This file is indexed.

/usr/include/fcl/traversal/traversal_node_shapes.h is in libfcl-dev 0.5.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
/*
 * Software License Agreement (BSD License)
 *
 *  Copyright (c) 2011-2014, Willow Garage, Inc.
 *  Copyright (c) 2014-2016, Open Source Robotics Foundation
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of Open Source Robotics Foundation nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 */

/** \author Jia Pan */


#ifndef FCL_TRAVERSAL_NODE_SHAPES_H
#define FCL_TRAVERSAL_NODE_SHAPES_H

#include <algorithm>

#include "fcl/collision_data.h"
#include "fcl/traversal/traversal_node_base.h"
#include "fcl/narrowphase/narrowphase.h"
#include "fcl/shape/geometric_shapes_utility.h"
#include "fcl/BV/BV.h"
#include "fcl/shape/geometric_shapes_utility.h"
#include "fcl/ccd/motion.h"

namespace fcl
{

/// @brief Traversal node for collision between two shapes
template<typename S1, typename S2, typename NarrowPhaseSolver>
class ShapeCollisionTraversalNode : public CollisionTraversalNodeBase
{
public:
  ShapeCollisionTraversalNode() : CollisionTraversalNodeBase()
  {
    model1 = NULL;
    model2 = NULL;

    nsolver = NULL;
  }

  /// @brief BV culling test in one BVTT node
  bool BVTesting(int, int) const
  {
    return false;
  }

  /// @brief Intersection testing between leaves (two shapes)
  void leafTesting(int, int) const
  {
    if(model1->isOccupied() && model2->isOccupied())
    {
      bool is_collision = false;
      if(request.enable_contact)
      {
        std::vector<ContactPoint> contacts;
        if(nsolver->shapeIntersect(*model1, tf1, *model2, tf2, &contacts))
        {
          is_collision = true;
          if(request.num_max_contacts > result->numContacts())
          {
            const size_t free_space = request.num_max_contacts - result->numContacts();
            size_t num_adding_contacts;

            // If the free space is not enough to add all the new contacts, we add contacts in descent order of penetration depth.
            if (free_space < contacts.size())
            {
              std::partial_sort(contacts.begin(), contacts.begin() + free_space, contacts.end(), std::bind(comparePenDepth, std::placeholders::_2, std::placeholders::_1));
              num_adding_contacts = free_space;
            }
            else
            {
              num_adding_contacts = contacts.size();
            }

            for(size_t i = 0; i < num_adding_contacts; ++i)
              result->addContact(Contact(model1, model2, Contact::NONE, Contact::NONE, contacts[i].pos, contacts[i].normal, contacts[i].penetration_depth));
          }
        }
      }
      else
      {
        if(nsolver->shapeIntersect(*model1, tf1, *model2, tf2, NULL))
        {
          is_collision = true;
          if(request.num_max_contacts > result->numContacts())
            result->addContact(Contact(model1, model2, Contact::NONE, Contact::NONE));
        }
      }

      if(is_collision && request.enable_cost)
      {
        AABB aabb1, aabb2;
        computeBV<AABB, S1>(*model1, tf1, aabb1);
        computeBV<AABB, S2>(*model2, tf2, aabb2);
        AABB overlap_part;
        aabb1.overlap(aabb2, overlap_part);
        result->addCostSource(CostSource(overlap_part, cost_density), request.num_max_cost_sources);
      }
    }
    else if((!model1->isFree() && !model2->isFree()) && request.enable_cost)
    {
      if(nsolver->shapeIntersect(*model1, tf1, *model2, tf2, NULL))
      {
        AABB aabb1, aabb2;
        computeBV<AABB, S1>(*model1, tf1, aabb1);
        computeBV<AABB, S2>(*model2, tf2, aabb2);
        AABB overlap_part;
        aabb1.overlap(aabb2, overlap_part);
        result->addCostSource(CostSource(overlap_part, cost_density), request.num_max_cost_sources);        
      }      
    }
  }

  const S1* model1;
  const S2* model2;

  FCL_REAL cost_density;

  const NarrowPhaseSolver* nsolver;
};

/// @brief Traversal node for distance between two shapes
template<typename S1, typename S2, typename NarrowPhaseSolver>
class ShapeDistanceTraversalNode : public DistanceTraversalNodeBase
{
public:
  ShapeDistanceTraversalNode() : DistanceTraversalNodeBase()
  {
    model1 = NULL;
    model2 = NULL;

    nsolver = NULL;
  }

  /// @brief BV culling test in one BVTT node
  FCL_REAL BVTesting(int, int) const
  {
    return -1; // should not be used 
  }

  /// @brief Distance testing between leaves (two shapes)
  void leafTesting(int, int) const
  {
    FCL_REAL distance;
    Vec3f closest_p1, closest_p2;
    nsolver->shapeDistance(*model1, tf1, *model2, tf2, &distance, &closest_p1, &closest_p2);
    result->update(distance, model1, model2, DistanceResult::NONE, DistanceResult::NONE, closest_p1, closest_p2);
  }

  const S1* model1;
  const S2* model2;

  const NarrowPhaseSolver* nsolver;
};

template<typename S1, typename S2, typename NarrowPhaseSolver>
class ShapeConservativeAdvancementTraversalNode : public ShapeDistanceTraversalNode<S1, S2, NarrowPhaseSolver>
{
public:
  ShapeConservativeAdvancementTraversalNode() : ShapeDistanceTraversalNode<S1, S2, NarrowPhaseSolver>()
  {
    delta_t = 1;
    toc = 0;
    t_err = (FCL_REAL)0.0001;

    motion1 = NULL;
    motion2 = NULL;
  }

  void leafTesting(int, int) const
  {
    FCL_REAL distance;
    Vec3f closest_p1, closest_p2;
    this->nsolver->shapeDistance(*(this->model1), this->tf1, *(this->model2), this->tf2, &distance, &closest_p1, &closest_p2);

    Vec3f n = this->tf2.transform(closest_p2) - this->tf1.transform(closest_p1); n.normalize();
    TBVMotionBoundVisitor<RSS> mb_visitor1(model1_bv, n);
    TBVMotionBoundVisitor<RSS> mb_visitor2(model2_bv, -n);
    FCL_REAL bound1 = motion1->computeMotionBound(mb_visitor1);
    FCL_REAL bound2 = motion2->computeMotionBound(mb_visitor2);

    FCL_REAL bound = bound1 + bound2;

    FCL_REAL cur_delta_t;
    if(bound <= distance) cur_delta_t = 1;
    else cur_delta_t = distance / bound;

    if(cur_delta_t < delta_t)
      delta_t  = cur_delta_t;
  }

  mutable FCL_REAL min_distance;

  /// @brief The time from beginning point
  FCL_REAL toc;
  FCL_REAL t_err;

  /// @brief The delta_t each step
  mutable FCL_REAL delta_t;

  /// @brief Motions for the two objects in query
  const MotionBase* motion1;
  const MotionBase* motion2;

  RSS model1_bv, model2_bv; // local bv for the two shapes
};


}

#endif