCL_REAL& ap = std::pow(shape.radii[0], p);
  const FCL_REAL& bp = std::pow(shape.radii[1], p);
  const FCL_REAL& cp = std::pow(shape.radii[2], p);

  const FCL_REAL ratio = std::pow((ap * bp + bp * cp + cp * ap) / 3.0, 1.0 / p);
  const FCL_REAL n_low_bound = std::sqrt(n_faces_for_unit_ellipsoid / 2.0) * ratio;

  const unsigned int ring = std::ceil(n_low_bound);
  const unsigned int seg = std::ceil(n_low_bound);

  generateBVHModel(model, shape, pose, seg, ring);
}

/// @brief Generate BVH model from cylinder, given the number of segments along circle and the number of segments along axis.
template<typename BV>
void generateBVHModel(BVHModel<BV>& model, const Cylinder& shape, const Transform3f& pose, unsigned int tot, unsigned int h_num)
{
  std::vector<Vec3f> points;
  std::vector<Triangle> tri_indices;

  double r = shape.radius;
  double h = shape.lz;
  double phi, phid;
  const double pi = constants::pi;
  phid = pi * 2 / tot;
  phi = 0;

  double hd = h / h_num;

  for(unsigned int i = 0; i < tot; ++i)
    points.push_back(Vec3f(r * cos(phi + phid * i), r * sin(phi + phid * i), h / 2));

  for(unsigned int i = 0; i < h_num - 1; ++i)
  {
    for(unsigned int j = 0; j < tot; ++j)
    {
      points.push_back(Vec3f(r * cos(phi + phid * j), r * sin(phi + phid * j), h / 2 - (i + 1) * hd));
    }
  }

  for(unsigned int i = 0; i < tot; ++i)
    points.push_back(Vec3f(r * cos(phi + phid * i), r * sin(phi + phid * i), - h / 2));

  points.push_back(Vec3f(0, 0, h / 2));
  points.push_back(Vec3f(0, 0, -h / 2));

  for(unsigned int i = 0; i < tot; ++i)
  {
    Triangle tmp((h_num + 1) * tot, i, ((i == tot - 1) ? 0 : (i + 1)));
    tri_indices.push_back(tmp);
  }

  for(unsigned int i = 0; i < tot; ++i)
  {
    Triangle tmp((h_num + 1) * tot + 1, h_num * tot + ((i == tot - 1) ? 0 : (i + 1)), h_num * tot + i);
    tri_indices.push_back(tmp);
  }

  for(unsigned int i = 0; i < h_num; ++i)
  {
    for(unsigned int j = 0; j < tot; ++j)
    {
      int a, b, c, d;
      a = j;
      b = (j == tot - 1) ? 0 : (j + 1);
      c = j + tot;
      d = (j == tot - 1) ? tot : (j + 1 + tot);

      int start = i * tot;
      tri_indices.push_back(Triangle(start + b, start + a, start + c));
      tri_indices.push_back(Triangle(start + b, start + c, start + d));
    }
  }

  for(unsigned int i = 0; i < points.size(); ++i)
  {
    points[i] = pose.transform(points[i]);
  }

  model.beginModel();
  model.addSubModel(points, tri_indices);
  model.endModel();
  model.computeLocalAABB();
}

/// @brief Generate BVH model from cylinder
/// Difference from generateBVHModel: is that it gives the circle split number tot for a cylinder with unit radius. For cylinder with
/// larger radius, the number of circle split number is r * tot.
template<typename BV>
void generateBVHModel(BVHModel<BV>& model, const Cylinder& shape, const Transform3f& pose, unsigned int tot_for_unit_cylinder)
{
  double r = shape.radius;
  double h = shape.lz;

  const double pi = constants::pi;
  unsigned int tot = tot_for_unit_cylinder * r;
  double phid = pi * 2 / tot;

  double circle_edge = phid * r;
  unsigned int h_num = ceil(h / circle_edge);
  
  generateBVHModel(model, shape, pose, tot, h_num);
}


/// @brief Generate BVH model from cone, given the number of segments along circle and the number of segments along axis.
template<typename BV>
void generateBVHModel(BVHModel<BV>& model, const Cone& shape, const Transform3f& pose, unsigned int tot, unsigned int h_num)
{
  std::vector<Vec3f> points;
  std::vector<Triangle> tri_indices;

  double r = shape.radius;
  double h = shape.lz;

  double phi, phid;
  const double pi = constants::pi;
  phid = pi * 2 / tot;
  phi = 0;

  double hd = h / h_num;

  for(unsigned int i = 0; i < h_num - 1; ++i)
  {
    double h_i = h / 2 - (i + 1) * hd;
    double rh = r * (0.5 - h_i / h);
    for(unsigned int j = 0; j < tot; ++j)
    {
      points.push_back(Vec3f(rh * cos(phi + phid * j), rh * sin(phi + phid * j), h_i));
    }
  }

  for(unsigned int i = 0; i < tot; ++i)
    points.push_back(Vec3f(r * cos(phi + phid * i), r * sin(phi + phid * i), - h / 2));

  points.push_back(Vec3f(0, 0, h / 2));
  points.push_back(Vec3f(0, 0, -h / 2));

  for(unsigned int i = 0; i < tot; ++i)
  {
    Triangle tmp(h_num * tot, i, (i == tot - 1) ? 0 : (i + 1));
    tri_indices.push_back(tmp);
  }

  for(unsigned int i = 0; i < tot; ++i)
  {
    Triangle tmp(h_num * tot + 1, (h_num - 1) * tot + ((i == tot - 1) ? 0 : (i + 1)), (h_num - 1) * tot + i);
    tri_indices.push_back(tmp);
  }

  for(unsigned int i = 0; i < h_num - 1; ++i)
  {
    for(unsigned int j = 0; j < tot; ++j)
    {
      int a, b, c, d;
      a = j;
      b = (j == tot - 1) ? 0 : (j + 1);
      c = j + tot;
      d = (j == tot - 1) ? tot : (j + 1 + tot);

      int start = i * tot;
      tri_indices.push_back(Triangle(start + b, start + a, start + c));
      tri_indices.push_back(Triangle(start + b, start + c, start + d));
    }
  }

  for(unsigned int i = 0; i < points.size(); ++i)
  {
    points[i] = pose.transform(points[i]);
  }

  model.beginModel();
  model.addSubModel(points, tri_indices);
  model.endModel();
  model.computeLocalAABB();
}

/// @brief Generate BVH model from cone
/// Difference from generateBVHModel: is that it gives the circle split number tot for a cylinder with unit radius. For cone with
/// larger radius, the number of circle split number is r * tot.
template<typename BV>
void generateBVHModel(BVHModel<BV>& model, const Cone& shape, const Transform3f& pose, unsigned int tot_for_unit_cone)
{
  double r = shape.radius;
  double h = shape.lz;

  const double pi = constants::pi;
  unsigned int tot = tot_for_unit_cone * r;
  double phid = pi * 2 / tot;

  double circle_edge = phid * r;
  unsigned int h_num = ceil(h / circle_edge);

  generateBVHModel(model, shape, pose, tot, h_num);
}

}

#endif