/usr/include/fcl/shape/geometric_shapes.h is in libfcl-dev 0.5.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 | /*
* Software License Agreement (BSD License)
*
* Copyright (c) 2011-2014, Willow Garage, Inc.
* Copyright (c) 2014-2016, Open Source Robotics Foundation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Open Source Robotics Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \author Jia Pan */
#ifndef FCL_GEOMETRIC_SHAPES_H
#define FCL_GEOMETRIC_SHAPES_H
#include "fcl/collision_object.h"
#include "fcl/math/vec_3f.h"
#include <string.h>
namespace fcl
{
/// @brief Base class for all basic geometric shapes
class ShapeBase : public CollisionGeometry
{
public:
ShapeBase() {}
/// @brief Get object type: a geometric shape
OBJECT_TYPE getObjectType() const { return OT_GEOM; }
};
/// @brief Triangle stores the points instead of only indices of points
class TriangleP : public ShapeBase
{
public:
TriangleP(const Vec3f& a_, const Vec3f& b_, const Vec3f& c_) : ShapeBase(), a(a_), b(b_), c(c_)
{
}
/// @brief virtual function of compute AABB in local coordinate
void computeLocalAABB();
NODE_TYPE getNodeType() const { return GEOM_TRIANGLE; }
Vec3f a, b, c;
};
/// @brief Center at zero point, axis aligned box
class Box : public ShapeBase
{
public:
Box(FCL_REAL x, FCL_REAL y, FCL_REAL z) : ShapeBase(), side(x, y, z)
{
}
Box(const Vec3f& side_) : ShapeBase(), side(side_)
{
}
Box() {}
/// @brief box side length
Vec3f side;
/// @brief Compute AABB
void computeLocalAABB();
/// @brief Get node type: a box
NODE_TYPE getNodeType() const { return GEOM_BOX; }
FCL_REAL computeVolume() const
{
return side[0] * side[1] * side[2];
}
Matrix3f computeMomentofInertia() const
{
FCL_REAL V = computeVolume();
FCL_REAL a2 = side[0] * side[0] * V;
FCL_REAL b2 = side[1] * side[1] * V;
FCL_REAL c2 = side[2] * side[2] * V;
return Matrix3f((b2 + c2) / 12, 0, 0,
0, (a2 + c2) / 12, 0,
0, 0, (a2 + b2) / 12);
}
};
/// @brief Center at zero point sphere
class Sphere : public ShapeBase
{
public:
Sphere(FCL_REAL radius_) : ShapeBase(), radius(radius_)
{
}
/// @brief Radius of the sphere
FCL_REAL radius;
/// @brief Compute AABB
void computeLocalAABB();
/// @brief Get node type: a sphere
NODE_TYPE getNodeType() const { return GEOM_SPHERE; }
Matrix3f computeMomentofInertia() const
{
FCL_REAL I = 0.4 * radius * radius * computeVolume();
return Matrix3f(I, 0, 0,
0, I, 0,
0, 0, I);
}
FCL_REAL computeVolume() const
{
return 4.0 * constants::pi * radius * radius * radius / 3.0;
}
};
/// @brief Center at zero point ellipsoid
class Ellipsoid : public ShapeBase
{
public:
Ellipsoid(FCL_REAL a, FCL_REAL b, FCL_REAL c) : ShapeBase(), radii(a, b, c)
{
}
Ellipsoid(const Vec3f& radii_) : ShapeBase(), radii(radii_)
{
}
/// @brief Radii of the ellipsoid
Vec3f radii;
/// @brief Compute AABB
void computeLocalAABB();
/// @brief Get node type: a sphere
NODE_TYPE getNodeType() const { return GEOM_ELLIPSOID; }
Matrix3f computeMomentofInertia() const
{
const FCL_REAL V = computeVolume();
const FCL_REAL a2 = radii[0] * radii[0] * V;
const FCL_REAL b2 = radii[1] * radii[1] * V;
const FCL_REAL c2 = radii[2] * radii[2] * V;
return Matrix3f(0.2 * (b2 + c2), 0, 0,
0, 0.2 * (a2 + c2), 0,
0, 0, 0.2 * (a2 + b2));
}
FCL_REAL computeVolume() const
{
const FCL_REAL pi = constants::pi;
return 4.0 * pi * radii[0] * radii[1] * radii[2] / 3.0;
}
};
/// @brief Center at zero point capsule
class Capsule : public ShapeBase
{
public:
Capsule(FCL_REAL radius_, FCL_REAL lz_) : ShapeBase(), radius(radius_), lz(lz_)
{
}
/// @brief Radius of capsule
FCL_REAL radius;
/// @brief Length along z axis
FCL_REAL lz;
/// @brief Compute AABB
void computeLocalAABB();
/// @brief Get node type: a capsule
NODE_TYPE getNodeType() const { return GEOM_CAPSULE; }
FCL_REAL computeVolume() const
{
return constants::pi * radius * radius *(lz + radius * 4/3.0);
}
Matrix3f computeMomentofInertia() const
{
FCL_REAL v_cyl = radius * radius * lz * constants::pi;
FCL_REAL v_sph = radius * radius * radius * constants::pi * 4 / 3.0;
FCL_REAL ix = v_cyl * lz * lz / 12.0 + 0.25 * v_cyl * radius + 0.4 * v_sph * radius * radius + 0.25 * v_sph * lz * lz;
FCL_REAL iz = (0.5 * v_cyl + 0.4 * v_sph) * radius * radius;
return Matrix3f(ix, 0, 0,
0, ix, 0,
0, 0, iz);
}
};
/// @brief Center at zero cone
class Cone : public ShapeBase
{
public:
Cone(FCL_REAL radius_, FCL_REAL lz_) : ShapeBase(), radius(radius_), lz(lz_)
{
}
/// @brief Radius of the cone
FCL_REAL radius;
/// @brief Length along z axis
FCL_REAL lz;
/// @brief Compute AABB
void computeLocalAABB();
/// @brief Get node type: a cone
NODE_TYPE getNodeType() const { return GEOM_CONE; }
FCL_REAL computeVolume() const
{
return constants::pi * radius * radius * lz / 3;
}
Matrix3f computeMomentofInertia() const
{
FCL_REAL V = computeVolume();
FCL_REAL ix = V * (0.1 * lz * lz + 3 * radius * radius / 20);
FCL_REAL iz = 0.3 * V * radius * radius;
return Matrix3f(ix, 0, 0,
0, ix, 0,
0, 0, iz);
}
Vec3f computeCOM() const
{
return Vec3f(0, 0, -0.25 * lz);
}
};
/// @brief Center at zero cylinder
class Cylinder : public ShapeBase
{
public:
Cylinder(FCL_REAL radius_, FCL_REAL lz_) : ShapeBase(), radius(radius_), lz(lz_)
{
}
/// @brief Radius of the cylinder
FCL_REAL radius;
/// @brief Length along z axis
FCL_REAL lz;
/// @brief Compute AABB
void computeLocalAABB();
/// @brief Get node type: a cylinder
NODE_TYPE getNodeType() const { return GEOM_CYLINDER; }
FCL_REAL computeVolume() const
{
return constants::pi * radius * radius * lz;
}
Matrix3f computeMomentofInertia() const
{
FCL_REAL V = computeVolume();
FCL_REAL ix = V * (3 * radius * radius + lz * lz) / 12;
FCL_REAL iz = V * radius * radius / 2;
return Matrix3f(ix, 0, 0,
0, ix, 0,
0, 0, iz);
}
};
/// @brief Convex polytope
class Convex : public ShapeBase
{
public:
/// @brief Constructing a convex, providing normal and offset of each polytype surface, and the points and shape topology information
Convex(Vec3f* plane_normals_,
FCL_REAL* plane_dis_,
int num_planes_,
Vec3f* points_,
int num_points_,
int* polygons_) : ShapeBase()
{
plane_normals = plane_normals_;
plane_dis = plane_dis_;
num_planes = num_planes_;
points = points_;
num_points = num_points_;
polygons = polygons_;
edges = NULL;
Vec3f sum;
for(int i = 0; i < num_points; ++i)
{
sum += points[i];
}
center = sum * (FCL_REAL)(1.0 / num_points);
fillEdges();
}
/// @brief Copy constructor
Convex(const Convex& other) : ShapeBase(other)
{
plane_normals = other.plane_normals;
plane_dis = other.plane_dis;
num_planes = other.num_planes;
points = other.points;
polygons = other.polygons;
edges = new Edge[other.num_edges];
memcpy(edges, other.edges, sizeof(Edge) * num_edges);
}
~Convex()
{
delete [] edges;
}
/// @brief Compute AABB
void computeLocalAABB();
/// @brief Get node type: a conex polytope
NODE_TYPE getNodeType() const { return GEOM_CONVEX; }
Vec3f* plane_normals;
FCL_REAL* plane_dis;
/// @brief An array of indices to the points of each polygon, it should be the number of vertices
/// followed by that amount of indices to "points" in counter clockwise order
int* polygons;
Vec3f* points;
int num_points;
int num_edges;
int num_planes;
struct Edge
{
int first, second;
};
Edge* edges;
/// @brief center of the convex polytope, this is used for collision: center is guaranteed in the internal of the polytope (as it is convex)
Vec3f center;
/// based on http://number-none.com/blow/inertia/bb_inertia.doc
Matrix3f computeMomentofInertia() const
{
Matrix3f C(0, 0, 0,
0, 0, 0,
0, 0, 0);
Matrix3f C_canonical(1/60.0, 1/120.0, 1/120.0,
1/120.0, 1/60.0, 1/120.0,
1/120.0, 1/120.0, 1/60.0);
int* points_in_poly = polygons;
int* index = polygons + 1;
for(int i = 0; i < num_planes; ++i)
{
Vec3f plane_center;
// compute the center of the polygon
for(int j = 0; j < *points_in_poly; ++j)
plane_center += points[index[j]];
plane_center = plane_center * (1.0 / *points_in_poly);
// compute the volume of tetrahedron making by neighboring two points, the plane center and the reference point (zero) of the convex shape
const Vec3f& v3 = plane_center;
for(int j = 0; j < *points_in_poly; ++j)
{
int e_first = index[j];
int e_second = index[(j+1)%*points_in_poly];
const Vec3f& v1 = points[e_first];
const Vec3f& v2 = points[e_second];
FCL_REAL d_six_vol = (v1.cross(v2)).dot(v3);
Matrix3f A(v1, v2, v3); // this is A' in the original document
C += transpose(A) * C_canonical * A * d_six_vol; // change accordingly
}
points_in_poly += (*points_in_poly + 1);
index = points_in_poly + 1;
}
FCL_REAL trace_C = C(0, 0) + C(1, 1) + C(2, 2);
return Matrix3f(trace_C - C(0, 0), -C(0, 1), -C(0, 2),
-C(1, 0), trace_C - C(1, 1), -C(1, 2),
-C(2, 0), -C(2, 1), trace_C - C(2, 2));
}
Vec3f computeCOM() const
{
Vec3f com;
FCL_REAL vol = 0;
int* points_in_poly = polygons;
int* index = polygons + 1;
for(int i = 0; i < num_planes; ++i)
{
Vec3f plane_center;
// compute the center of the polygon
for(int j = 0; j < *points_in_poly; ++j)
plane_center += points[index[j]];
plane_center = plane_center * (1.0 / *points_in_poly);
// compute the volume of tetrahedron making by neighboring two points, the plane center and the reference point (zero) of the convex shape
const Vec3f& v3 = plane_center;
for(int j = 0; j < *points_in_poly; ++j)
{
int e_first = index[j];
int e_second = index[(j+1)%*points_in_poly];
const Vec3f& v1 = points[e_first];
const Vec3f& v2 = points[e_second];
FCL_REAL d_six_vol = (v1.cross(v2)).dot(v3);
vol += d_six_vol;
com += (points[e_first] + points[e_second] + plane_center) * d_six_vol;
}
points_in_poly += (*points_in_poly + 1);
index = points_in_poly + 1;
}
return com / (vol * 4); // here we choose zero as the reference
}
FCL_REAL computeVolume() const
{
FCL_REAL vol = 0;
int* points_in_poly = polygons;
int* index = polygons + 1;
for(int i = 0; i < num_planes; ++i)
{
Vec3f plane_center;
// compute the center of the polygon
for(int j = 0; j < *points_in_poly; ++j)
plane_center += points[index[j]];
plane_center = plane_center * (1.0 / *points_in_poly);
// compute the volume of tetrahedron making by neighboring two points, the plane center and the reference point (zero point) of the convex shape
const Vec3f& v3 = plane_center;
for(int j = 0; j < *points_in_poly; ++j)
{
int e_first = index[j];
int e_second = index[(j+1)%*points_in_poly];
const Vec3f& v1 = points[e_first];
const Vec3f& v2 = points[e_second];
FCL_REAL d_six_vol = (v1.cross(v2)).dot(v3);
vol += d_six_vol;
}
points_in_poly += (*points_in_poly + 1);
index = points_in_poly + 1;
}
return vol / 6;
}
protected:
/// @brief Get edge information
void fillEdges();
};
/// @brief Half Space: this is equivalent to the Plane in ODE. The separation plane is defined as n * x = d;
/// Points in the negative side of the separation plane (i.e. {x | n * x < d}) are inside the half space and points
/// in the positive side of the separation plane (i.e. {x | n * x > d}) are outside the half space
class Halfspace : public ShapeBase
{
public:
/// @brief Construct a half space with normal direction and offset
Halfspace(const Vec3f& n_, FCL_REAL d_) : ShapeBase(), n(n_), d(d_)
{
unitNormalTest();
}
/// @brief Construct a plane with normal direction and offset
Halfspace(FCL_REAL a, FCL_REAL b, FCL_REAL c, FCL_REAL d_) : ShapeBase(), n(a, b, c), d(d_)
{
unitNormalTest();
}
Halfspace() : ShapeBase(), n(1, 0, 0), d(0)
{
}
FCL_REAL signedDistance(const Vec3f& p) const
{
return n.dot(p) - d;
}
FCL_REAL distance(const Vec3f& p) const
{
return std::abs(n.dot(p) - d);
}
/// @brief Compute AABB
void computeLocalAABB();
/// @brief Get node type: a half space
NODE_TYPE getNodeType() const { return GEOM_HALFSPACE; }
/// @brief Plane normal
Vec3f n;
/// @brief Plane offset
FCL_REAL d;
protected:
/// @brief Turn non-unit normal into unit
void unitNormalTest();
};
/// @brief Infinite plane
class Plane : public ShapeBase
{
public:
/// @brief Construct a plane with normal direction and offset
Plane(const Vec3f& n_, FCL_REAL d_) : ShapeBase(), n(n_), d(d_)
{
unitNormalTest();
}
/// @brief Construct a plane with normal direction and offset
Plane(FCL_REAL a, FCL_REAL b, FCL_REAL c, FCL_REAL d_) : ShapeBase(), n(a, b, c), d(d_)
{
unitNormalTest();
}
Plane() : ShapeBase(), n(1, 0, 0), d(0)
{}
FCL_REAL signedDistance(const Vec3f& p) const
{
return n.dot(p) - d;
}
FCL_REAL distance(const Vec3f& p) const
{
return std::abs(n.dot(p) - d);
}
/// @brief Compute AABB
void computeLocalAABB();
/// @brief Get node type: a plane
NODE_TYPE getNodeType() const { return GEOM_PLANE; }
/// @brief Plane normal
Vec3f n;
/// @brief Plane offset
FCL_REAL d;
protected:
/// @brief Turn non-unit normal into unit
void unitNormalTest();
};
}
#endif
|