This file is indexed.

/usr/include/fcl/shape/geometric_shapes.h is in libfcl-dev 0.5.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
/*
 * Software License Agreement (BSD License)
 *
 *  Copyright (c) 2011-2014, Willow Garage, Inc.
 *  Copyright (c) 2014-2016, Open Source Robotics Foundation
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of Open Source Robotics Foundation nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 */

/** \author Jia Pan */


#ifndef FCL_GEOMETRIC_SHAPES_H
#define FCL_GEOMETRIC_SHAPES_H

#include "fcl/collision_object.h"
#include "fcl/math/vec_3f.h"
#include <string.h>

namespace fcl
{

/// @brief Base class for all basic geometric shapes
class ShapeBase : public CollisionGeometry
{
public:
  ShapeBase() {}

  /// @brief Get object type: a geometric shape
  OBJECT_TYPE getObjectType() const { return OT_GEOM; }
};

/// @brief Triangle stores the points instead of only indices of points
class TriangleP : public ShapeBase
{
public:
  TriangleP(const Vec3f& a_, const Vec3f& b_, const Vec3f& c_) : ShapeBase(), a(a_), b(b_), c(c_)
  {
  }

  /// @brief virtual function of compute AABB in local coordinate
  void computeLocalAABB();
  
  NODE_TYPE getNodeType() const { return GEOM_TRIANGLE; }

  Vec3f a, b, c;
};

/// @brief Center at zero point, axis aligned box
class Box : public ShapeBase
{
public:
  Box(FCL_REAL x, FCL_REAL y, FCL_REAL z) : ShapeBase(), side(x, y, z)
  {
  }

  Box(const Vec3f& side_) : ShapeBase(), side(side_) 
  {
  }

  Box() {}

  /// @brief box side length
  Vec3f side;

  /// @brief Compute AABB
  void computeLocalAABB();

  /// @brief Get node type: a box
  NODE_TYPE getNodeType() const { return GEOM_BOX; }

  FCL_REAL computeVolume() const
  {
    return side[0] * side[1] * side[2];
  }

  Matrix3f computeMomentofInertia() const
  {
    FCL_REAL V = computeVolume();
    FCL_REAL a2 = side[0] * side[0] * V;
    FCL_REAL b2 = side[1] * side[1] * V;
    FCL_REAL c2 = side[2] * side[2] * V;
    return Matrix3f((b2 + c2) / 12, 0, 0,
                    0, (a2 + c2) / 12, 0,
                    0, 0, (a2 + b2) / 12);
  }
};

/// @brief Center at zero point sphere
class Sphere : public ShapeBase
{
public:
  Sphere(FCL_REAL radius_) : ShapeBase(), radius(radius_)
  {
  }

  /// @brief Radius of the sphere
  FCL_REAL radius;

  /// @brief Compute AABB
  void computeLocalAABB();

  /// @brief Get node type: a sphere
  NODE_TYPE getNodeType() const { return GEOM_SPHERE; }

  Matrix3f computeMomentofInertia() const
  {
    FCL_REAL I = 0.4 * radius * radius * computeVolume();
    return Matrix3f(I, 0, 0,
                    0, I, 0,
                    0, 0, I);
  }

  FCL_REAL computeVolume() const
  {
    return 4.0 * constants::pi * radius * radius * radius / 3.0;
  }
};

/// @brief Center at zero point ellipsoid
class Ellipsoid : public ShapeBase
{
public:
  Ellipsoid(FCL_REAL a, FCL_REAL b, FCL_REAL c) : ShapeBase(), radii(a, b, c)
  {
  }

  Ellipsoid(const Vec3f& radii_) : ShapeBase(), radii(radii_)
  {
  }

  /// @brief Radii of the ellipsoid
  Vec3f radii;

  /// @brief Compute AABB
  void computeLocalAABB();

  /// @brief Get node type: a sphere
  NODE_TYPE getNodeType() const { return GEOM_ELLIPSOID; }

  Matrix3f computeMomentofInertia() const
  {
    const FCL_REAL V = computeVolume();
    const FCL_REAL a2 = radii[0] * radii[0] * V;
    const FCL_REAL b2 = radii[1] * radii[1] * V;
    const FCL_REAL c2 = radii[2] * radii[2] * V;
    return Matrix3f(0.2 * (b2 + c2), 0, 0,
                    0, 0.2 * (a2 + c2), 0,
                    0, 0, 0.2 * (a2 + b2));
  }

  FCL_REAL computeVolume() const
  {
    const FCL_REAL pi = constants::pi;
    return 4.0 * pi * radii[0] * radii[1] * radii[2] / 3.0;
  }
};

/// @brief Center at zero point capsule 
class Capsule : public ShapeBase
{
public:
  Capsule(FCL_REAL radius_, FCL_REAL lz_) : ShapeBase(), radius(radius_), lz(lz_)
  {
  }

  /// @brief Radius of capsule 
  FCL_REAL radius;

  /// @brief Length along z axis 
  FCL_REAL lz;

  /// @brief Compute AABB 
  void computeLocalAABB();

  /// @brief Get node type: a capsule 
  NODE_TYPE getNodeType() const { return GEOM_CAPSULE; }

  FCL_REAL computeVolume() const
  {
    return constants::pi * radius * radius *(lz + radius * 4/3.0);
  }

  Matrix3f computeMomentofInertia() const
  {
    FCL_REAL v_cyl = radius * radius * lz * constants::pi;
    FCL_REAL v_sph = radius * radius * radius * constants::pi * 4 / 3.0;
    
    FCL_REAL ix = v_cyl * lz * lz / 12.0 + 0.25 * v_cyl * radius + 0.4 * v_sph * radius * radius + 0.25 * v_sph * lz * lz;
    FCL_REAL iz = (0.5 * v_cyl + 0.4 * v_sph) * radius * radius;

    return Matrix3f(ix, 0, 0,
                    0, ix, 0,
                    0, 0, iz);
  }
  
};

/// @brief Center at zero cone 
class Cone : public ShapeBase
{
public:
  Cone(FCL_REAL radius_, FCL_REAL lz_) : ShapeBase(), radius(radius_), lz(lz_)
  {
  }

  /// @brief Radius of the cone 
  FCL_REAL radius;

  /// @brief Length along z axis 
  FCL_REAL lz;

  /// @brief Compute AABB 
  void computeLocalAABB();

  /// @brief Get node type: a cone 
  NODE_TYPE getNodeType() const { return GEOM_CONE; }

  FCL_REAL computeVolume() const
  {
    return constants::pi * radius * radius * lz / 3;
  }

  Matrix3f computeMomentofInertia() const
  {
    FCL_REAL V = computeVolume();
    FCL_REAL ix = V * (0.1 * lz * lz + 3 * radius * radius / 20);
    FCL_REAL iz = 0.3 * V * radius * radius;

    return Matrix3f(ix, 0, 0,
                    0, ix, 0,
                    0, 0, iz);
  }

  Vec3f computeCOM() const
  {
    return Vec3f(0, 0, -0.25 * lz);
  }
};

/// @brief Center at zero cylinder 
class Cylinder : public ShapeBase
{
public:
  Cylinder(FCL_REAL radius_, FCL_REAL lz_) : ShapeBase(), radius(radius_), lz(lz_)
  {
  }

  
  /// @brief Radius of the cylinder 
  FCL_REAL radius;

  /// @brief Length along z axis 
  FCL_REAL lz;

  /// @brief Compute AABB 
  void computeLocalAABB();

  /// @brief Get node type: a cylinder 
  NODE_TYPE getNodeType() const { return GEOM_CYLINDER; }

  FCL_REAL computeVolume() const
  {
    return constants::pi * radius * radius * lz;
  }

  Matrix3f computeMomentofInertia() const
  {
    FCL_REAL V = computeVolume();
    FCL_REAL ix = V * (3 * radius * radius + lz * lz) / 12;
    FCL_REAL iz = V * radius * radius / 2;
    return Matrix3f(ix, 0, 0,
                    0, ix, 0,
                    0, 0, iz);
  }
};

/// @brief Convex polytope 
class Convex : public ShapeBase
{
public:
  /// @brief Constructing a convex, providing normal and offset of each polytype surface, and the points and shape topology information 
  Convex(Vec3f* plane_normals_,
         FCL_REAL* plane_dis_,
         int num_planes_,
         Vec3f* points_,
         int num_points_,
         int* polygons_) : ShapeBase()
  {
    plane_normals = plane_normals_;
    plane_dis = plane_dis_;
    num_planes = num_planes_;
    points = points_;
    num_points = num_points_;
    polygons = polygons_;
    edges = NULL;

    Vec3f sum;
    for(int i = 0; i < num_points; ++i)
    {
      sum += points[i];
    }

    center = sum * (FCL_REAL)(1.0 / num_points);

    fillEdges();
  }

  /// @brief Copy constructor 
  Convex(const Convex& other) : ShapeBase(other)
  {
    plane_normals = other.plane_normals;
    plane_dis = other.plane_dis;
    num_planes = other.num_planes;
    points = other.points;
    polygons = other.polygons;
    edges = new Edge[other.num_edges];
    memcpy(edges, other.edges, sizeof(Edge) * num_edges);
  }

  ~Convex()
  {
    delete [] edges;
  }

  /// @brief Compute AABB 
  void computeLocalAABB();

  /// @brief Get node type: a conex polytope 
  NODE_TYPE getNodeType() const { return GEOM_CONVEX; }

  
  Vec3f* plane_normals;
  FCL_REAL* plane_dis;

  /// @brief An array of indices to the points of each polygon, it should be the number of vertices
  /// followed by that amount of indices to "points" in counter clockwise order
  int* polygons;

  Vec3f* points;
  int num_points;
  int num_edges;
  int num_planes;

  struct Edge
  {
    int first, second;
  };

  Edge* edges;

  /// @brief center of the convex polytope, this is used for collision: center is guaranteed in the internal of the polytope (as it is convex) 
  Vec3f center;

  /// based on http://number-none.com/blow/inertia/bb_inertia.doc
  Matrix3f computeMomentofInertia() const
  {
    
    Matrix3f C(0, 0, 0,
               0, 0, 0,
               0, 0, 0);

    Matrix3f C_canonical(1/60.0, 1/120.0, 1/120.0,
                         1/120.0, 1/60.0, 1/120.0,
                         1/120.0, 1/120.0, 1/60.0);

    int* points_in_poly = polygons;
    int* index = polygons + 1;
    for(int i = 0; i < num_planes; ++i)
    {
      Vec3f plane_center;

      // compute the center of the polygon
      for(int j = 0; j < *points_in_poly; ++j)
        plane_center += points[index[j]];
      plane_center = plane_center * (1.0 / *points_in_poly);

      // compute the volume of tetrahedron making by neighboring two points, the plane center and the reference point (zero) of the convex shape
      const Vec3f& v3 = plane_center;
      for(int j = 0; j < *points_in_poly; ++j)
      {
        int e_first = index[j];
        int e_second = index[(j+1)%*points_in_poly];
        const Vec3f& v1 = points[e_first];
        const Vec3f& v2 = points[e_second];
        FCL_REAL d_six_vol = (v1.cross(v2)).dot(v3);
        Matrix3f A(v1, v2, v3); // this is A' in the original document
        C += transpose(A) * C_canonical * A * d_six_vol; // change accordingly
      }
      
      points_in_poly += (*points_in_poly + 1);
      index = points_in_poly + 1;
    }

    FCL_REAL trace_C = C(0, 0) + C(1, 1) + C(2, 2);

    return Matrix3f(trace_C - C(0, 0), -C(0, 1), -C(0, 2),
                    -C(1, 0), trace_C - C(1, 1), -C(1, 2),
                    -C(2, 0), -C(2, 1), trace_C - C(2, 2));
    
  }

  Vec3f computeCOM() const
  {
    Vec3f com;
    FCL_REAL vol = 0;
    int* points_in_poly = polygons;
    int* index = polygons + 1;
    for(int i = 0; i < num_planes; ++i)
    {
      Vec3f plane_center;

      // compute the center of the polygon
      for(int j = 0; j < *points_in_poly; ++j)
        plane_center += points[index[j]];
      plane_center = plane_center * (1.0 / *points_in_poly);

      // compute the volume of tetrahedron making by neighboring two points, the plane center and the reference point (zero) of the convex shape
      const Vec3f& v3 = plane_center;
      for(int j = 0; j < *points_in_poly; ++j)
      {
        int e_first = index[j];
        int e_second = index[(j+1)%*points_in_poly];
        const Vec3f& v1 = points[e_first];
        const Vec3f& v2 = points[e_second];
        FCL_REAL d_six_vol = (v1.cross(v2)).dot(v3);
        vol += d_six_vol;
        com += (points[e_first] + points[e_second] + plane_center) * d_six_vol;
      }
      
      points_in_poly += (*points_in_poly + 1);
      index = points_in_poly + 1;
    }

    return com / (vol * 4); // here we choose zero as the reference
  }

  FCL_REAL computeVolume() const
  {
    FCL_REAL vol = 0;
    int* points_in_poly = polygons;
    int* index = polygons + 1;
    for(int i = 0; i < num_planes; ++i)
    {
      Vec3f plane_center;

      // compute the center of the polygon
      for(int j = 0; j < *points_in_poly; ++j)
        plane_center += points[index[j]];
      plane_center = plane_center * (1.0 / *points_in_poly);

      // compute the volume of tetrahedron making by neighboring two points, the plane center and the reference point (zero point) of the convex shape
      const Vec3f& v3 = plane_center;
      for(int j = 0; j < *points_in_poly; ++j)
      {
        int e_first = index[j];
        int e_second = index[(j+1)%*points_in_poly];
        const Vec3f& v1 = points[e_first];
        const Vec3f& v2 = points[e_second];
        FCL_REAL d_six_vol = (v1.cross(v2)).dot(v3);
        vol += d_six_vol;
      }
      
      points_in_poly += (*points_in_poly + 1);
      index = points_in_poly + 1;
    }

    return vol / 6;
  }

  

protected:
  /// @brief Get edge information 
  void fillEdges();
};


/// @brief Half Space: this is equivalent to the Plane in ODE. The separation plane is defined as n * x = d;
/// Points in the negative side of the separation plane (i.e. {x | n * x < d}) are inside the half space and points
/// in the positive side of the separation plane (i.e. {x | n * x > d}) are outside the half space
class Halfspace : public ShapeBase
{
public:
  /// @brief Construct a half space with normal direction and offset
  Halfspace(const Vec3f& n_, FCL_REAL d_) : ShapeBase(), n(n_), d(d_)
  {
    unitNormalTest();
  }

  /// @brief Construct a plane with normal direction and offset
  Halfspace(FCL_REAL a, FCL_REAL b, FCL_REAL c, FCL_REAL d_) : ShapeBase(), n(a, b, c), d(d_)
  {
    unitNormalTest();
  }

  Halfspace() : ShapeBase(), n(1, 0, 0), d(0)
  {
  }

  FCL_REAL signedDistance(const Vec3f& p) const
  {
    return n.dot(p) - d;
  }

  FCL_REAL distance(const Vec3f& p) const
  {
    return std::abs(n.dot(p) - d);
  }

  /// @brief Compute AABB
  void computeLocalAABB();

  /// @brief Get node type: a half space
  NODE_TYPE getNodeType() const { return GEOM_HALFSPACE; }
  
  /// @brief Plane normal
  Vec3f n;
  
  /// @brief Plane offset
  FCL_REAL d;

protected:

  /// @brief Turn non-unit normal into unit
  void unitNormalTest();
};

/// @brief Infinite plane 
class Plane : public ShapeBase
{
public:
  /// @brief Construct a plane with normal direction and offset 
  Plane(const Vec3f& n_, FCL_REAL d_) : ShapeBase(), n(n_), d(d_) 
  { 
    unitNormalTest(); 
  }
  
  /// @brief Construct a plane with normal direction and offset 
  Plane(FCL_REAL a, FCL_REAL b, FCL_REAL c, FCL_REAL d_) : ShapeBase(), n(a, b, c), d(d_)
  {
    unitNormalTest();
  }

  Plane() : ShapeBase(), n(1, 0, 0), d(0)
  {}

  FCL_REAL signedDistance(const Vec3f& p) const
  {
    return n.dot(p) - d;
  }

  FCL_REAL distance(const Vec3f& p) const
  {
    return std::abs(n.dot(p) - d);
  }

  /// @brief Compute AABB 
  void computeLocalAABB();

  /// @brief Get node type: a plane 
  NODE_TYPE getNodeType() const { return GEOM_PLANE; }

  /// @brief Plane normal 
  Vec3f n;

  /// @brief Plane offset 
  FCL_REAL d;

protected:
  
  /// @brief Turn non-unit normal into unit 
  void unitNormalTest();
};


}

#endif